SOME NATURAL FAMILIES OF M-IDEALS

GILLES GODEFROY and DANIEL LI

Abstract.

We characterize the subspaces of L^1 and the translation-invariant subspaces of $\mathcal{M}(G)$ which are duals of M-ideals, and we describe their M-ideal predual. We show that there is a separable dual which is L-complemented in its bidual but is not the dual of an M-ideal. We show that a separable \mathcal{L}^{∞} -space which is isomorphic to an M-ideal is actually isomorphic to $c_0(N)$.

0. Introduction.

Let X be a Banach space. An L-projection p is a linear map from X to X such that $p^2 = p$ and

$$||x|| = ||p(x)|| + ||x - p(x)||$$

for every $x \in X$. A subspace Y of X is called an M-ideal in X if there is an L-projection from X^* onto the orthogonal Y^1 of X in X^* . Since these notions were introduced by Alfsen and Effros in 1972 [1], they have attracted a lot of attention; of particular importance is the class of Banach spaces which are M-ideals in their bidual; in the present work, such spaces will simply be called M-ideals.

These spaces form a very rich family. Although some significative progress has been recently made in the understanding of their structure (see e.g. [2], [13], [6], [9], [10]), it looks hopeless to classify them or to give a complete description of the class. In the present work, we will investigate some natural subfamilies in which positive results are available. We will frequently work in a dual way; that is, we will determine when there exists an L-projection from the bidual onto a space whose kernel is w^* -closed.

Let us briefly describe the contents of this article. In section I, we characterize the subspaces of L^1 which are duals of an M-ideal and we describe the M-ideal predual; our characterization involves the topology of convergence in measure. Section II deals with the corresponding translation-invariant results; we characterize there the L^1_A and \mathcal{M}_A -spaces which are duals of M-ideals and the quotient

Received December 19, 1988; in revised form May 13, 1989.

spaces of $\mathscr{C}(G)$, by translation-invariant subspaces, which are M-ideals. Section III is devoted to the construction of an example which uses the results of section II. Through harmonic analysis, we construct a separable dual space Y which is L-complemented in its bidual, but whose natural predual is not "what you would expect"; that is, Y is not the dual of an M-ideal. This example could be considered as an analogue within M-structure theory of a Banach lattice constructed by M. Talagrand [23]. In section IV we use different techniques for showing that a separable \mathscr{L}^{∞} -space which can be renormed into an M-ideal in its bidual is isomorphic to $c_0(N)$; this result is an isomorphic version of a result of A. Lima [16] and implies a non-commutative version of a result of [14].

NOTATION. The closed unit ball of a Banach space X is denoted by X_1 . The measure spaces (Ω, Σ, μ) we consider are always standard measurable spaces equipped with a positive finite measure μ . Most of the time, the space $L^1(\Omega, \Sigma, \mu)$ will be denoted simply by L^1 . The Radon-Nikodym theorem provides us with an L-projection from L^1** onto L^1 ; this L-projection is denoted by π , and its kernel by L^1_s . The topology of convergence in measure is defined on $L^1(\Omega, \Sigma, \mu)$ by the metric

$$d(f,g) = \int_{\Omega} |f - g| (1 + |f - g|)^{-1} d\mu;$$

we denote by L^0 the corresponding topology. If X is a subspace of L^1 , we denote by $X^\#$ the space of linear forms on X whose restriction to the unit ball X_1 of X is L^0 -continuous.

If Z is a subspace of a dual Banach space Y^* , Z^T denotes the orthogonal of Z in Y.

I. Subspaces of L^1 which are duals of M-ideals.

We start with two simple lemmas, which are both special instances of general results about weakly sequentially complete Banach lattices.

LEMMA I.1. Let $\{f_n | n \ge 1\}$ be a sequence in $L^1(\Omega, \mu)$ which converges to zero μ -almost everywhere. Then every w^* -cluster point z to the sequence $\{f_n\}$ belongs to the singular part L^1 , of L^{1**} .

