
COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 28, 92-108 (1984)

Some Methods of Computational Geometry Applied to

Computer Graphics*

H. EDELSBRUNNER

Institutes for Information Processing, Technical Universiry of Graz, Schiesstattgasse 4a,
A-801 0 Graz, Austria

AND

M. H. OVERMARS

Department of Computer Science, iJniversi@ of Utrecht, P.O. Box 80.002,
3508 TA Utrecht, The Netherlands

AND

R. SEIDEL

Institutes for Information Processing, Technical University of Graz, Schiesstattgasse 4a,
A -8010 Graz, Austria

Received October 17,1983; revised February 1,1984

Windowing a two-dimensional picture means to determine those line segments of the picture
that are visible through an axis-parallel window. A study of some algorithmic problems
involved in windowing a picture is offered. Some methods from computational geometry are
exploited to store the picture in a computer such that (1) those line segments inside or partially
inside of a window can be determined efficiently, and (2) the set of those line segments can be
maintained efficiently while the window is moved parallel to a coordinate axis and/or it is
enlarged or reduced. e 1984 Academic press, I I K .

1. INTRODUCTION

In recent years, the interest in processing graphical data with the computer has
increased enormously. This is manifested by the existence of scientific journals
whose primary interests are in computer graphics. In applications involving high
quality displays, astronomic amounts of data have to be processed. This situation
begs for efficiency of algorithms and data structures carrying out this computation
(see, e.g., Newman and Sproull[19]). It is the belief of the authors that the study of
geometric problems as is common in the area of computational geometry is one
source of efficient computational methods for manipulating graphical data. For
support of this thesis we refer to van Leeuwen [26] who identifkd a number of
results and methods of computational geometry which are highly relevant for
problems in computer graphics.

The area of computational geometry found its first systematic manifestation in the
doctoral thesis of Shamos [25] who defines it as the study of the computational
complexity of geometric problems. A recent bibliography of Edelsbrunner and

*Research reported in this paper was done while the second author visited the Technical University of
Graz. He was supported by the Netherlands Organization for the Advancement of Pure Research (ZWO).
The first author was supported by the Austrian Fonds zur Foerderung der wissenschaftlichen Forschung.

92

0734-189X/84 $3.00
Copyright 0 1984 by Academic Press, Inc.

All tights of reproduction in any fom revved.

COMPUTATIONAL GEOMETRY 93

van Leeuwen compiling the publications in this rapidly expanding area to mid-1982
contains some 650 entries [ll].

The aim of this paper is to continue the attempt of van Leeuwen [26] in making
explicit applications of results and methods of computational geometry to computer
graphics. In particular, we investigate algorithmic problems involved in windowing a
two-dimensional picture. Our methods apply to pictures composed of mutually
nonintersecting open line segments and their endpoints. When ~closed line segments
or intersecting line segments occur then the picture can easily be refined so that it
falls into this class. We describe space-efficient data structures that allow us to
identify efficiently those line segments of a given picture visible in a specified
axis-parallel rectangular window. Furthermore, strategies are developed to maintain
the set of visible line segments when the window is moved, enlarged, or reduced.

The tools of computational geometry that will be used in our approach are the
rather general paradigms called the locus approach and the plane-sweep technique.
Furthermore, solutions for locating a point in a planar subdivision, walking in
planar subdivisions, and determining points in an axis-parallel rectangle are applied.
Those tools are now briefly explained and references to the relevant literature are
given.

The locus approach is applicable to search problems and is the: very general idea of
interpreting the query objects as points in some space and pa.rtitioning this space
into nonoverlapping domains such that the answer is invariant for all points falling
into one and the same domain (see Overmars [22]). Thus, the domain a query point
falls in determines the answer. The locus approach leads naturally to the poinr
locution search problem that aims at data structures and algorithms for determining
the domain in which a given query point falls. In particular the planar version of this
problem has attracted considerable attention. Dobkin and Lipton [6] were the first to
give a data structure such that a planar point location query can be answered in
O(log n) time, n denoting the number of edges of the subdivision. The O(n2) space
requirements of their solution were reduced to O(n) by an ingenious method in
Lipton and Tarjan [18] which retains the optimal time for answering a query.
Solutions which are more attractive for practical applications were given later by Lee
and Preparata [17], Preparata [24], Edelsbrunner and Maurer [lo], Kirkpatrick [15],
and Edelsbrunner, Guibas, and Stolfi [8]. While the first three solutions are slightly
suboptimal in their requirements, the fourth has the disadvantage of not generalizing
to subdivisions with nonstraight edges. In fact, the last solution is the only one
optimal for nonstraight subdivisions.

Beside locating a point in a subdivision, it is of interest to find efficient strategies
for walking in subdivisions. In particular, walking strategies that take constant time
to go to the “next region of interest” are desired. In a recent advance, Chazelle [4]
developed a method that modifies subdivisions to this end without increasing the
asymptotic space bound.

