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Windowing a two-dimensional picture means to determine those line segments of the picture 
that are visible through an axis-parallel window. A study of some algorithmic problems 
involved in windowing a picture is offered. Some methods from computational geometry are 
exploited to store the picture in a computer such that (1) those line segments inside or partially 
inside of a window can be determined efficiently, and (2) the set of those line segments can be 
maintained efficiently while the window is moved parallel to a coordinate axis and/or it is 
enlarged or reduced. e 1984 Academic press, I I K .  

1. INTRODUCTION 

In recent years, the interest in processing graphical data with the computer has 
increased enormously. This is manifested by the existence of scientific journals 
whose primary interests are in computer graphics. In applications involving high 
quality displays, astronomic amounts of data have to be processed. This situation 
begs for efficiency of algorithms and data structures carrying out this computation 
(see, e.g., Newman and Sproull[19]). It is the belief of the authors that the study of 
geometric problems as is common in the area of computational geometry is one 
source of efficient computational methods for manipulating graphical data. For 
support of this thesis we refer to van Leeuwen [26] who identifkd a number of 
results and methods of computational geometry which are highly relevant for 
problems in computer graphics. 

The area of computational geometry found its first systematic manifestation in the 
doctoral thesis of Shamos [25] who defines it as the study of the computational 
complexity of geometric problems. A recent bibliography of Edelsbrunner and 
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van Leeuwen compiling the publications in this rapidly expanding area to mid-1982 
contains some 650 entries [ll]. 

The aim of this paper is to continue the attempt of van Leeuwen [26] in making 
explicit applications of results and methods of computational geometry to computer 
graphics. In particular, we investigate algorithmic problems involved in windowing a 
two-dimensional picture. Our methods apply to pictures composed of mutually 
nonintersecting open line segments and their endpoints. When ~closed line segments 
or intersecting line segments occur then the picture can easily be refined so that it 
falls into this class. We describe space-efficient data structures that allow us to 
identify efficiently those line segments of a given picture visible in a specified 
axis-parallel rectangular window. Furthermore, strategies are developed to maintain 
the set of visible line segments when the window is moved, enlarged, or reduced. 

The tools of computational geometry that will be used in our approach are the 
rather general paradigms called the locus approach and the plane-sweep technique. 
Furthermore, solutions for locating a point in a planar subdivision, walking in 
planar subdivisions, and determining points in an axis-parallel rectangle are applied. 
Those tools are now briefly explained and references to the relevant literature are 
given. 

The locus approach is applicable to search problems and is the: very general idea of 
interpreting the query objects as points in some space and pa.rtitioning this space 
into nonoverlapping domains such that the answer is invariant for all points falling 
into one and the same domain (see Overmars [22]). Thus, the domain a query point 
falls in determines the answer. The locus approach leads naturally to the poinr 
locution search problem that aims at data structures and algorithms for determining 
the domain in which a given query point falls. In particular the planar version of this 
problem has attracted considerable attention. Dobkin and Lipton [6] were the first to 
give a data structure such that a planar point location query can be answered in 
O(log n) time, n denoting the number of edges of the subdivision. The O( n2) space 
requirements of their solution were reduced to O(n) by an ingenious method in 
Lipton and Tarjan [18] which retains the optimal time for answering a query. 
Solutions which are more attractive for practical applications were given later by Lee 
and Preparata [17], Preparata [24], Edelsbrunner and Maurer [lo], Kirkpatrick [15], 
and Edelsbrunner, Guibas, and Stolfi [8]. While the first three solutions are slightly 
suboptimal in their requirements, the fourth has the disadvantage of not generalizing 
to subdivisions with nonstraight edges. In fact, the last solution is the only one 
optimal for nonstraight subdivisions. 

Beside locating a point in a subdivision, it is of interest to find efficient strategies 
for walking in subdivisions. In particular, walking strategies that take constant time 
to go to the “next region of interest” are desired. In a recent advance, Chazelle [4] 
developed a method that modifies subdivisions to this end without increasing the 
asymptotic space bound. 