PROOF. We write z = f + v, with $f \in L^1$ and $v \in L^1_s$. If $f \neq 0$, there is $\varepsilon > 0$ such that

(1)
$$\mu\{|f|>\varepsilon\} \ge \varepsilon$$

Since $\{f_n\}$ converges to zero μ a.e. there is $N \ge 1$ such that

$$\mu(\Omega \backslash A) \leq \varepsilon/2$$

where we set

(3)
$$A = \bigcap_{n \geq N} \{ |f_n| \leq \varepsilon/2 \}.$$

By (1) and (2) we have

(4)
$$\mu(A \cap \{|f| > \varepsilon\}) \ge \varepsilon/2.$$

We define p_A : $L^1(\Omega) \to L^1(\Omega)$ by $p_A(g) = g \cdot 1_A$. If π denotes as usual the canonical projection from L^{1**} onto L^1 , one has $\pi p_A^{**} = p_A^{**}\pi$ and in particular

$$p_A^{**}(\pi(z)) = p_A(f) = \pi(p_A^{**}(z)).$$

Since p_A^{**} is w^* -continuous, $p_A^{**}(z)$ belongs to the w^* -closure of the sequence $\{p_A^{**}(f_n)|n \ge N\}$. Since the set

$$K = \{ g \in L^1(A, \mu) \mid |g| \le \varepsilon/2 \}$$

is weakly compact, we have by (3) that $p_A^{**}(z)$ belongs to K and thus

$$p_A(f) = \pi(p_A^{**}(z)) = p_A^{**}(z) \in K$$

but this contradicts (4) and concludes the proof.

Before stating our next lemma, let us introduce a useful notation: if X is a subspace of L^1 , we denote by X^* the vector space of linear forms on X whose restriction to X_1 is L^0 -continuous. X^* is clearly a norm-closed linear subspace of X^* . The space X^* can be controlled by the following lemma.

LEMMA I.2. For every subspace X of L^1 , one has

$$X^{\#} = (X^{\perp \perp} \cap L^1)^T.$$

PROOF. Let y be in $(X^{\perp\perp} \cap L_s^1)^T$ and suppose that $y \notin X^\#$. Then there is a sequence $\{x_n\}$ in X_1 which converges to 0 in measure and such that $y(x_n)$ does not converge to 0. Passing to a subsequence if necessary, we may assume that

$$\lim_{n\to\infty}x_n=0\quad \mu\text{-a.e.}$$

$$\lim_{n\to\infty}y(x_n)=\lambda\neq0$$

Since $\{x_n\}$ is bounded we may pick a w^* -cluster point z to $\{x_n\}$; by I.1 z belongs to L^1_s and clearly $z \in X^{\perp \perp}$; hence $z \in L^1_s \cap X^{\perp \perp}$ and z(y) = 0; but on the other hand

$$z(y) = \lim_{n \to \infty} y(x_n) = \lambda \neq 0$$

and this contradiction shows that $(X^{\perp \perp} \cap L_s^1)^T \subset X^\#$.

Take now $y \in X^*$ and $z \in X^{\perp \perp} \cap L^1_s$. Let $\{x_{\alpha} \mid \alpha \in I\}$ be a net in X with $\|x_{\alpha}\| \leq \|z\|$ for every α and \mathcal{U} an ultrafilter on I such that

$$z=w^*\text{-}\lim_{\alpha\to\mathcal{U}}x_\alpha.$$

We claim that for every $\varepsilon > 0$

(1)
$$\lim_{\alpha \to \mathcal{U}} \mu\{|x_{\alpha}| \ge \varepsilon\} = 0$$

Indeed, if not, there exist $P \in \mathcal{U}$ and $\eta > 0$ such that

$$\mu\{|x_{\alpha}| \ge \varepsilon\} \ge \eta \quad \forall \alpha \in P.$$

Since $z \in L^1_s$, there exists ([34], Th. 1.19) a measurable subset A of Ω such that $\mu(A) < \eta/2$, $|z|(1_A) = ||z||$.

Since the map $||p_A^{**}(\cdot)||$ is w^* -l.s.c. there exists $P' \in \mathcal{U}$ such that

$$\int |x_{\alpha}| \, d\mu > \|z\| - \varepsilon \eta/3 \quad \forall \, \alpha \in P'$$

and then for every $\alpha \in P \cap P'$

$$||x_{\alpha}|| = \int_{A} |x_{\alpha}| d\mu + \int_{\Omega \setminus A} |x_{\alpha}| d\mu \ge ||z|| - \varepsilon \eta/3 + \varepsilon \eta/2 > ||z||$$

and this contradiction establishes (1). Now (1) means that

$$\lim_{\alpha \to \partial t} x_{\alpha} = 0$$

for the topology L^0 , and since $y \in X^{\#}$ it follows that

$$z(y) = \lim_{\alpha \to \partial t} y(x_{\alpha}) = 0$$

this shows that $X^{\#} \subset (X^{\perp \perp} \cap L_s^1)^T$ and concludes the proof.