The plane-weep technique is again a rather general idea used in Hadwiger [14] to
answer certain geometrical questions and in Nievergelt arrd Preparata 1201 to
construct a planar subdivision determined by a self-intersecting polygon. The
essence of the idea is to sweep the plane with a unidirected line in some fixed
direction. In algorithmic applications, all computation is performed in the, in some
sense, local neighbourhood of the line. The computation is most often supported by
certain data structures storing the elements currently intersecting the sweeping line.

94 EDELSBRUNNER, OVERMARS, AND SEIDEL

In addition to those tools, solutions for the planar range search problem are used.
The problem involves points in the plane as objects and axis-parallel rectangles as
query objects. The points are to be stored such that those inside of a query rectangle
can be determined efficiently. A survey of solutions for the range search problem can
be found in Bentley and Friedman [2]. The most efficient solutions for the planar
version are described in Willard [27] and in Edelsbrunner [7]. Both solutions require
0(n log n) space to store n points and O(log n + t) time to find the t points inside
of a query rectangle.

The paper is organized as follows: In Section 2, solutions for two search problems
are presented. It is worthwhile mentioning that the results of this section imply a
new solution for the planar range search problem. Section 3 discusses the application
of these solutions to windowing a picture and moving a fixed-size window. The more
general problem of windowing and moving with arbitrarily sized windows is consid-
ered in Section 4. In this environment it is also possible to apply a size-changing
operation to the window, usually called zooming in computer graphics. For the sake
of efficiency, the shape of the window, that is, the ratio of height over width, is
required to be fixed. Finally, Section 5 reviews the main contributions of this paper
and discusses extensions of the presented material.

2. TWO SEARCH PROBLEMS

Before proceeding to the primary concern of this paper, windowing a two-dimen-
sional picture, we consider two particular search problems. Windowing is then
performed using the solutions for these search problems as primitives. To be clear in
presentation, we start with the introduction of some concepts.

A line segment s is called closed if it contains its endpoints and open if it contains
neither endpoint. Two line segments are said to intersect if they have a point in
common. If this point is in the relative interior of both then they intersect properly,
and they touch, otherwise.

Let S be a set of m closed line segments in the plane. S may also contain points
which are considered to be degenerate closed line segments. We define a set PICT
that contains points and open line segments as follows: All endpoints of line
segments in S are in PICT. Also if two line segments intersect properly in a single
point then this point is in PICT. The open line segments in PICT are the maximal
subsets of the union of S minus the points in PICT. We call PICT the picture of S or
simply a picture. Observe that the transformation of S into its picture eliminates
intersections of any kind: (1) if two line segments overlap then this overlap is cut off
the two line segments and introduced as a line segment of its own; (2) if two line
segments intersect but do not overlap then they are cut into nonintersecting pieces;
(3) the endpoints are separated from the line segments to get rid of nonproper
intersections. For the sake of a simplitkd exposition, we will not distinguish between
the picture of a set of closed line segments and the set itself. Fig. 2.1 shows the
picture of a set of not properly intersecting closed line segments.

Computationally, PICT can be obtained from S in O((m + t)log m) time, t
denoting the number of intersecting pairs in S (see Bentley and Ottmann [3]). If the
line segments in S do not properly intersect then t I 2m and 5m is an upper bound
on the number of elements in PET.

Let now q denote an arbitrary point in the plane. The next-element ofq in PICT is
the unique element e in PICT whose intersection with the open horizontal ray

COMPUTATIONAL GEOMETRY 95

FIG. 2.1. Picture and query point 4.

emanating from q towards the right is leftmost (see Fig. 2.1). If q is moved
horizontally towards the right then the next-element is the first one encountered. The
next-element search problem requires storing PICT such that the next-element of a
query point q can be determined efficiently. Observe that the restriction of moving
horizontally to the right is no loss of generality as no direction is distinguished in
PICT.

The problem is solved with the aid of the locus approach: For each element e of
PICT the domain D, of the plane is constructed such that e is the next-element of a
point q if and only if q is in 0,. The domain may be a two-dimensional or a
one-dimensional object. In degenerate cases, it may even be empty. Given a point q,
the next-element of q is detected by determining the domain that contains q.

The stated requirements uniquely defkie the desired subdivision of the plane: It is
obtained by drawing a horizontal ray for each point p in PICT that leaves p to the
left until it hits another element of PICT. Ignoring the dashed lines, Fig. 2.2 displays
the described subdivision of the picture shown in Fig. 2.1.

Unless a point is the right endpoint of a horizontal line segment, its domain is a
horizontal edge that is closed or unbounded to the left and open to the right. The
domain of a nonhorizontal line segment s in PICT is a polygonal region R. R is
open to the right where it is bounded by S. Furthermore, R intersects a horizontal
line H if and only if s intersects H. In this case, R intersects H in a single interval
closed or unbounded to the left. The domain of a horizontal line segment s is the
smallest edge closed to the left and open to the right that covers s. The next-element
subdivision of PICT contains as faces the interiors of the various polygonal regions
and, in addition, the interior of the complement as the outer face. An edge is a
maximal straight and open subset of the intersection of the closures of two domains.
A vertex is an endpoint of an edge. Note that each face, edge, and vertex belongs to
a unique domain D in the sense that it is contained in D. It is readily seen that there
are at most 2n edges, 2n vertices, and n faces in the subdivision, if n is the
cardinality of PET. Thus, the size of the next-element subdivision of PICT is in
O(n).