The plane-weep technique is again a rather general idea used in Hadwiger [14] to 
answer certain geometrical questions and in Nievergelt arrd Preparata 1201 to 
construct a planar subdivision determined by a self-intersecting polygon. The 
essence of the idea is to sweep the plane with a unidirected line in some fixed 
direction. In algorithmic applications, all computation is performed in the, in some 
sense, local neighbourhood of the line. The computation is most often supported by 
certain data structures storing the elements currently intersecting the sweeping line. 
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In addition to those tools, solutions for the planar range search problem are used. 
The problem involves points in the plane as objects and axis-parallel rectangles as 
query objects. The points are to be stored such that those inside of a query rectangle 
can be determined efficiently. A survey of solutions for the range search problem can 
be found in Bentley and Friedman [2]. The most efficient solutions for the planar 
version are described in Willard [27] and in Edelsbrunner [7]. Both solutions require 
0( n log n) space to store n points and O(log n + t) time to find the t points inside 
of a query rectangle. 

The paper is organized as follows: In Section 2, solutions for two search problems 
are presented. It is worthwhile mentioning that the results of this section imply a 
new solution for the planar range search problem. Section 3 discusses the application 
of these solutions to windowing a picture and moving a fixed-size window. The more 
general problem of windowing and moving with arbitrarily sized windows is consid- 
ered in Section 4. In this environment it is also possible to apply a size-changing 
operation to the window, usually called zooming in computer graphics. For the sake 
of efficiency, the shape of the window, that is, the ratio of height over width, is 
required to be fixed. Finally, Section 5 reviews the main contributions of this paper 
and discusses extensions of the presented material. 

2. TWO SEARCH PROBLEMS 

Before proceeding to the primary concern of this paper, windowing a two-dimen- 
sional picture, we consider two particular search problems. Windowing is then 
performed using the solutions for these search problems as primitives. To be clear in 
presentation, we start with the introduction of some concepts. 

A line segment s is called closed if it contains its endpoints and open if it contains 
neither endpoint. Two line segments are said to intersect if they have a point in 
common. If this point is in the relative interior of both then they intersect properly, 
and they touch, otherwise. 

Let S be a set of m closed line segments in the plane. S may also contain points 
which are considered to be degenerate closed line segments. We define a set PICT 
that contains points and open line segments as follows: All endpoints of line 
segments in S are in PICT. Also if two line segments intersect properly in a single 
point then this point is in PICT. The open line segments in PICT are the maximal 
subsets of the union of S minus the points in PICT. We call PICT the picture of S or 
simply a picture. Observe that the transformation of S into its picture eliminates 
intersections of any kind: (1) if two line segments overlap then this overlap is cut off 
the two line segments and introduced as a line segment of its own; (2) if two line 
segments intersect but do not overlap then they are cut into nonintersecting pieces; 
(3) the endpoints are separated from the line segments to get rid of nonproper 
intersections. For the sake of a simplitkd exposition, we will not distinguish between 
the picture of a set of closed line segments and the set itself. Fig. 2.1 shows the 
picture of a set of not properly intersecting closed line segments. 

Computationally, PICT can be obtained from S in O((m + t)log m) time, t 
denoting the number of intersecting pairs in S (see Bentley and Ottmann [3]). If the 
line segments in S do not properly intersect then t I 2m and 5m is an upper bound 
on the number of elements in PET. 

Let now q denote an arbitrary point in the plane. The next-element ofq in PICT is 
the unique element e in PICT whose intersection with the open horizontal ray 
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FIG. 2.1. Picture and query point 4. 

emanating from q towards the right is leftmost (see Fig. 2.1). If q is moved 
horizontally towards the right then the next-element is the first one encountered. The 
next-element search problem requires storing PICT such that the next-element of a 
query point q can be determined efficiently. Observe that the restriction of moving 
horizontally to the right is no loss of generality as no direction is distinguished in 
PICT. 

The problem is solved with the aid of the locus approach: For each element e of 
PICT the domain D, of the plane is constructed such that e is the next-element of a 
point q if and only if q is in 0,. The domain may be a two-dimensional or a 
one-dimensional object. In degenerate cases, it may even be empty. Given a point q, 
the next-element of q is detected by determining the domain that contains q. 

The stated requirements uniquely defkie the desired subdivision of the plane: It is 
obtained by drawing a horizontal ray for each point p in PICT that leaves p to the 
left until it hits another element of PICT. Ignoring the dashed lines, Fig. 2.2 displays 
the described subdivision of the picture shown in Fig. 2.1. 

