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SOME METRIC PROPERTIES OF PIECEWISE MONOTONIC
MAPPINGS OF THE UNIT INTERVAL

BY
SHERMAN WONG

Abstract. In this note, the result of Lasota and Yorke on the existence of
invariant measures for piecewise C2 functions is extended to a larger class
of piecewise continuous functions. Also the result of Li and Yorke on the
existence of ergodic measures for piecewise C2 functions is extended for the
above class of functions.

Introduction. In a joint paper by Lasota and Yorke [7], they proved the
existence of absolutely continuous invariant measures for t a piecewise C2
mapping of the unit interval with inixS[0l]\r'(x)\ > 1. Later Li and Yorke [8]
proved the existence of ergodic measures for the same type of mapping. In
this note, it will be shown that these results can be extended to a certain class
of piecewise C1 mappings. Also at the end of this note, an attempt will be
made to explain why there has been a sudden interest in studying piecewise
monotonie mappings.

Existence of invariant and of ergodic measures. Denote by (L„ || • ||,), the
space of all functions / defined on [0, 1] for which |/| is integrable, and by m
Lebesgue measure on [0, 1]. Let t: [0, 1]h»[0, 1] be a measurable nonsingular
transformation, i.e., if A is measurable, m(A) = 0 implies m(r~x(A)) = 0.
Given t, the Frobenius-Perron operator PT: Z.,1—»i, is given by the formula:

The operator PT is linear, continuous, and satisfies the following conditions:
(a) PT is positive: / > 0 => PJ > 0;
(b) PT preserves integrals:

Çpjdm=Çfdm,      /EL,;
•'o •'o

(c) P(t„) = P" where t" denotes the nth iterate of t;
(d) PJ = / iff the measure d¡i = f dm is invariant under t, i.e., ¡l(t~\A))

= n(A) for each measurable A.
Definition  1. A transformation t:  [0, 1]h>P  will be called piecewise
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nearly-Cx if there is a partition of [0, 1], 9 = {a¡: 0 = a0 < ax < • • • < ar
— 1} so that for each / = 1, . . . , r, t, the restriction of t to the open interval
(a,_i, a¡) is a C1 function.

Theorem 1. Let t: [0, l]i—>[0, 1] be a piecewise nearly-Cx function with
mrJce[0jl]|T'(.x)| > 1 and 9 = {a¡: 0 = a0 < • • ■ < aT = 1} be a partition
satisfying the above definition. Suppose for each i, i = 1, . . . , r, \/\t¡\ is
of bounded variation on [a¡_x,a¡\. Then, for any / E L„ the sequence
{n"'2X~ô-p*/}n>i with P°f = f is .convergent in || • ||, to a function f* £ L,.
The limit function has the following properties:

(l)/>0=>/*>0;
(2) !xor dm = ¡If dm;
(3) PTf* = f* and consequently the measure dfi* = f* dm is invariant under t;
(4)f* is of bounded variation; moreover, there exists a constant c independent

of the choice of the initial f such that the variation of the limit f* satisfies the
inequality :

where V¡¡f, or V^abxf, denotes the variation of f over the interval [a, b].

Proof. Write s = inf|T'j > 1 and choose TV so that sN > 3. If <f> = rN, <b is
piecewise nearly-C1. Let <b¡ = <t>\[b¡_¡>bl] where 9+ = {b¡; 0 = b0 < bx
< • • • < bq = 1} a partition of [0, 1] so that <b is piecewise nearly-C1. Since
s > 1, <j>¡ can be undefined only at one end point of /, = [b¡_u b¡\. For
simplicity, one can assume that points of difficulty, or singularities, are the
right end points in all cases. Because 1/|t/| is of bounded variation for
j = 1, . . ., r, 1/|</>-1 is of bounded variation over /, for / = 1, . . . , q.

Notice that, if A, is a singularity, i.e., |<f>,'(A,)| = oo, then 1/|#(6(.)| = 0. As
l/|<f>,'| < s~N and l/|<i>-| is defined on /„ / = 1, . . ., q, l/|<f>,'| is continuous
on /„ in fact uniformly continuous. Now one may use the fact (see [11]): If g
is of bounded variation over [a, b] and continuous on [a, b], then Vxg is
continuous on [a, b\. Thus it is possible to partition each /, into a finite
number of subintervals /,,, Ii2, . . . , IiJ(i) so that KÍ41/|</>,'| < s~N for k =
1,. . . ,j(i). One can suppose that the partition of <j> already satisfies the
above condition; otherwise one can simply take the subintervals and form a
new partition for <j> keeping </> piecewise nearly-C1 without increasing the
number of singularities.