For the construction of the next-element subdivision of PICT, we employ the so
called plane-sweep technique (see, e.g., Nievergelt and Preparata [20]). Conceptually,
a horizontal line H is swept bottom-up and some activities are performed each time
H meets a point in PICT. Actually, the sweep is carried out by scanning the

96 EDELSBRUNNER, 0 VFRMARS, AND SEIDEL

FIG. 2.2. Next-element subdivision.

vertically sorted list of the points. Consequently, the fhst action the algorithm takes
is to sort the points with respect to y coordinates. See Knuth [16] or Aho, Hopcroft,
and Ullman [l] for efficient sorting algorithms. When ties occur then the order of the
points is immaterial. While H sweeps bottom-up, an initially empty dictionary X is
maintained that stores in horizontal order the elements of PICT currently intersect-
ing H. See Knuth [16] or Aho, Hopcroft, and Ullman [l] for efficient implementa-
tions of a dictionary. During the algorithm vertices, edges, and faces of the
subdivision are created and various incidences between them are established. We do
not describe these activities in detail and refer to [17], [15], and [8] for information
on which incidence relations might be computationally useful. Now, a more detailed
description of the plane-sweep algorithm is provided:

Algorithm NEXT-ELEMENT SUBDIVISION:

When H encounters a new set P of points (all having the same y-coordinate) then
the following three steps are performed:

(1) Each point p of P is inserted into X and the nonhorizontal line segments
having those points as upper endpoints are deleted from X. The horizontal line
segments whose endpoints are in P are also inserted into X. These activities give rise
to the completion of several faces of the subdivision.

(2) For each point p in P, the element e in X immediately to the left of p is
determined (if it exists). The horizontal edge connecting e and p (resp. the
horizontal edge unbounded to the left if e does not exist) is created in the
subdivision. If e is a nonhorizontal line segment then the creation of the horizontal
edge connecting p and e gives rise to the creation of a vertex splitting e into two
edges. The new edges give rise to the opening, completion, and continuation of faces.

(3) Each point p of P is deleted from X, the horizontal line segments are
deleted from X, and the nonhorizontal line segments which have points in P as
lower endpoints are inserted into X. This gives rise to the opening of new faces to be
completed later.

THEOREM 2.1. Let PICT be a picture with a total of n points and open line
segments. There exists a data structure for PICT that requires O(n) space and

COMPUTATIONAL GEOMETRY 97

O(n logn) time for its construction such that the next-element of a query point can be
determined in O(log n) time.

Proof. The data structure realizing the asserted bounds is the next-element
subdivision of PICT with some superimposed structure. The time required to
construct the next-element subdivision is 0(n log n) for the initial sorting, O(log n)
per point and line segment for the manipulation of X, and time proportional to the
size of the subdivision to set up all incidences. As the size of the subdivision is
proportional to n, we conclude that O(n log n) time and O(n) space suffices to
create the next-element subdivision.

To achieve the O(log n) time bound to answer a query, we make use of optimal
solutions for the planar point location search problem. Any of the data structures in
Kirkpatrick [15] and Edelsbrunner, Guibas, and Stolfi [8] is appropriate. Their
results imply: For a subdivision of the plane with m straight edges there exists a
data structure that requires O(m) space and 0(m log m) time for construction such
that the face (or edge or vertex) a given query point falls in (or on) can be
determined in O(log m) time. This proves the assertion and completes the argument.

The solution for the next-element search problem can be used to determine the
“next few” elements encountered by a query point q that moves horizontally to the
right. More specifically, we are interested in those elements that intersect a horizon-
tal line segment h (the way traced by q). To this end, the following strategy can be
applied:

Initially, q is the left endpoint of h.
While q is not to the right of the right endpoint of h, the following actions are taken:

The next-element e of q is determined. Unless e is a horizontal line segment let q be the
intersection of e and the horizontal line supporting h. If e is a horizontal line segment,
then q is the right endpoint of e.

If t elements intersects h then O((t + 1)logn) time is required to detect them.
However, we can do better as there is an inherent inefficiency involved in the
algorithm above: At each step, a next-element query is invoked although some extra
information is available. This extra information is the element detected at one step
earlier.

In fact, Chazelle [5] independently developed next-element subdivisions for find-
ing intersections of query line segments and also found a method that exploits the
extra information mentioned above. For the sake of completeness, we explain his
method which relies on a modification of the subdivision used. Observe that the
algorithm above can be viewed as letting q walk in the next-element subdivision.
This walk starts at the left endpoint of h and ends at its right endpoint. The essential
difficulty in performing this walk within the subdivision is to cross original line
segments that bound faces to the right. In general, such a line segment s is cut into a
number of edges and vertices in the subdivision. In order to determine the face (or
edge) immediately to the right of s that intersects h, we may use binary search to
find the edge (or vertex) on s that intersects h. However, this strategy requires
asymptotically the same amount of time as repeated point location search.