Unless a point is the right endpoint of a horizontal line segment, its domain is a 
horizontal edge that is closed or unbounded to the left and open to the right. The 
domain of a nonhorizontal line segment s in PICT is a polygonal region R. R is 
open to the right where it is bounded by S. Furthermore, R intersects a horizontal 
line H if and only if s intersects H. In this case, R intersects H in a single interval 
closed or unbounded to the left. The domain of a horizontal line segment s is the 
smallest edge closed to the left and open to the right that covers s. The next-element 
subdivision of PICT contains as faces the interiors of the various polygonal regions 
and, in addition, the interior of the complement as the outer face. An edge is a 
maximal straight and open subset of the intersection of the closures of two domains. 
A vertex is an endpoint of an edge. Note that each face, edge, and vertex belongs to 
a unique domain D in the sense that it is contained in D. It is readily seen that there 
are at most 2n edges, 2n vertices, and n faces in the subdivision, if n is the 
cardinality of PET. Thus, the size of the next-element subdivision of PICT is in 
O(n). 

For the construction of the next-element subdivision of PICT, we employ the so 
called plane-sweep technique (see, e.g., Nievergelt and Preparata [20]). Conceptually, 
a horizontal line H is swept bottom-up and some activities are performed each time 
H meets a point in PICT. Actually, the sweep is carried out by scanning the 
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FIG. 2.2. Next-element subdivision. 

vertically sorted list of the points. Consequently, the fhst action the algorithm takes 
is to sort the points with respect to y coordinates. See Knuth [16] or Aho, Hopcroft, 
and Ullman [l] for efficient sorting algorithms. When ties occur then the order of the 
points is immaterial. While H sweeps bottom-up, an initially empty dictionary X is 
maintained that stores in horizontal order the elements of PICT currently intersect- 
ing H. See Knuth [16] or Aho, Hopcroft, and Ullman [l] for efficient implementa- 
tions of a dictionary. During the algorithm vertices, edges, and faces of the 
subdivision are created and various incidences between them are established. We do 
not describe these activities in detail and refer to [17], [15], and [8] for information 
on which incidence relations might be computationally useful. Now, a more detailed 
description of the plane-sweep algorithm is provided: 

Algorithm NEXT-ELEMENT SUBDIVISION: 

When H encounters a new set P of points (all having the same y-coordinate) then 
the following three steps are performed: 

(1) Each point p of P is inserted into X and the nonhorizontal line segments 
having those points as upper endpoints are deleted from X. The horizontal line 
segments whose endpoints are in P are also inserted into X. These activities give rise 
to the completion of several faces of the subdivision. 

(2) For each point p in P, the element e in X immediately to the left of p is 
determined (if it exists). The horizontal edge connecting e and p (resp. the 
horizontal edge unbounded to the left if e does not exist) is created in the 
subdivision. If e is a nonhorizontal line segment then the creation of the horizontal 
edge connecting p and e gives rise to the creation of a vertex splitting e into two 
edges. The new edges give rise to the opening, completion, and continuation of faces. 

(3) Each point p of P is deleted from X, the horizontal line segments are 
deleted from X, and the nonhorizontal line segments which have points in P as 
lower endpoints are inserted into X. This gives rise to the opening of new faces to be 
completed later. 

THEOREM 2.1. Let PICT be a picture with a total of n points and open line 
segments. There exists a data structure for PICT that requires O(n) space and 
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O(n logn) time for its construction such that the next-element of a query point can be 
determined in O(log n) time. 

Proof. The data structure realizing the asserted bounds is the next-element 
subdivision of PICT with some superimposed structure. The time required to 
construct the next-element subdivision is 0( n log n) for the initial sorting, O(log n) 
per point and line segment for the manipulation of X, and time proportional to the 
size of the subdivision to set up all incidences. As the size of the subdivision is 
proportional to n, we conclude that O(n log n) time and O(n) space suffices to 
create the next-element subdivision. 

To achieve the O(log n) time bound to answer a query, we make use of optimal 
solutions for the planar point location search problem. Any of the data structures in 
Kirkpatrick [15] and Edelsbrunner, Guibas, and Stolfi [8] is appropriate. Their 
results imply: For a subdivision of the plane with m straight edges there exists a 
data structure that requires O(m) space and 0( m log m) time for construction such 
that the face (or edge or vertex) a given query point falls in (or on) can be 
determined in O(log m) time. This proves the assertion and completes the argument. 