REMARK. For every non reflexive subspace X of L^1 , one has $X^* \neq X^*$ (i.e. $X^{\perp \perp} \cap L^1_s \neq \{0\}$).

Indeed, by Komlós's theorem ([35]; [32], p. 122), every bounded sequence in X has a subsequence whose Césaro-means σ_n converge in measure in L^1 ; thus (σ_n) is L^0 -Cauchy in X_1 . If $X^* = X^*$, (σ_n) is then weakly Cauchy also, hence converges weakly. From this point, there are many ways to conclude. For instance, noting that (σ_n) is norm convergent ([33], IV.8.12), we get that X has the Banach-Saks property, and thus X is reflexive ([32], p. 212, or by using James' theorem).

We must tell that the result follows also from a deep theorem of B. Maurey ([36]).

We are now ready to state the main result of this section.

THEOREM I.3. Let X be a subspace of L^1 . The following statements are equivalent:

- (i) X is isometric to the dual of an M-ideal.
- (ii) The unit ball X_1 of X is L^0 -closed, and $X^\#$ separates X.

Moreover if (i), (ii) are satisfied, then the M-ideal predual of X is the space X^* .

PROOF. (i) \Rightarrow (ii): if we call Y the M-ideal predual of X, we have $X^{**} = X \oplus_1 Y^{\perp}$, and this implies by ([15], th. 1) that $Y^{\perp} = X^{\perp \perp} \cap L_s^1$; we give for completeness a simplified proof of this special case.

Since $X^{**} = X \oplus_1 Y^{\perp}$ and $X \cap X^{\perp \perp} \cap L_s^1 = \{0\}$, it is enough to show that $Y^{\perp} \subset (X^{\perp \perp} \cap L_s^1)$. It is classical and easily seen that two elements u and t of the Banach lattice L^{1**} are orthogonal if and only if

$$\|\alpha u + \beta t\| = |\alpha| + |\beta|$$

for all scalars α and β . Therefore we have $|x| \wedge |z| = 0$ for every $x \in X$ and every $z \in Y^{\perp}$; the same relation holds for every x in the band \widetilde{X} generated by X; and since $z \in X^{\perp \perp} \subset (\widetilde{X})^{\perp \perp}$, we may assume without loss of generality that $\widetilde{X} = L^1$. But $|x| \wedge |z| = 0$ for every $x \in L^1$ means that $z \in L^1$, and we have shown that $Y^{\perp} \subset (X^{\perp \perp} \cap L^1_s)$.

Therefore we can write

$$X^{**} = X \oplus_1 (X^{\perp \perp} \cap L^1_s)$$

and this implies ([5]) that the unit ball X_1 of X is L^0 -closed; indeed let $\{x_n \mid n \ge 1\}$ be a sequence in the unit ball X_1 of X which converges in measure to $x \in L^1$; taking a subsequence if necessary, we may assume that $x = \lim(x_n) \mu$ -a.e. Pick now any w^* -cluster point $z \in L^{1**}$ to the sequence $\{x_n\}$. By lemma I.1 we have $x = \pi(z)$; but $z \in X^{\perp \perp}$ and by (1) $\pi(X^{\perp \perp}) = X$. This shows that $x \in X$; clearly, $\|x\|_1 \le 1$ hence $x \in X_1$.

Finally since we have $Y^{\perp} = X^{\perp \perp} \cap L_s^1$ it follows by lemma I.2 that

$$Y = (X^{\perp \perp} \cap L^1)^T = X^\#.$$

This shows of course that if (i) is satisfied, $X^{\#}$ separates X, and that the M-ideal predual coïncides with $X^{\#}$.