To remedy this shortcoming, new horizontal edges are introduced which refine the
next-element subdivision. Let s be a nonhorizontal line segment that is cut into a
number of edges and vertices in the subdivision. Let uO,. . . , ok + 1 be the bottom-up

98 EDELSBRUNNER, OVERMARS, AND SEIDEL

sequence of vertices on s. Clearly, u,, and uk+i are the endpoints of s, and ui, . . . , uk
are created by horizontal edges to the right of s (see Fig. 2.2). A new horizontal edge
is introduced for each ui on s, with 1 5 i I k and i even. This edge leaves ui
towards the left until it hits another edge of the subdivision. If no edge is hit then the
new edge is unbounded to the left. The dashed edges in Fig. 2.2 refine the depicted
next-element subdivision. Note that a new edge gives rise to a new vertex on the
edge hit (if it exists). So the computation of the new edges has to be carried out from
right to left in order to achieve the following crucial property:

Property 2.2. In the refined next-element subdivision, each face has at most two
right bounding edges.

Due to Property 2.2, it is now possible to walk horizontally from left to right with
constant time per line segment encountered. Furthermore, the modification of the
next-element subdivision does not increase its asymptotic size, that is, the number of
new edges is in O(n) [4]. For an algorithm that computes the refinement in
O(n log n) time we refer also to [4]. This yields:

THEOREM 2.3. Let PICT be a picture with a total of n points and line segments.
There exists a data structure that requires O(n) space and 0(n log n) time for its
construction such that the t elements in PICT that intersect a horizontal query line
segment can be determined in O(log n + t) time.

A problem very similar to the next-element search problem is what we call the
next-point search problem: Let S denote a finite set of points in the plane and let q
denote a vertical and closed line segment of unit length. A point p in S is called a
next-point of q if its x coordinate is minimal under the constraints that (i) the x
coordinate of p is greater than the one of q, and (ii) the horizontal line through p
intersects q. In other words, p is a point that is hit first when q is moved
horizontally to the right (see Fig. 2.3). In general, q has more than only one
next-point. The next-point search problem requires storing S such that the next-points
of a vertical and closed query line segment of unit length can be determined
efficiently. The restriction to vertical closed line segments of unit length and to
moving it horizontally to the right is no loss of generality.

To achieve a solution, the next-point search problem is transformed into a special
instance of the next-element search problem: Each point p of S is transformed into

. .
.

.

.

.

~

.

P
. .

.
.

. 9

.
.

. .
. .

.

FIG. 2.3. Next-point of q.

COMPUTATIONAL GEOMETRY 99

the vertical and closed line segment T(p) of unit length whose upper endpoint is p.
A query line segment q is transformed into its lower endpoint T(q). See Fig. 2.4
which displays the transformed scene shown in Fig. 2.3.

For the time being, let us assume that no two points of S lie on a common vertical
line. Easy geometric observations show that the next-point p of a query line segment
q corresponds to the next-element of T(q). Also there is no next-point for q if and
only if there is no next-element for T(q). The special instance of the next-element
search problem is solved as described above. The particular subdivision obtained is
called the next-point subdivision of S.

We now come back to the general case, that is, there may be: points in S that lie
on a common vertical line. As a consequence, there may be overlapping line
segments in the transformed set. Let v1 denote a line segment that overlaps the line
segments v2,. . . , vi such that their upper endpoints are below lthe one of vi. Let p
denote the topmost upper endpoint of the line segments v2, . . . , vi. Then the open
part below p is cut off vi. This strategy guarantees that our method, as it is now,
yields the bottommost next-point for a query line segment q. Constant time sufhces
for each additional next-point of q if the points of S are stored lexicographically
ordered in a list L. If there are additional next-points then they follow p in L. The
construction of L can be achieved without affecting the asymptotic bounds for the
time required to set up the next-point subdivision. This yields:

THEOREM 2.4. Let S denote a set of n points in the plane. There exists a data
structure that requires O(n) space and 0(n log n) time for its construction such that the
t next-points of a vertical and closed query line segment of unit length can be determined
in O(logn + t) time.

Modifying the next-point subdivision (it is a next-element subdivision after all) as
explained above allows waIking horizontally to the right with constant time per
vertical line segment encountered. This yields:

i
i
I

_[

FIG. 2.4. Point to line segment transform.

100 EDELSBRUNNER, OVERMARS, AND SEIDEL

THEOREM 2.5. Let S be a set of n points in the plane. There exists a data structure
that requires O(n) space and 0(n log n) time for its construction such that O(log n + t)
time sufices to determine the t points contained in an axis-parallel rectangle with unit

height.