The solution for the next-element search problem can be used to determine the 
“next few” elements encountered by a query point q that moves horizontally to the 
right. More specifically, we are interested in those elements that intersect a horizon- 
tal line segment h (the way traced by q). To this end, the following strategy can be 
applied: 

Initially, q is the left endpoint of h. 
While q is not to the right of the right endpoint of h, the following actions are taken: 

The next-element e of q is determined. Unless e is a horizontal line segment let q be the 
intersection of e and the horizontal line supporting h. If e is a horizontal line segment, 
then q is the right endpoint of e. 

If t elements intersects h then O((t + 1)logn) time is required to detect them. 
However, we can do better as there is an inherent inefficiency involved in the 
algorithm above: At each step, a next-element query is invoked although some extra 
information is available. This extra information is the element detected at one step 
earlier. 

In fact, Chazelle [5] independently developed next-element subdivisions for find- 
ing intersections of query line segments and also found a method that exploits the 
extra information mentioned above. For the sake of completeness, we explain his 
method which relies on a modification of the subdivision used. Observe that the 
algorithm above can be viewed as letting q walk in the next-element subdivision. 
This walk starts at the left endpoint of h and ends at its right endpoint. The essential 
difficulty in performing this walk within the subdivision is to cross original line 
segments that bound faces to the right. In general, such a line segment s is cut into a 
number of edges and vertices in the subdivision. In order to determine the face (or 
edge) immediately to the right of s that intersects h, we may use binary search to 
find the edge (or vertex) on s that intersects h. However, this strategy requires 
asymptotically the same amount of time as repeated point location search. 

To remedy this shortcoming, new horizontal edges are introduced which refine the 
next-element subdivision. Let s be a nonhorizontal line segment that is cut into a 
number of edges and vertices in the subdivision. Let uO,. . . , ok + 1 be the bottom-up 
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sequence of vertices on s. Clearly, u,, and uk+i are the endpoints of s, and ui, . . . , uk 
are created by horizontal edges to the right of s (see Fig. 2.2). A new horizontal edge 
is introduced for each ui on s, with 1 5 i I k and i even. This edge leaves ui 
towards the left until it hits another edge of the subdivision. If no edge is hit then the 
new edge is unbounded to the left. The dashed edges in Fig. 2.2 refine the depicted 
next-element subdivision. Note that a new edge gives rise to a new vertex on the 
edge hit (if it exists). So the computation of the new edges has to be carried out from 
right to left in order to achieve the following crucial property: 

Property 2.2. In the refined next-element subdivision, each face has at most two 
right bounding edges. 

Due to Property 2.2, it is now possible to walk horizontally from left to right with 
constant time per line segment encountered. Furthermore, the modification of the 
next-element subdivision does not increase its asymptotic size, that is, the number of 
new edges is in O(n) [4]. For an algorithm that computes the refinement in 
O(n log n) time we refer also to [4]. This yields: 

THEOREM 2.3. Let PICT be a picture with a total of n points and line segments. 
There exists a data structure that requires O(n) space and 0( n log n) time for its 
construction such that the t elements in PICT that intersect a horizontal query line 
segment can be determined in O(log n + t) time. 

A problem very similar to the next-element search problem is what we call the 
next-point search problem: Let S denote a finite set of points in the plane and let q 
denote a vertical and closed line segment of unit length. A point p in S is called a 
next-point of q if its x coordinate is minimal under the constraints that (i) the x 
coordinate of p is greater than the one of q, and (ii) the horizontal line through p 
intersects q. In other words, p is a point that is hit first when q is moved 
horizontally to the right (see Fig. 2.3). In general, q has more than only one 
next-point. The next-point search problem requires storing S such that the next-points 
of a vertical and closed query line segment of unit length can be determined 
efficiently. The restriction to vertical closed line segments of unit length and to 
moving it horizontally to the right is no loss of generality. 

To achieve a solution, the next-point search problem is transformed into a special 
instance of the next-element search problem: Each point p of S is transformed into 
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FIG. 2.3. Next-point of q. 



COMPUTATIONAL GEOMETRY 99 

the vertical and closed line segment T(p) of unit length whose upper endpoint is p. 
A query line segment q is transformed into its lower endpoint T(q). See Fig. 2.4 
which displays the transformed scene shown in Fig. 2.3. 

For the time being, let us assume that no two points of S lie on a common vertical 
line. Easy geometric observations show that the next-point p of a query line segment 
q corresponds to the next-element of T(q). Also there is no next-point for q if and 
only if there is no next-element for T(q). The special instance of the next-element 
search problem is solved as described above. The particular subdivision obtained is 
called the next-point subdivision of S. 