(ii) \Rightarrow (i): By the main result of [5] (see [11], lemme 1), if X_1 is L^0 -closed we have

$$X^{\perp\perp} = X \oplus_1 (X^{\perp\perp} \cap L^1_s).$$

If X^* separates X, we have

$$(X^{\#})^{\perp} \cap X = \{0\}$$

and by lemma I.2

$$(X^{\#})^{\perp} = \overline{(X^{\perp\perp} \cap L_s^1)}^{*}$$

but it follows from these three equalities and linear algebra that

$$(X^{\#})^{\perp} = X^{\perp \perp} \cap L^1_s$$

and therefore we have

$$X^{**} = X \oplus_1 (X^{\#})^{\perp}$$

which means that X^* is an isometric predual of X which is an M-ideal in its bidual X^* . This concludes the proof.

REMARKS. 1) The condition (i) is obviously independent of the isometric embedding of X into L^1 . Hence so is the condition (ii).

Moreover, let K be a metrizable compact space and Y be a subspace of $\mathscr{C}(K)$ such that Y^{\perp} is separable; then $\mathscr{C}(K)/Y$ is M-ideal iff condition (ii) is true for $X = Y^{\perp} \subset L^{1}(\mu)$ for some $\mu \in \mathscr{M}_{+}(K)$, and hence it is true for every $\mu \in \mathscr{M}_{+}(K)$ such that $Y^{\perp} \subset L^{1}(\mu)$.

2) It follows from ([12], lemma 1.3) that in the statement of the condition (ii) of theorem I.3 we can substitute to the topology L^0 the quasi-norm L^p for any p < 1, or the topology $L(1, \infty)$ of the Fréchet space "weak- L^1 ". In particular, if $X = L^1 \cap Z$ where Z is a closed subspace of L^p (p < 1) such that Z^* separates Z, then X is the dual of an M-ideal (cf. [11], théorème 6). A typical example of this situation is $X = H^1(D) = L^1(T) \cap H^p(D)$ for any $p \in (0, 1)$.

In the next section we will investigate the translation-invariant version of these results.

II. L_A^1 and \mathcal{M}_A -spaces which are duals of M-ideals.

In this section, G denotes a compact metrizable abelian group and $\Gamma = \hat{G}$ the discrete dual group. The additive notation will be used for Γ . If $\Lambda \subset \Gamma$, we denote as usual.

$$L^{1}_{A} = \{ f \in L^{1} \mid \hat{f}(\alpha) = 0 \qquad \forall \alpha \notin A \}$$

and

$$\mathcal{M}_{\Lambda} = \{ \mu \in \mathcal{M}(G) | \hat{\mu}(\alpha) = 0 \quad \forall \alpha \notin \Lambda \}$$

where $L^1 = L^1(G, m)$ with m = Haar measure of G, and \hat{f} , $\hat{\mu}$ are the Fourier transforms of f and μ . The group Γ can be seen as a subset of $L^{\infty}(G, m) = L^{1*}$ as well as a subset of L^1 . Our next lemma shows that if L_A^{1*} is non trivial, then it intersects Γ .

LEMMA II.1. Let $\alpha \in \Gamma$. If $y \in (L^1_A)^*$ and $\hat{y}(-\alpha) = y(\alpha) \neq 0$, then $\bar{\alpha} \in (L^1_A)^*$. Here $\bar{\alpha}$ denotes the restriction of $\bar{\alpha} \in L^{\infty}$ to L^1_A .

PROOF. Without loss of generality, we may assume that $\alpha = 1_G$. We define $\tilde{y} \in L_A^{1*}$ by

$$\tilde{y}(f) = \int_{G} \langle y, f_{\tau} \rangle \, dm(\tau)$$

where $f_{\tau}(\tau') = f(\tau \tau')$ is a translate of f. We claim that \tilde{y} belongs to $(L_A^1)^{\#}$. Indeed for any $\eta > 0$ there is a neighborhood V of 0 in the unit ball of L_A^1 such that

$$f \in V \Rightarrow |y(f)| < \eta;$$

without loss of generality we may assume that $V = W \cap L_A^1$ where W is a translation invariant neighborhood of 0 in the unit ball of L^1 and then V is translation invariant; hence

$$f \in V \Rightarrow |y(f_{\tau})| < \eta \qquad \forall \tau \in G$$

and thus $|\tilde{y}(f)| < \eta$ for $f \in V$ and $\tilde{y} \in (L_A^1)^*$: Observe now that for every $\alpha \in A$

$$\tilde{y}(\alpha) = \int_{G} \langle y, \alpha \rangle \alpha(\tau) dm(\tau) = \langle y, \alpha \rangle \int_{G} \alpha(\tau) dm(\tau)$$

hence $\tilde{y}(\alpha) = 0$ except if $\alpha = 1_G$ where we have

$$\tilde{y}(1_G) = y(1_G) \neq 0.$$

It follows that \tilde{y} coincides on L_A^1 with the restriction of a non-zero constant function, and the result follows.