3. WINDOWING A SET OF LINE SEGMENTS

The two search problems introduced in Section 2 provide the tools for our
approach to the central problem of this paper, namely to what is called windowing
in computer graphics, and to performing certain operations on the window.

A window is an axis-parallel rectangle, that is, the Cartesian product of two closed
intervals, one on each of the two coordinate axes. For the time being, we consider
only windows of unit size, that is, the window has unit height and unit width. This
restriction will be removed in Section 4. The visibility set of a window w is the set of
elements in the picture PICT that have a point in common with w. Figure 3.1 shows
a typical picture which represents a two-dimensional projection of a three-dimen-
sional polyhedral scene. The line segments in the visibility set of the displayed
window are drawn heavily. The windowing search problem requires storing PICT
such that the visibility set of a given window can be determined efficiently.

THEOREM 3.1. Let PICT denote a picture with a total of n open line segments and
points. There exists a data structure that requires O(n) space and 0(n log n) time for
its construction such that the t elements of PICT in the visibility set of a query window
of unit size can be determined in O(log n + t) time.

Proof. The visibility set of a query window w is computed in two parts: The line
segments that intersect the boundary of w and the points on the boundary of w are
determined by posing intersection queries with the four line segments that comprise
the boundary. The line segments and points that are completely contained in w are
computed by determining all points inside of w. This suffices since each line segment
inside of w has its endpoints inside of w. Both parts can be performed within the
asserted bounds (see Theorems 2.3 and 2.5). This completes the argument.

FIG. 3.1. Picture with window.

COMPUTATIONAL GEOMETRY 101

Beside determining the elements visible in a window, it is often useful to move the
window in order to get the desired part of the picture onto the screen. An easy
strategy to get a different part of the picture onto the screen is to redefine the
window and to compute the visibility list again. This strategy is obviously inefficient
if the window is moved only slightly and the visibility list changes little. In such
cases the data structure introduced above for solving the windowing search problem
permits a better method. Observe that the visible part of some partially visible line
segments, of course, changes continuously when w is moved. We do not consider
those changes but only changes in the visibility set.

Let PICT denote a picture with n open line segments and points, and let V denote
the visibility set of a given window w. We need to maintain V while moving w
parallel to a coordinate axis. The moving search problem asks for a data structure for
storing PICT such that the elements of PICT that are involved in the first change of
V as w is moved parallel to a coordinate axis can be determined efficiently. More
specifically, the first line segments or points that have to be inserted into V or deleted
from V are desired (see Fig. 3.2).

THEOREM 3.2. Let PICT denote a picture with a total of n open line segments and
points, let w be a window of unit size, and let V be the visibility set of w. There exists a

data structure that requires O(n) space and 0(n log n) time for its construction such
that O(log n + t) time sujkes to determine the t elements of PICT involved in the$rst
change of V when w is moved parallel to a coordinate axis.

Proof Without loss of generality, we restrict our attention to moving w horizon-
tally to the right. Three subdivisions of the plane are used to detect the first elements
of PICT that become visible in w when w is moved: (1) A next-element subdivision
for the line segments with negative slope and their endpoints, (2) a next-element
subdivision for the line segments with positive slope (including vertical ones) and
their endpoints, and (3) a next-point subdivision for the points of PICT. A line
segment or point that is among the first elements which become visible in w is at
least one of four types:

(i) it is the next-element of the upper right corner of w and has negative slope

FIG. 3.2. Moving the window to the right.

102 EDELSBRUNNER, OVERMARS, AND SEIDEL

if it is a line segment;

(ii) it is the next-element of the lower right comer and has positive slope or is
vertical if it is a line segment;

(iii) it is a next-point of the right border of w; or

(iv) it is a line segment whose left endpoint lies on the right border of w before
w is moved.

Case (iv) is trivial if the points on the right border of w that are left endpoints of
some line segments are kept in a separate list. Case (i) can be checked in O(logn)
time using the point location techniques described in Sections 1 and 2. Case (ii) is
analogous to case (i). A difficulty arises in case (iii) if there are several next-points of
the right border of w. It is expensive to determine those points if they appear not to
be among those elements involved in the first change of V. This situation can be
controlled by determining only one of those points first (which costs O(logn) time
by methods analogous to those taken in cases (i) and (ii)) and determining the others
only if this one is involved in the first change of V.

The first elements of S that fall out of w can be detected by analogous techniques.
The actual elements are determined from the eight cases considered, which com-
pletes the argument.

4. ARBITRARY-SIZE WINDOWING AND ZOOMING

This section develops methods for windowing and moving with axis-parallel
windows of arbitrary size. Furthermore, an operation that changes the size but not
the shape of the window (that is, the ratio of height over width is invariant) is
investigated. This operation is usually called zooming. Efficient data structures are
developed that allow for windowing, moving the window vertically or horizontally,
and zooming. The gain of additional generality is paid for by more space required by
the data structures.

Our approach to this larger collection of problems is the same as in Section 2: We
use as primitives for our solutions next-element and next-point search together with
a solution for the so-called ru-point search problem to be introduced below.