We now come back to the general case, that is, there may be: points in S that lie 
on a common vertical line. As a consequence, there may be overlapping line 
segments in the transformed set. Let v1 denote a line segment that overlaps the line 
segments v2,. . . , vi such that their upper endpoints are below lthe one of vi. Let p 
denote the topmost upper endpoint of the line segments v2, . . . , vi. Then the open 
part below p is cut off vi. This strategy guarantees that our method, as it is now, 
yields the bottommost next-point for a query line segment q. Constant time sufhces 
for each additional next-point of q if the points of S are stored lexicographically 
ordered in a list L. If there are additional next-points then they follow p in L. The 
construction of L can be achieved without affecting the asymptotic bounds for the 
time required to set up the next-point subdivision. This yields: 

THEOREM 2.4. Let S denote a set of n points in the plane. There exists a data 
structure that requires O(n) space and 0( n log n) time for its construction such that the 
t next-points of a vertical and closed query line segment of unit length can be determined 
in O(logn + t) time. 

Modifying the next-point subdivision (it is a next-element subdivision after all) as 
explained above allows waIking horizontally to the right with constant time per 
vertical line segment encountered. This yields: 

i 
i 
I 

_[ 

FIG. 2.4. Point to line segment transform. 
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THEOREM 2.5. Let S be a set of n points in the plane. There exists a data structure 
that requires O(n) space and 0( n log n) time for its construction such that O(log n + t) 
time sufices to determine the t points contained in an axis-parallel rectangle with unit 

height. 

3. WINDOWING A SET OF LINE SEGMENTS 

The two search problems introduced in Section 2 provide the tools for our 
approach to the central problem of this paper, namely to what is called windowing 
in computer graphics, and to performing certain operations on the window. 

A window is an axis-parallel rectangle, that is, the Cartesian product of two closed 
intervals, one on each of the two coordinate axes. For the time being, we consider 
only windows of unit size, that is, the window has unit height and unit width. This 
restriction will be removed in Section 4. The visibility set of a window w is the set of 
elements in the picture PICT that have a point in common with w. Figure 3.1 shows 
a typical picture which represents a two-dimensional projection of a three-dimen- 
sional polyhedral scene. The line segments in the visibility set of the displayed 
window are drawn heavily. The windowing search problem requires storing PICT 
such that the visibility set of a given window can be determined efficiently. 

THEOREM 3.1. Let PICT denote a picture with a total of n open line segments and 
points. There exists a data structure that requires O(n) space and 0( n log n) time for 
its construction such that the t elements of PICT in the visibility set of a query window 
of unit size can be determined in O(log n + t) time. 

Proof. The visibility set of a query window w is computed in two parts: The line 
segments that intersect the boundary of w and the points on the boundary of w are 
determined by posing intersection queries with the four line segments that comprise 
the boundary. The line segments and points that are completely contained in w are 
computed by determining all points inside of w. This suffices since each line segment 
inside of w has its endpoints inside of w. Both parts can be performed within the 
asserted bounds (see Theorems 2.3 and 2.5). This completes the argument. 

FIG. 3.1. Picture with window. 
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Beside determining the elements visible in a window, it is often useful to move the 
window in order to get the desired part of the picture onto the screen. An easy 
strategy to get a different part of the picture onto the screen is to redefine the 
window and to compute the visibility list again. This strategy is obviously inefficient 
if the window is moved only slightly and the visibility list changes little. In such 
cases the data structure introduced above for solving the windowing search problem 
permits a better method. Observe that the visible part of some partially visible line 
segments, of course, changes continuously when w is moved. We do not consider 
those changes but only changes in the visibility set. 

Let PICT denote a picture with n open line segments and points, and let V denote 
the visibility set of a given window w. We need to maintain V while moving w 
parallel to a coordinate axis. The moving search problem asks for a data structure for 
storing PICT such that the elements of PICT that are involved in the first change of 
V as w is moved parallel to a coordinate axis can be determined efficiently. More 
specifically, the first line segments or points that have to be inserted into V or deleted 
from V are desired (see Fig. 3.2). 