REMARK. We can observe that $\tilde{y}(f) = \hat{y}(0)\hat{f}(0) = y(1_G)\hat{f}(0)$.

With this lemma we can characterize the spaces \mathcal{M}_A which are duals of an M-ideal. The main result of this section is the following:

THEOREM II.2. Let Λ be a subset of the abelian discrete group Γ . The following assertions are equivalent:

- (i) L_A^1 is isometric to the dual of an M-ideal Y.
- (ii) \mathcal{M}_A is isometric to the dual of an M-ideal Z.
- (iii) The unit ball of L_A^1 is L^0 -closed, and the restriction of $\tilde{\alpha}$: $f \to \tilde{f}(\alpha)$ to L_A^1 belongs to $(L_A^1)^\#$ for every $\alpha \in A$.

Moreover, if the conditions (i)—(iii) are satisfied, then $\mathcal{M}_{\Lambda} = L_{\Lambda}^{1}$ and the M-ideal predual of $\mathcal{M}_{\Lambda} = L_{\Lambda}^{1}$ is the space $\mathscr{C}(G)/\mathscr{C}_{\Gamma\setminus (-\Lambda)}(G)$ (i.e. $L_{\Lambda}^{1\perp\perp} \cap L_{s}^{1} = L_{\Lambda}^{1\perp\perp} \cap \mathscr{C}^{\perp}$).

In the above statement, $\mathscr{C}_{\Gamma\setminus (-A)}(G) = \mathscr{C}(G) \cap L^1_{\Gamma\setminus (-A)}$. Let us recall that the sets Λ such that $\mathscr{M}_{\Lambda} = L^1_{\Lambda}$ are called Riesz sets; the sets Λ which satisfy (iii) are called Shapiro sets in [12].

PROOF. (i) \Leftrightarrow (ii): If L_A^1 (resp. \mathcal{M}_A) satisfies (i) (resp. (ii)), it has the Radon-Nikodym property (see [31]) and hence $L_A^1 = \mathcal{M}_A$ ([20]).

- (iii) \Rightarrow (i): If Λ satisfies (iii) then $(L_{\Lambda}^1)^{\#}$ separates L_{Λ}^1 , so theorem I.3 gives (i).
- (i) \Rightarrow (iii) Now by theorem I.3 the unit ball of L_A^1 is L^0 closed, and $(L_A^1)^*$ separates L_A^1 ; in particular, for every $\alpha \in A$, there exists $y \in (L_A^1)^*$ such that $y(\alpha) \neq 0$, and this implies by lemma II.1 that the restriction of $\bar{\alpha}$ to L_A^1 belongs to $(L_A^1)^*$. Let us observe now that under the condition (ii), ([12], Prop. 4.1) shows that the predual M-ideal of $\mathcal{M}_A = L_A^1$ is indeed $\mathscr{C}(G)/\mathscr{C}_{\Gamma\setminus (-A)}(G)$. This can also be seen directly: since $\mathcal{M}_A = L_A^1$, the space $\mathscr{C}/\mathscr{C}_{\Gamma\setminus (-A)}$ is an isometric predual of L_A^1 ; but the restriction of Γ to L_A^1 spans this space and is contained in $(L_A^1)^*$ by the above; and two preduals which are contained in each other must coincide. This concludes the proof.

We refer to [12] for examples and for a systematic study of Shapiro sets. In the next section, we will use harmonic analysis, together with theorem II.2, to produce an example in the theory of L- and M-structure.

We conclude this section by the observation that theorem II.2 provides in particular a characterization of the quotient spaces of $\mathscr{C}(G)$ by translation-invariant subspaces which are M-ideals in their bidual, since the dual of such a space in an \mathcal{M}_A -space.