Note that the solution for the next-point search problem given in Section 2 is
restricted to query lines of unit length. We no longer are able to stick to this
simplification since the size of the window, and thus the length of its edges, may
change by application of zooming. Minor modifications of the search strategies in
the layered range tree of Willard [27] or the RT-tree of Edelsbrunner [7] yield:

THEOREM 4.1 [27,7]. Let S denote a set of n points in the plane. There exists a
data structure that requires O(n log n) space and time for its construction such that the
t, next-points of a vertical query line segment of arbitrary length can be determined in
O(logn + tl) time. In addition, O(logn + t2) time sufices to$nd the t, points in an

axis-parallel query rectangle.

Together with Theorems 2.1 and 2.3, Theorem 4.1, immediately implies solutions
for the windowing and the moving search problem, now without restriction on the
size of the window.

COROLLARY 4.2. Let PICT denote a picture of n open line segments and points
There exists a data structure that requires 0(n log n) space and 0(n log n) time for its

COMPUTATIONAL GEOMETRY 103

construction such that (1) the tl elements of S in the visibility set of a query window w
(of arbitrary size) can be determined in O(log n + tl) time, and (2) the t, elements of
S involved in the first change of the visibility set of w as w is moved parallel to a
coordinateaxis can be determined in O(logn + t2) time.

It is worthwhile to mention that the authors believe that there is a more clever way
to layer the layered range tree in [27] such that moving the window can be done in
O(loglog n + tz) time. For shortage of space, the details of this idea involving the
use of priority queues are omitted.

So far only extensions of the results of Sections 2 and 3 to windows of arbitrary
size are given. The remainder of this section is devoted to the examination of the
zooming operation. A more basic search problem is considered first which will serve
as a primitive for zooming later.

Let S denote a set of n points in the plane. A point p = (p,, pY) of S is called a
right-up-point (ru-point for short) of a query point q = (q,, q,) if p is a point of S
with minimal x coordinate such that p, - q, 2 pY - q,, 2 0. In other words:
imagine moving a vertical line segment from q to the right whose lower and upper
endpoint lie on the lines through q of slope 0 and 1, respectively. The first points of
S that are hit by this line segment are the i-u-points of q (see Fig. 4.1). Similarly,
left-up-points, up-right-points, right-down-points etc. can be defined.

An ru-poinf query consists of a query point q and asks for all t-u-points of q. The
ru-point search problem requires storing S such that ru-point queries can be
answered efficiently.

THEOREM 4.3. Let S be a set of n points in the plane. There is a data structure that
requires O(n) space and 0(n log n) time for its construction such that the t ru-points of
a query point can be determined in O(log n + t) time.

Proof Like Theorem 2.1 we prove this one by use of the locus approach. We
partition the plane into n + 1 polygonal domains of “equal answer.” One domain
comprises exactly all points that do not have an i-u-point and for each p in S there
is a domain Dr comprising exactly all points in the plane for which p is the
bottommost ru-point. These domains determine a subdivision consisting of faces
(interiors of domains), edges (relative interiors of the intersection of two closed
domains), and vertices (endpoints of edges).

. .
. .

. . . ‘* . .
_,;1

dh// .’
11 Ii !i !“Y . “‘j/j ; q

.

.

FIG. 4.1. The right-up-point of q.

104 EDELSBRUNNER, OVERMARS, AND SEIDEL

With such a subdivision an ru-point query can be answered easily: Use the
method in [15] or [8] to determine in O(log n) time in (or on) which face (or edge or
vertex) of the subdivision a query point q = (qx, qy) lies. This face (or edge or
vertex) uniquely determines the domain that contains q. If q lies in Dp for some p
in S then p is the i-u-point with smallest y coordinate. If there are other ru-points
for q, then they must have the same x coordinate as p and their y coordinates are
greater that p’s but not greater than q;, + (p, - 4,). To determine such points keep
the points of S lexicographically ordered in a list L and report all points in L
immediately following p whose x coordinates agree with p’s and whose y coordi-
nates are not too large. This clearly takes constant effort per point reported and thus
the t i-u-points of a query point can be determined in O(log n + t) time.

It remains to show how the subdivision described above can be constructed in
O(nlog n) time and O(n) space. For a point z in the plane let W, denote the set of
points different from t lying between or on the rays of slope 0 and 1 emanating
from z to the left. It is easy to see that for a point p in S its associated region Dp is
WP without those parts that belong to some W,, for z in S and z lexicographically
less than p.