Computing the Frobenius-Perron operator, one obtains

V(*) = 2 /(>M*)h(*)x,(*) (A)
where \¡/¡ = <bj~x, the inverse function of <b¡, a¡(x) = |i///(jc)|, and x, the indica-
tor  function  of ^, =</>,([*,_!, A,]).  Because   \/\<¡>'¡(x)\ < s~N,  x £ /„  / =
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1, . . ., q, one has
|o,.(x)| < s~N,        xEJi,i=l,...,q. (B)

By definition, P^: Lxh^Lx, but (A) enables one to consider P^ as a map from
the space of functions defined on [0, 1] into itself. Let/be a given function of
bounded variation over [0, 1]. From (A) and (B),

vpj< 2 W-*ta + s~Ni (|/(A,-,)| +|/(A,)|)
1s

Letyk — </>,(**) where xk E I¡. "sup/' and "sup/' will indicate the suprema
taken over all finite partitions of J¡ and of /„ resp.

Vj, (/ ° *>, = sup ± |(/ o ,/,)( v>,( v,) - (f o WO'*-!)^*-1)|
J¡  k=i

<sup 2 |(/° *,)(yk)[ot(yk) - af.(Ä_,)]|

+ sup i l(/ ° *)(ä) - (/ ° *Xä-i)I K(ä-i)I

<sup 2 |/(**)| 1 1

If 141 = inf/(|/(jc)|, then

2 |/(**)|

l*:(**)l    I+ÍK-0I

<(||/K)l^,^

+*-%/■•

l*í(**)l    i*í(**-i)|

A:=I

<

where A = min,(6, - b¡_{). Thus

^ (/ ° *>, < 2j-*K^ + Ç- JT|/| <*«.
By the same reasoning as in the Lasota-Yorke paper [7],

i(|/(Vi)|+|/(**M)< ^7+111/11,-i=i
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Consequently,

r<JV< Í(2*~*V+ Ç- IjA dm) + '-*?(W+ f 11/11,)

= 2i-"K0'/+ Ç 11/11,+ 5-^7+ ^ Ml,

= ^W.+ 3^^o7
= a||/||, + /3F07   where a = 3s~N/h and /3 = 3s~N < 1

with this estimate, the remainder of the argument is identical to the one used
in the Lasota-Yorke note.

Definition 2. A transformation t: [0, 1]h>P will be called piecewise
nearly-C2 if there is a partition 9 = [a¡: 0 = a0 < ax < ■ ■ • < ar = 1} of
[0, 1] so that for each / = 1, . . ., r, t, = r^     ) is a C2 function.

Let t and 9 be as in the above definition and let Sr Q (0, 1, . . . , r) be
those /'s for which a¡ E 9 and t, cannot be extended as a C2 function to a¡.

Corollary. Let t: [0, 1]h»[0, 1] be a piecewise nearly-C2 function such that
inf |t'| > 1. Suppose for i E ST, 1/|t/| is of bounded variation over the closed
interval of 9 containing a¡. Then the conclusions of the theorem are true.

Proof. One simply observes that, for / £ 5T, 1/|t,'| is also of bounded
variation.

Remark. Clearly, if ST =0, then one has the result of Lasota and Yorke.
With the existence of invariant measures shown, one can now turn his

attention to the matter of the existence of ergodic measures as shown for
piecewise C2 mappings by Li and Yorke. Let t: [0, l]i—>[0, 1] be a piecewise
nearly-C1 function satisfying the theorem. Denote by Q the set [x E [0, 1]:
t'(x) exists} and let [xx, . . . , xk) = [0, l]/6, i.e., the points of discontinuity
for t and t'.

Definition 3 [8]. / E L, is of bounded variation in L, if / equals a.e.-/w
some function of bounded variation.

It has been shown that the invariant functions of PT exist, and each is of
bounded variation in Lx. Let F = {/ £ Lx: f is invariant under t}. Each
f E F represents a class of functions which are equal a.e.-w to a function of
bounded variation.

Theorem 2. There exist a finite collection of sets /,,...,/„ and a set of
functions {/,, ...,/„} c F for which

(1) eacA /,, / = 1, . . . , n, is a finite union of closed intervals;
(2) I i n Ij contains at most a finite number of points when i =f= j.
(3) each /, contains at least one point of discontinuity xpj= 1, . . . , k, in its

interior; hence n < k.
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(4)/(jc) = Ofor x £ I¡, i = 1, . . . , n, andf(x) > Ofor almost all x E /,;
(5)ijfdm = I for all i;
(6) if g E F satisfies (4) and (5) for some i, then g = f; a.e.-m;
(7) every f £ F can be written as f = 2"_ xa¡f¡ with suitably chosen {a,}.

Proof. The proof is exactly the same as the one in the Li-Yorke paper for
the piecewise-C2 case because the essential facts needed in that case were

(1) infxee|T'(x)| > 1,
(2) t is piecewise continuous,
(3) the invariant functions of t are equal a.e.-//i to a function of bounded

variation.
Definition 4. For x £ [0, 1], let A(x) = nN>i{Tn(x)}n>N> Le-> trie set of

limit points of t"(x).

Theorem 3. For almost every x E [0, 1], A(x) = I¡ for some i = 1, . . . , n
where the I¡'s are the sets in Theorem 2.