THEOREM 3.2. Let PICT denote a picture with a total of n open line segments and 
points, let w be a window of unit size, and let V be the visibility set of w. There exists a 

data structure that requires O(n) space and 0( n log n) time for its construction such 
that O(log n + t) time sujkes to determine the t elements of PICT involved in the$rst 
change of V when w is moved parallel to a coordinate axis. 

Proof Without loss of generality, we restrict our attention to moving w horizon- 
tally to the right. Three subdivisions of the plane are used to detect the first elements 
of PICT that become visible in w when w is moved: (1) A next-element subdivision 
for the line segments with negative slope and their endpoints, (2) a next-element 
subdivision for the line segments with positive slope (including vertical ones) and 
their endpoints, and (3) a next-point subdivision for the points of PICT. A line 
segment or point that is among the first elements which become visible in w is at 
least one of four types: 

(i) it is the next-element of the upper right corner of w and has negative slope 

FIG. 3.2. Moving the window to the right. 
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if it is a line segment; 

(ii) it is the next-element of the lower right comer and has positive slope or is 
vertical if it is a line segment; 

(iii) it is a next-point of the right border of w; or 

(iv) it is a line segment whose left endpoint lies on the right border of w before 
w is moved. 

Case (iv) is trivial if the points on the right border of w that are left endpoints of 
some line segments are kept in a separate list. Case (i) can be checked in O(logn) 
time using the point location techniques described in Sections 1 and 2. Case (ii) is 
analogous to case (i). A difficulty arises in case (iii) if there are several next-points of 
the right border of w. It is expensive to determine those points if they appear not to 
be among those elements involved in the first change of V. This situation can be 
controlled by determining only one of those points first (which costs O(logn) time 
by methods analogous to those taken in cases (i) and (ii)) and determining the others 
only if this one is involved in the first change of V. 

The first elements of S that fall out of w can be detected by analogous techniques. 
The actual elements are determined from the eight cases considered, which com- 
pletes the argument. 

4. ARBITRARY-SIZE WINDOWING AND ZOOMING 

This section develops methods for windowing and moving with axis-parallel 
windows of arbitrary size. Furthermore, an operation that changes the size but not 
the shape of the window (that is, the ratio of height over width is invariant) is 
investigated. This operation is usually called zooming. Efficient data structures are 
developed that allow for windowing, moving the window vertically or horizontally, 
and zooming. The gain of additional generality is paid for by more space required by 
the data structures. 

Our approach to this larger collection of problems is the same as in Section 2: We 
use as primitives for our solutions next-element and next-point search together with 
a solution for the so-called ru-point search problem to be introduced below. 

Note that the solution for the next-point search problem given in Section 2 is 
restricted to query lines of unit length. We no longer are able to stick to this 
simplification since the size of the window, and thus the length of its edges, may 
change by application of zooming. Minor modifications of the search strategies in 
the layered range tree of Willard [27] or the RT-tree of Edelsbrunner [7] yield: 

THEOREM 4.1 [27,7]. Let S denote a set of n points in the plane. There exists a 
data structure that requires O(n log n) space and time for its construction such that the 
t, next-points of a vertical query line segment of arbitrary length can be determined in 
O(logn + tl) time. In addition, O(logn + t2) time sufices to$nd the t, points in an 

axis-parallel query rectangle. 

Together with Theorems 2.1 and 2.3, Theorem 4.1, immediately implies solutions 
for the windowing and the moving search problem, now without restriction on the 
size of the window. 

COROLLARY 4.2. Let PICT denote a picture of n open line segments and points 
There exists a data structure that requires 0( n log n) space and 0( n log n) time for its 
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construction such that (1) the tl elements of S in the visibility set of a query window w 
(of arbitrary size) can be determined in O(log n + tl) time, and (2) the t, elements of 
S involved in the first change of the visibility set of w as w is moved parallel to a 
coordinateaxis can be determined in O(logn + t2) time. 

It is worthwhile to mention that the authors believe that there is a more clever way 
to layer the layered range tree in [27] such that moving the window can be done in 
O(loglog n + tz) time. For shortage of space, the details of this idea involving the 
use of priority queues are omitted. 

So far only extensions of the results of Sections 2 and 3 to windows of arbitrary 
size are given. The remainder of this section is devoted to the examination of the 
zooming operation. A more basic search problem is considered first which will serve 
as a primitive for zooming later. 