Thus, we can construct the required subdivision in the following way: First sort
the points of S into lexicographically increasing order (can be done in 0(II log n)
time) and then, incrementally for k = 1 to n, add the region of the k th point p to
the already constructed regions of the first k - 1 points. Intuitively, this is done by
following the rays bounding I+$, until they intersect the boundary of the union of the
first k - 1 regions (see Fig. 4.2). Algorithmically this is done as follows: Maintain a
balanced tree T that stores sorted by y coordinates the points of S that lie on the
boundary of the subdivision constructed so far. (This clearly can be done in
O(n log n) time overall.) From T, the boundary edge that is intersected by the
horizontal ray leaving p can be determined in O(logn) time. From this intersection
point follow the boundary downwards (and delete from T all points of S encoun-
tered) until the edge is found that is intersected by the other ray leaving p. The time
to do this (exclusive of the manipulation of T) is proportional to the number of
edges traversed. However, each edge traversed ceases to be a boundary edge and
cannot be traversed again. Therefore, the accumulative effort over all points of S is
proportional to the number of edges in the entire subdivision.

FIG. 4.2. ru-point subdivision.

COMPUTATIONAL GEOMETRY 105

But note that this is O(n) as for each domain Dp added thie number of vertices
and edges in the subdivision increases at most by three and four, respectively.
Hence, the entire subdivision cannot have more than 3n vertices and 4n edges. This
completes the argument.

It is not clear whether the ru-point subdivision can be modified such that it allows
for walking in constant time per i-u-point encountered. Such a modification would be
a first step to improve the logarithmic time bound for zooming (see Theorem 4.4).

Now we have the tools available for solving the central issue of this section, viz,
performing the zooming operation on the window. In computer graphics this
operation is used to display some part of the picture with varying size. Larger size is
achieved by enlarging the needed part on the screen which goes along with reducing
the size of the window.

Let PICT denote a picture of n line segments and points, let w denote a window,
and let V denote the visibility set of w. We restrict our attention to windows w of
unit shape, that is, the height of w equals the width of w. The restriction to unit
shape is no loss of generality since other rectangles can be transformed into squares
by linear coordinate transformations. The zooming search problem asks that PICT be
stored such that the elements of PICT that are involved in the first change of V as w
is enlarged or reduced can be determined efficiently. The enlargement or reduction
of w leaves the center of w invariant and changes the height and the width of w by
the same scaling factor (see Fig. 4.3).

THEOREM 4.4. Let PICT denote a picture with a total of n open line segments and
points, let w be a window of unit shape, and let V be the visibility set of w. There exists
a data structure that requires O(n log n) space and time for construction such that
O(log n + t) time suffices to determine the t elements of PICT involved in the first
change of V as w is enlarged or reduced.

Proof: Let us consider the reduction of w first. The first elements of PICT that
fall out of w are determined by moving the four edges of w inwards. If four

FIG. 4.3. Enlarging and reducing the window.

106 EDELSBRUNNER, OVERMARS, AND SEIDEL

-- - (// I / I,’ I
‘I

1:

J

!-----

-1

FIG. 4.4. Enlarging the window.

next-point subdivisions are available then the t first elements falling out of w can be
determined in O(log n -t t) time, see Theorem 4.1.

Next we examine the somewhat more complicated enlargement of w. One can
distinguish three cases how an element e of PICT can be involved in the first change
of I’. Representative for the four borders and comers of w, the right border, and the
top right comer of w are considered. The cases are:

(i) e is hit when the right border of w is moved to the right (see Fig. 4.4);

(ii) e is the next-element of the upper right corner of w which is moved
upwards and to the right along the diagonal of w (see Fig. 4.4); or

(iii) e is an ru-point of the upper right comer of w (see Fig. 4.4).

The former two cases are treated as in Theorems 4.1 and 2.1. The third case is
handled as described in Theorem 4.3. This completes the argument.

We close this section by noting that additional operations such as changing the
size of the window by moving only one edge inwards or outwards can also be
performed with the methods presented. This operation, however, changes the shape
of the window and zooming with arbitrary shaped windows seems to be much harder
than zooming with windows of fixed or unit shape.

5. DISCUSSION AND EXTENSIONS

We first give a review of the main contributions of this paper. Most importantly it
describes the application of some methods and results of computational geometry to
problems in computer graphics. Two-dimensional pictures made up of mutually
nonintersecting open line segments and their endpoints are considered, e.g., the
two-dimensional display of a three-dimensional polyhedral scene with hidden parts
removed. We present methods that store a picture such that the set of line segments
totally or partially inside an axis-parallel rectangular window can be determined
efficiently, and this set can be maintained efficiently while the window is moved
parallel to a coordinate axis or while it is enlarged or reduced.

Although emphasis has been laid on the application of tools to problems in
computer graphics, it is worthwhile noting that our methods imply a new solution
for a special case of the classical planar range search problem (see Theorem 2.5).

COMPUTATIONAL GEOMETRY 107

We close this section by mentioning extensions of the presented material in three
directions: general instead of axis-parallel rectangular windows, general curves as
objects instead of line segments only, and the possibility of changing the picture with
little cost.

Search problems with polygonal query objects were investigated in a rather
general-setting in Edelsbrunner, Kirkpatrick, and Maurer [9] and for sets of points in
Willard [28] and in Edelsbrunner and Welzl [12]. Their results indicate that this
extension costs a great deal of the efficiency achieved for axis-parallel windows.

