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SVAZEK 22 (1977) A P LI K A C E M ATE M A T I K Y ČÍSLO 4 

SOME METHODS OF NUMERICAL INTEGRATION 
OVER A SEMI-INFINITE INTERVAL 

N . K. BASU, M. C KUNDU 

(Received February 6, 1976) 

INTRODUCTION 

The evaluation of a definite integral over a finite interval using Chebyshev poly
nomials was in the center of interest of a number of authors. 

Clenshaw and Curtis (I960) obtained the polynomial approximation of a function 
over the zeros of TN+1(x) - r r t - l v x ) , i.e. over the points xs = cos (n s/N), s = 

N 

= 0, 1, .... N, in the form f(x) « £"a r Tr(x) and then evaluated the definite inte
r s 

gral performing term by term integration. The double primes in the above summation 
indicate that the first and last terms are halved and Tn(x) = cos n0, x = cos 9 is the 
Chebyshev polynomial of the first kind. Filippi (1964) estimated f(x) by a poly-

N 

nomial in Tn(x) of the form f(x) « Y br T'r(x), over the zeros of T'N+1(x)9 i.e. over 
r=l 

the points xs = cos (n sJN + 1), s = 1, 2, ..., N and then obtained the value of the 

definite integral. 

Basu (1971) approximated f(x) by a polynomial in Tn(x) over the points xs = 
= cos (2s — 1) 7i/2N, s = 1, 2, .. . , N, i.e. over the zeros of TN(x) and then converted 
the expression in a series of T'n(x) by means of a conversion formula expressing 

N 

Tn(x) in terms of Tn(x). This final expression for f(x), viz. f(x) « Y'cr T'r(x), where 
r=l 

the prime indicates that the last term is halved, was utilized to find the value of the 
definite integral. 

The problem of evaluating the integral JQ e~x f(x) dx using a variant of Chebyshev 
polynomials T*(e~x) = cos mO with 2e~x — 1 = cos 6 was solved by Basu and 
Kundu (1975). They approximated f(x) by a polynomial $(x) by collocation over 
the zeros of TN + X(e~x), i.e. over the points xs = log sec2 (0s/2), where 6S = (2s + 1) . 

. 7i/2(N + 1), s = 0, 1 , . . . , N, in the form f(x) » ^(x) = YSam T*(e~x) and then 
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evaluated the above integral performing term by term integration. In the present 
note the above integral is evaluated using T*(e~*), the variant Chebyshev polynomial, 
by several methods analogous to those of Clenshaw and Curtis (1960), Filippi (1964) 
and Basu (1971) and the methods are verified by numerical examples. 

Our main interest lies in the exploration of some new methods of handling the 
quadrature problem over the semi-infinite interval by exploiting the existing methods 
for the similar problem over a finite interval. It may be remarked that none of the 
methods can claim to be the best one including the method proposed by Basu and 
Kundu (1975), The numerical results reveal that for a certain problem with a pre-as-
signed number of points, a particular method may offer rapid convergence but the 
desired accuracy in the result is not achieved while another method in the same case 
may provide better accuracy at the cost of a few more points. 

ANALOGUE OF THE CLENSHAW & CURTIS METHOD 

Let a function f(x) defined over (0, oo) be expanded in a convergent series of the 
form 

(1) / (*) = - ^ + A, T ? ( 0 + A2 Tt(e~*) + .... 

The polynomials T*(e~x) being orthogonal in the range with respect to the weight 
function \l\e~x\(l — e~xJ], the coefficients are given by 

(2) ^ = -J0V(r^-)T'v* ) /Wdx-
A useful polynomial approximation to f(x) can be obtained by truncating the 
infinite series in (1). However, in attempting to find a suitable polynomial approxima
tion to a general function f(x), the integral occurring in (2) cannot be evaluated 
explicitly and recourse has to be made to approximate methods for evaluating Ar. 
The most widely used method is the "curve fitting" method. There are several varia
tions of the method. In all these methods we construct the interpolation polynomial 
(j)(x) by collocation with f(x) at a specified set of points spread out over the semi-
-infinite interval. These polynomials are then used to evaluate the required integraL 

Let the interpolation polynomial to f(x) be expressed in the form 

(3) / (*) * <t>(x) = ^ + a. T*(e~*) + a2 I * ( 0 + ••• + ^ T*(e~*) 

where the interpolation is effected over the zeros of T*+1(e~x) — T*_!(e~x), i.e. 
over the points xs = log sec2 (0sj2) with 9S = n sfN, s = 0, 1 , . . . , N. 

238 



Now since T*(e x) = cos m0, 2e x — 1 = cos 0, we get form (3) 

(4) / ( log sec2 (0/2)) « ^ + at cos 0 + a2 cos 20 + ... + ^ cos N0 . 