Let S denote a set of n points in the plane. A point p = (p,, pY) of S is called a 
right-up-point (ru-point for short) of a query point q = (q,, q,) if p is a point of S 
with minimal x coordinate such that p, - q, 2 pY - q,, 2 0. In other words: 
imagine moving a vertical line segment from q to the right whose lower and upper 
endpoint lie on the lines through q of slope 0 and 1, respectively. The first points of 
S that are hit by this line segment are the i-u-points of q (see Fig. 4.1). Similarly, 
left-up-points, up-right-points, right-down-points etc. can be defined. 

An ru-poinf query consists of a query point q and asks for all t-u-points of q. The 
ru-point search problem requires storing S such that ru-point queries can be 
answered efficiently. 

THEOREM 4.3. Let S be a set of n points in the plane. There is a data structure that 
requires O(n) space and 0( n log n) time for its construction such that the t ru-points of 
a query point can be determined in O(log n + t) time. 

Proof Like Theorem 2.1 we prove this one by use of the locus approach. We 
partition the plane into n + 1 polygonal domains of “equal answer.” One domain 
comprises exactly all points that do not have an i-u-point and for each p in S there 
is a domain Dr comprising exactly all points in the plane for which p is the 
bottommost ru-point. These domains determine a subdivision consisting of faces 
(interiors of domains), edges (relative interiors of the intersection of two closed 
domains), and vertices (endpoints of edges). 

. . 
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FIG. 4.1. The right-up-point of q. 
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With such a subdivision an ru-point query can be answered easily: Use the 
method in [15] or [8] to determine in O(log n) time in (or on) which face (or edge or 
vertex) of the subdivision a query point q = ( qx, qy) lies. This face (or edge or 
vertex) uniquely determines the domain that contains q. If q lies in Dp for some p 
in S then p is the i-u-point with smallest y coordinate. If there are other ru-points 
for q, then they must have the same x coordinate as p and their y coordinates are 
greater that p’s but not greater than q;, + (p, - 4,). To determine such points keep 
the points of S lexicographically ordered in a list L and report all points in L 
immediately following p whose x coordinates agree with p’s and whose y coordi- 
nates are not too large. This clearly takes constant effort per point reported and thus 
the t i-u-points of a query point can be determined in O(log n + t) time. 

It remains to show how the subdivision described above can be constructed in 
O(nlog n) time and O(n) space. For a point z in the plane let W, denote the set of 
points different from t lying between or on the rays of slope 0 and 1 emanating 
from z to the left. It is easy to see that for a point p in S its associated region Dp is 
WP without those parts that belong to some W,, for z in S and z lexicographically 
less than p. 

Thus, we can construct the required subdivision in the following way: First sort 
the points of S into lexicographically increasing order (can be done in 0( II log n) 
time) and then, incrementally for k = 1 to n, add the region of the k th point p to 
the already constructed regions of the first k - 1 points. Intuitively, this is done by 
following the rays bounding I+$, until they intersect the boundary of the union of the 
first k - 1 regions (see Fig. 4.2). Algorithmically this is done as follows: Maintain a 
balanced tree T that stores sorted by y coordinates the points of S that lie on the 
boundary of the subdivision constructed so far. (This clearly can be done in 
O(n log n) time overall.) From T, the boundary edge that is intersected by the 
horizontal ray leaving p can be determined in O(logn) time. From this intersection 
point follow the boundary downwards (and delete from T all points of S encoun- 
tered) until the edge is found that is intersected by the other ray leaving p. The time 
to do this (exclusive of the manipulation of T) is proportional to the number of 
edges traversed. However, each edge traversed ceases to be a boundary edge and 
cannot be traversed again. Therefore, the accumulative effort over all points of S is 
proportional to the number of edges in the entire subdivision. 

FIG. 4.2. ru-point subdivision. 
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But note that this is O(n) as for each domain Dp added thie number of vertices 
and edges in the subdivision increases at most by three and four, respectively. 
Hence, the entire subdivision cannot have more than 3n vertices and 4n edges. This 
completes the argument. 

It is not clear whether the ru-point subdivision can be modified such that it allows 
for walking in constant time per i-u-point encountered. Such a modification would be 
a first step to improve the logarithmic time bound for zooming (see Theorem 4.4). 

Now we have the tools available for solving the central issue of this section, viz, 
performing the zooming operation on the window. In computer graphics this 
operation is used to display some part of the picture with varying size. Larger size is 
achieved by enlarging the needed part on the screen which goes along with reducing 
the size of the window. 