Proof. The proof is identical to the one in the Li-Yorke paper.
The above two theorems imply the existence of ergodic measures for the

piecewise nearly-C1 functions satisfying Theorem 1 as found in the Li-Yorke
paper.

Remarks 1. Recently Ruf us Bowen [1] has shown sufficient conditions for
which piecewise C2 functions give rise to a Bernoulli dynamical system. If t
happens to be piecewise1 Cx+S where 8 E [0, 1] satisfying Theorem 1 and the
condition in Bowen's paper, then it is straightforward to prove t gives rise to
a Bernoulli dynamical system.

2. Other proofs of the existences of invariant and of ergodic measures for
piecewise C2 mappings are found in [2] and in [4]. The proofs for 5 = 1 are
found in [5].

Piecewise monotonie transformations and the Lorenz attractor. The interest
in transformations of the unit interval into itself, particularly piecewise
monotonie transformations, has been stimulated by a relationship between
what appears to be a piecewise monotonie transformation of the interval into
itself and an object first observed by Edward Lorenz [9]. The object has come
to be known as the "Lorenz attractor". What makes this attractor of interest
is that it comes from the study of a physically-existing dynamical system,
namely atmospheric convection. Moreover the Lorenz attractor is not an
"Axiom-A" attractor (see e.g. [12] for definition of Axiom-A) which has been
extensively studied in the past in dynamical systems.

An outline of how a transformation of the unit interval can be derived

'By a C1+s function for S e [0, 1], one means a function whose derivative is Holder with
exponent S. When S = 1, the derivative is then called Lipschitz.
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from the attractor will be given now. (For full details of the derivation see
[6]-)

Consider the square P = {(x,y, z):\x\ < 6V2 , | v| < 6V2 , z = 27} which
contains two of the three stationary solutions q^,q+ of the Lorenz equations
(see Figure 1). Since P is a cross-section for the attractor, C, and C2 represent
the intersection of the attractor with P. Consider now a very narrow neigh-
borhood of C, u C2 in P (see Figure 2).

x = -lCbc + lOy
y = -xz + 2&C - y

8z =xy-~z

Figure 1 Figure 2

One now determines the image of P under the Poincaré map of the flow
determined by the Lorenz equations. Upon doing this, one gets Figure 3 for
the neighborhood TV, u TV2 and its image. Actually one of the sets contained
in TV, comes from the Poincaré map of TV2, but, by the symmetry of the
Lorenz equation, TV2 will contain a set from the image of TV,. Therefore for
simplicity assume the sets in TV, form the image of TV, under the Poincaré
map.

Suppose that the strong stable manifolds of C, u C2 foliate the neigh-
borhood TV, u TV2. In TV, u TV2, define the equivalence relation zx ~ z2 iff zx
and z2 belong to the same stable manifold. This equivalance relation is the
canonical "collapsing" map. With this map, one can construct a mapping of
the interval into itself by looking at, say, the image of C, under the Poincaré
map and assuming the two sets in TV, form the image of TV,. Doing this, one
obtains a map, say /. (See Figure 4.) At the point s, one has a vertical
tangency.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PIECEWISE MONOTONIC MAPPINGS OF THE UNIT INTERVAL 499

Figure 3 Figure 4
(The neighborhood has been exaggerated

to permit better detail of
image of TVj UTV2)

From conversations with Oscar Lanford,/is at least piecewise Cx+S with a
vertical tangency at s. In fact, Lanford conjectures that/is piecewise C2 with
the singularity at s. Using methods from statistical mechanics, he has been
able to show, without knowing what type of piecewise continuous function is
/, that the "natural" extension [10] of the dynamical system associated to the
Poincaré map / is a Kolmogorov automorphism [10]; hence / possesses an
ergodic measure and thus an invariant measure. As mentioned above Rufus
Bowen has shown sufficient conditions under which the "natural" extension
for a dynamical system associated to a piecewise C2 mapping is measure
isomorphic to a Bernoulli automorphism. However it is not known whether or
not the "natural" extension associated to / is measure isomorphic to a
Bernoulli automorphism which in some sense is a "well-behaved"
automorphism.

Knowing the existence-of an invariant measure for/leads one to ask what
statistical properties does the system possess. For example, does a central
limit theorem for Holder functions exist?; does a law of the iterated logarithm
for Holder functions hold?; does the invariant measure mix measurable sets
uniformly in some sense? These questions are all unanswered at this time. In
fact all the statements about the actual Poincaré map for the Lorenz attractor
are mere conjectures because the graph of / is derived by making certain
assumptions about the behavior of the attractor, and the assumptions are still
under investigation by J. Guckenheimer (see e.g. [3]), O. E. Lanford [6], R.
Williams (see e.g. [13]), and others in dynamical systems.

Acknowledgement. I wish to express my gratitude to Rufus Bowen for
his interest and invaluable help in this problem and to Oscar E. Lanford III
for his discussions with me concerning the Lorenz attractor.
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