III. An example.

The main result of this section provides an example of a Banach space which is L-complemented in its bidual and behaves in a somehow unexpected way; the construction uses crucially the results of §II. We work in this section within the frame of the "little Fourier analysis", that is, G = T and $\Gamma = Z$.

Before stating it, let us recall that the dual X^* of a space X which is M-ideal in its bidual has the Radon-Nikodym property (see [31]). If $Y \subset X^*$ is such that there exists an L-projection π from Y^{**} onto Y, then by ([15], th. 1) one has $\operatorname{Ker} \pi = (Y^{\perp \perp} \cap X^{\perp})$, and thus $\operatorname{Ker} \pi$ is w^* -closed and Y is the dual of an M-ideal.

This leads to the question to know whether or not every space Y with the Radon-Nikodym property which is L-complemented in Y^{**} is the dual of an M-ideal. The next statement provides in particular a negative answer to this question.

THEOREM III.1. There exists a separable space Y which satisfies the following conditions:

- (i) Y is isometric to a dual space
- (ii) There is an L-projection π from Y** onto Y
- (iii) $Ker(\pi)$ is not w*-closed in Y**.

PROOF. For every $n \ge 1$, we set

$$D_n = \{k2^n \mid |k| \le n\}$$

and

$$\Lambda = \bigcup_{n=1}^{\infty} \mathbf{D}_n.$$

The properties of such sets are studied in ([12], §3.8). We recall for completeness what we need for the present work.

Claim 1. A is a Riesz set (i.e. $\mathcal{M}_{\Lambda} = L_{\Lambda}^{1}$). For any $j \geq 0$, we let

$$P_{i} = \{2^{j} + k2^{j+1} | k \in \mathbb{Z}\}.$$

It is easily seen that $n \in P_j$ if and only if 2^j divides n and 2^{j+1} does not divide n; hence $\{P_j | j \ge 0\}$ is a partition of $\mathbb{Z} \setminus \{0\}$, and $P_k \cap D_n = \emptyset$ if k < n. Therefore $(A \cap P_k)$ is contained in $\cup \{D_n | n \le k\}$ and in particular it is finite.

Let now $\mu = \mu_a + \mu_s \in \mathcal{M}_A$; we have to show that $\mu_s = 0$. For every $n \in \mathbb{Z} \setminus \{0\}$, there is $j \in \mathbb{N}$ such that $n \in P_j$. There exists a Radon measure v_j on T with finite support such that $\hat{v}_j = 1_{P_j}$; since v_j is discrete, we have

$$(\mu * v_i)_s = \mu_s * v_i$$

and since $(\mu * v_i)^{\wedge} = \hat{\mu} \cdot \hat{v}_i$, we have

$$\mu * v_j \in \mathcal{M}_{A \cap P_j}$$

but $(\Lambda \cap P_i)$ is finite and thus $(\mu * v_i)$ is a trigonometric polynomial and

$$(\mu * \nu_j)_s = \mu_s * \nu_j = 0$$

in particular, $(\mu * \nu_j)^{\hat{}}(n) = \hat{\mu}_s(n)\hat{\nu}_j(n) = \hat{\mu}_s(n) = 0$. We have shown that $\hat{\mu}_s(n) = 0$ for every $n \neq 0$ and it follows that $\mu_s = 0$ since μ_s is singular.

Claim 2. The unit ball of L_A^1 is L^0 -closed. Let $\{f_k | k \ge 1\}$ be a sequence in the unit ball of L_A^1 which converges in measure to $g \in L^1$. Let $n \in \mathbb{Z} \setminus \Lambda$; we have to show that $\hat{g}(n) = 0$.

We pick as before j such that $n \in P_j$ and v_j such that $\hat{v}_j = 1_{P_j}$. Since v_j has a finite support, we have

$$\lim_{k} f_k * v_j = g * v_j$$

in measure, but also in norm since $(f_k * v_j)$ belongs to the finite dimensional space $L^1_{A \cap P_j}$. In particular, we have

$$\lim_{k} (f_k * v_j)^{\hat{}}(n) = (g * v_j)^{\hat{}}(n) = \hat{g}(n)$$

but $(f_k * v_i)^{\wedge}(n) = (f_k)^{\wedge}(n) = 0$ for every k since $n \notin \Lambda$ and it follows that $\hat{g}(n) = 0$.