Let PICT denote a picture of n line segments and points, let w denote a window, 
and let V denote the visibility set of w. We restrict our attention to windows w of 
unit shape, that is, the height of w equals the width of w. The restriction to unit 
shape is no loss of generality since other rectangles can be transformed into squares 
by linear coordinate transformations. The zooming search problem asks that PICT be 
stored such that the elements of PICT that are involved in the first change of V as w 
is enlarged or reduced can be determined efficiently. The enlargement or reduction 
of w leaves the center of w invariant and changes the height and the width of w by 
the same scaling factor (see Fig. 4.3). 

THEOREM 4.4. Let PICT denote a picture with a total of n open line segments and 
points, let w be a window of unit shape, and let V be the visibility set of w. There exists 
a data structure that requires O(n log n) space and time for construction such that 
O(log n + t) time suffices to determine the t elements of PICT involved in the first 
change of V as w is enlarged or reduced. 

Proof: Let us consider the reduction of w first. The first elements of PICT that 
fall out of w are determined by moving the four edges of w inwards. If four 

FIG. 4.3. Enlarging and reducing the window. 
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FIG. 4.4. Enlarging the window. 

next-point subdivisions are available then the t first elements falling out of w can be 
determined in O(log n -t t) time, see Theorem 4.1. 

Next we examine the somewhat more complicated enlargement of w. One can 
distinguish three cases how an element e of PICT can be involved in the first change 
of I’. Representative for the four borders and comers of w, the right border, and the 
top right comer of w are considered. The cases are: 

(i) e is hit when the right border of w is moved to the right (see Fig. 4.4); 

(ii) e is the next-element of the upper right corner of w which is moved 
upwards and to the right along the diagonal of w (see Fig. 4.4); or 

(iii) e is an ru-point of the upper right comer of w (see Fig. 4.4). 

The former two cases are treated as in Theorems 4.1 and 2.1. The third case is 
handled as described in Theorem 4.3. This completes the argument. 

We close this section by noting that additional operations such as changing the 
size of the window by moving only one edge inwards or outwards can also be 
performed with the methods presented. This operation, however, changes the shape 
of the window and zooming with arbitrary shaped windows seems to be much harder 
than zooming with windows of fixed or unit shape. 

5. DISCUSSION AND EXTENSIONS 

We first give a review of the main contributions of this paper. Most importantly it 
describes the application of some methods and results of computational geometry to 
problems in computer graphics. Two-dimensional pictures made up of mutually 
nonintersecting open line segments and their endpoints are considered, e.g., the 
two-dimensional display of a three-dimensional polyhedral scene with hidden parts 
removed. We present methods that store a picture such that the set of line segments 
totally or partially inside an axis-parallel rectangular window can be determined 
efficiently, and this set can be maintained efficiently while the window is moved 
parallel to a coordinate axis or while it is enlarged or reduced. 

Although emphasis has been laid on the application of tools to problems in 
computer graphics, it is worthwhile noting that our methods imply a new solution 
for a special case of the classical planar range search problem (see Theorem 2.5). 
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We close this section by mentioning extensions of the presented material in three 
directions: general instead of axis-parallel rectangular windows, general curves as 
objects instead of line segments only, and the possibility of changing the picture with 
little cost. 

Search problems with polygonal query objects were investigated in a rather 
general-setting in Edelsbrunner, Kirkpatrick, and Maurer [9] and for sets of points in 
Willard [28] and in Edelsbrunner and Welzl [12]. Their results indicate that this 
extension costs a great deal of the efficiency achieved for axis-parallel windows. 

Fewer difficulties are to be expected if the line segments are replaced by arbitrary 
but computationally simple curves. What “computational simphcity” means depends 
on the primitive operations needed for the problem at hand. We note here that the 
only- optimal solution for locating a point in a planar subdivision that contains 
nonstraight edges is the one in [8]. 

For performing changes in the picture at little cost, we refer to two general 
methods. One proceeds by splitting a data structure into a number of smaller 
instances that are independent of each other (see Overmars and van Leeuwen [23] 
which is one of the latest in a series of publications on this topic). The other method 
is based on constructing data structures by means of the divide-and-conquer 
paradigm, see Overmars [21] as well as Gowda and Kirkpatrick [13]. The applica- 
bility of their method follows from the possibility of constructing the data structures 
of this paper by means of this paradigm instead of the plane-sweep technique. 
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