Fewer difficulties are to be expected if the line segments are replaced by arbitrary
but computationally simple curves. What “computational simphcity” means depends
on the primitive operations needed for the problem at hand. We note here that the
only- optimal solution for locating a point in a planar subdivision that contains
nonstraight edges is the one in [8].

For performing changes in the picture at little cost, we refer to two general
methods. One proceeds by splitting a data structure into a number of smaller
instances that are independent of each other (see Overmars and van Leeuwen [23]
which is one of the latest in a series of publications on this topic). The other method
is based on constructing data structures by means of the divide-and-conquer
paradigm, see Overmars [21] as well as Gowda and Kirkpatrick [13]. The applica-
bility of their method follows from the possibility of constructing the data structures
of this paper by means of this paradigm instead of the plane-sweep technique.

REFERENCES

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Aigorithms,

Addison-Wesley, Reading, Mass., 1974.

2. J. L. Bentley, and J. H. Friedman, Data structures for range searching, ACM Comput. Suruew 11

(1979), 397-409.

3. J. L. Bentley, and Th. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE

Trans. Comput. C-28 (1979) 643-647.

4. B. M. Chazelle, Filtering search: A New Approach to Query-answering. Proc. 24th Ann. IEEE

Sympos. Found. Comput. Sci. (1983), pp. 122-132.

5. B. M. Chazelle, Fast Computation o/ Segment Intersections, Report CS-83-11, Department of

Computer Science, Brown University, Providence, R. I., 1983.

6. D. P. Dobkin. and R. J. Lipton, Multidimensional searching problems, SIAM .I. Comput. 5 (1976).

181-186.

7. H. Edelsbrunner, A note on dynamic range searching, Bull. of the EATCS 15 (1981), 34-40.

8. H. Edelsbrunner. L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision.

manuscript.

9. H. Edelsbrunner, D. G. Kirkpatrick, and H. A. Maurer, Polygonal intersection searching. Inform

Process. Left. 14 (1982), 74-19.

10. H. Edelsbrunner, and H. A. Maurer, A space-optimal solution of general region location, Theoret

Comput. Sci. 16 (1981) 329-336.

11. H. Edelsbrunner, and J. van Leeuwen, Multidimensional Data Structures and Algorithms: A Bibliogra-

phy, Report F105, Institutes for Information Processing, Technical University of Graz, 1982.

12. H. Edelsbrunner, and E. Welzl, Halfplanar Range Search in Linear Space and 0(n”.69s) Query Time,

Report Fill, Institutes for Information Processing, Technical University of Graz, 1983.

13. I. G. Gowda, and D. G. Kirkpatrick, Exploiting Linear Merging and Extra Storage in the Mainte-

nance of Fully Dynamic Geometric Data Structures, Proc. 18th Ann. Allerton Conf. on Commun.

Control, & Comput. (1980), pp. l-10.

14. H. Hadwiger, Eulers Charakteristik und kombinatorische Geometric, J. Reine Angew. Math. 194

(1955), 101-110.

15. D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput 12 (1983). 28-35.

108 EDELSBRUNNER, OVERMARS, AND SEIDEL

16. D. E. Knuth, Sorting and Searching-The Art of Computer Programming III, Addison-Wesley,
Reading, Mass., 1973.

17. D. T. Lee, and F. P. Preparata, Location of a point in a planar subdivision and its applications,
SIAM J. Comput. 6 (1977), 594-606.

18. R. J. Lipton, and R. E. Tatjan, Applications of a Planar Separator Theorem, Proc. 18th Ann. IEEE
Sympos. on Found. Comput. Sci. (1977), pp. 162-170.

19. W. M. Newman, and R. F. Sproull, Principles of Interactive Computer Graphics, McGraw-Hill, New
York, 1979.

20. J. Nievergelt, and F. P. Preparata, Plane-sweep algorithms for intersecting geometric figures, Comm.

ACM 25 (1982), 739-747.
21. M. H. Overmars, Dynamization of order decomposable set problems, J. Algorithms 2 (1981),

245-260.
22. M. H. Overmars, 7’he Locus Approach, Report RUU-CS-83-12, Dept. Comput. Sci. University of

Utrecht, 1983.
23. M. H. Overmars, and J. van Leeuwen, Worst-case optimal insertion and deletion methods for

decomposable searching problems, Inform. Process. Lett. 12 (1981), 168-173.
24. F. P. Preparata, A new approach to planar point location, SIAM J. Comput. 10 (1981), 473-482.
25. M. I. Shamos, Computational Geometry, Ph.D. thesis, Dept. of Comput. Sci., Yale University, New

Haven, Conn., 1978.
26. J. van Leeuwen, Graphics and Computational Geometry, Les Mathematiques de l’lnformatique,

Colloq. AFCET, Paris (1982), pp. 159-165.
27. D. E. Willard, New data structures for orthogonal queries, SIAM J. Compur., in press.
28. D. E. Willard, Polygonal retrieval, SIAM J. Comput. 11 (1982), 149-165.