By using the orthogonality relation 

(5) Y,cos ftscos Ms = 0 f ° r * * I 
5 = 0 

= N for i = jf = 0 or N 

= N/2 for i = j + 0 or N 
the coefficients are obtained as 

(6) ar * ~r £ " /(log sec2 (0s/2)) cos r0 s . 
N 5=0 

Hence from (3), we can write 
N /•oo /•oo N /»oo 

(7) e-xf(x)dx*Y"ar\ e~x T*(e~x) dx . 
Jo ' = 0 Jo 

Since 
/•oo 

(8) e - , T r V I ) d x = 0 , for r odd 

, for r even 
1 - r2 

we obtain 
f°0 [N/2] 

(9) * - / ( * ) < * * 1 " - ^ 
Jo p o l - 4p2 

where [N/2] means the largest integer contained in N/2 for a given N. The double 
primes indicate that the first term is halved and the last term is also halved if N 
is even. 

ANALOGUE OF THE FILIPPI METHOD 

In this method we express f(x) e~x in a series of T*'(e~x) and the equations similar 
to (1) and (2) are obtained as 

(10) / (*) e-'-At T r O " * ) + A2 Tf(e-*) + ... 

where 
? /•oo 

(11) Ar = —2\ J(e*-l)Tr(e-*)f(x)e-* 

and^J(ex - l) is the corresponding weight function. 
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Now the interpolation polynomial is given by 

(12) f(x) e~> * </>(x) = at TX'(e~x) + a2 T*2'(e'x) + ... + aN TN'(e~x), 

the expansion is effected over the zeros of ex T*'+1(e~x), i.e. over the points xs 

= log sec2 (9sj2) where 6S = n sfcN + 1), s = 1, 2 , . . . , N. 
Again changing the variable, we get 

(13) - 1 / 2 sin 0 /(log sec2 (0/s)) « a1 sin 0 + 2a2 sin 20 + 

+ . . . + NaN sin N9 . 

In consequence of the relations 

(14) £ sin Í0S sin j0s = 0 if i #= j , i = j = 0 
s = l 

лt + 1 
if г 

the coefficients in (12) are given by 

J 
(15) ar * -

and so from (12), we get 

(16) 

Now since 

(17) 

r(ЛГ + 1) ,= i 
X j (Iogsec 2 (ą/2))s inÖ s s inrÖ 5 

'00 N /«O0 

e-xf(x)dx*%ar T*'(e~x)dx. 
o r= 1 Jo 

Í
oo 

TГ(e~x) dx = — 2 for r odd 

= 0 for r even , 

(16) reduces to 

(18) 
/•00 

\ e~xf(x) 
Jo 

dx 
[(N+D/2] 

" 2 I *2 | ,-1-
p = l 

ANALOGUE OF THE BASU METHOD 

Let f(x) be approximated by a polynomial 

(19) j(x) * </>(*) = £|2 + a. Tf(e-*) + . . . + aN_. r£_.(«"-) 

by collocation over the zeros of TN(e~x), i.e. over the points xs = log sec2 (0s/2) 
with 9S = (2* - 1) nJ2N, s = 1, 2, ..., AT. 
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By virtue of the conversion formula 

(20) Tj(e-)^-\^^-lM2 
4 L J -1 J + 1 

(19) reduces to 

(21) f(x) e~' * _. T\'(e-*) + fe2 Tj '(--*) + • • • + y T*N'(e~*) 

By making a change in the variable, (21) reduces to 

(22) - - sin 0 /(log sec2 (0/2)) « bx sin 0 4- 2b 2 sin 20 + ... + N ^ sin N0 

and using the orthogonality relation 

(23) Y, sin i0s sin j0s = 0 if i =j= j , i = j = 0 
s = l 

= N if i _= j = N 

= N/2 if i = j * N 

K = - — E Дlog sec2 (0,/2)) sin 0, sin rö, 

we get 

(24) 

and so (21) and (17) give 

/•oo [ (JV+D/2] 

(25) <T*/(x)dx = - 2 £ ' b2p_! 
Jo P=I 

where the prime indicates that the last term is halved if N is odd. 

Table 1 

Basu Method Filippi Method 
Clenshaw-Curtis 

Method 

N I 1 I 

8 •206319673 •206507253 •205787725 

10 •206331066 •206444653 •206009810 

12 •206336468 •206411808 •206123124 

14 •206339410 •206392622 •206188262 

16 •206341171 •206380526 •206228940 

64 •206346244 •206340246 
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NUMERICAL EXAMPLES 

We consider the following numerical examples: 

M 

(ь) 

(c) 

/ 
r e~x 

Jo x + • 

i: 
/•oo 

L 

dx = 0-206346, 

I = e x sin x dx = 0-5 

e" x cosxdx = 1-3803884. 

Table 2 

Basu Method Filippi Method Clenshaw-Curtis 
Method 

N í I I 

8 
9 

10 
11 

33 
34 

•495135092 
•497000511 
•499664788 
•500990525 

•493546576 
•491899248 
•491786136 
•491959675 

•499989332 

•512665465 
•509475562 
•504458705 
-503475114 

•499996306 

Table 3 

Basu Method Filippi Method Clenshaw-Curtis 
Method 

N I I I 

12 
13 
14 
15 
16 
17 

20 

26 

1-38037380 
1-38045055 
1-38038243 
1-38037246 
1-38038750 
1-38037767 

1-380379575 
1-380447705 
1-380430232 
1-380415192 
1-380402806 
1-380391688 

1-3803884 

1-380398500 
1-380389740 
1-380386691 
1-380383993 
1-380387698 
1-380387160 

1-38038844 
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