Claim 3. The restriction of $1 \in L^{\infty}(T)$ to the unit ball of L_{A}^{1} is not L^{0} -continuous. Indeed it is easy to construct a sequence $\{f_{k} | k \ge 1\}$ of functions in the unit ball

of $L^1(T)$ such that

$$\int f_k = (f_k)^{\hat{}}(0) = 0 \quad \forall k$$

$$\lim_{k \to \infty} f_k = 1/2 \cdot 1_{\mathsf{T}} \quad \text{a.e.}$$

By approximation, we may assume that the f_k 's are trigonometric polynomials. Observe now that the functions (z) and (z^{2^n}) have the same distribution for any n. Now if we substitute (z^{2^n}) to (z) in the expression of (f_k) , then we obtain, if we choose n big enough, a trigonometric polynomial (g_k) whose Fourier transform is supported by Λ , and since the distribution is unchanged, we still have $||g_k||_1 \le 1$ and

$$\int g_k = 0 \quad \forall k$$

$$\lim_{k \to \infty} g_k = 1/2 \cdot 1_{\mathsf{T}} \quad \text{a.e.}$$

This shows that the Fourier coefficient in 0 is not L^0 -continuous on the unit ball of L_4^1 , and proves the claim 3.

We are now ready to complete the proof of theorem III.1. We let $Y = L_A^1(T)$, where $\Lambda = \bigcup \{D_n | n \ge 1\}$ is defined above.

By the claim 1, Λ is a Riesz set and thus $Y = \mathcal{M}_{\Lambda}$ is canonically isometric to the dual of the space $\mathscr{C}(T)/\mathscr{C}_{Z\setminus \{-\Lambda\}}(T)$.

By [5] – see ([11], lemme 1) – and the claim 2, we have

$$Y^{\perp\perp} = Y \oplus_1 (Y^{\perp\perp} \cap L^1_s)$$

and therefore the restriction to $Y^{\perp\perp}$ of the canonical projection from L^{1**} onto L^{1} is an L-projection π from Y^{**} onto Y.

Finally, the space $\operatorname{Ker}(\pi) = Y^{\perp \perp} \cap L^1_s$ is w^* -closed if and only if Y is isometric to the dual of an M-ideal; and by theorem II.2 this would imply that the restriction of every Fourier coefficient to the unit ball of L^1_A would be L^0 -continuous; and this contradicts the claim 3.

REMARKS. 1) If we drop the requirement Y separable, then very simple examples are available, since for instance the space $\mathscr{C}(T)^*$ itself satisfies the conditions (i), (ii), (iii); but of course this space does not have the Radon-Nikodym property, in contrast with our space Y which has R.N.P. since it is a separable dual.

2) The proof of theorem III.1 gives more information on the structure of Y^{**} . Indeed the proof of claim 2 shows that the restriction of every Fourier coefficient

but one to Y is L^0 -continuous. It follows from this fact and lemma I.2 that the space $M=Y^{\perp\perp}\cap L^1_s\cap \mathscr{C}(\mathsf{T})^\perp$ is of codimension one in $Y^{\perp\perp}\cap \mathscr{C}(\mathsf{T})^\perp$ and in $(Y^{\perp\perp}\cap L^1_s)$, and is not w^* -closed, since $(Y^{\perp\perp}\cap L^1_s)$ is not w^* -closed. And since M is a hyperplane in $Y^{\perp\perp}\cap\mathscr{C}(\mathsf{T})^\perp$ it follows that $\overline{M}^*=Y^{\perp\perp}\cap\mathscr{C}(\mathsf{T})^\perp$; a fortiori we have $\overline{Y^{\perp\perp}\cap L^1_s}^*=\mathscr{C}(\mathsf{T})^\perp$, and by lemma I.2. Y^* is contained in the restriction of $\mathscr{C}(\mathsf{T})$ to Y. From this latter fact it finally follows that Y^* is the space

$$Y^{\#} = \{ f | Y | f \in \mathscr{C}(T), \ \hat{f}(0) = 0 \}.$$

3) Actually, the Alexandrov's set Λ has stronger properties. By adapting the proof of [28], Example 2, p. 122–123, it can be shown that if D is the countable dense subgroup of T:

$$D = \{e^{2\pi i k/2^n} | k \in \mathbb{Z}, \quad n \in \mathbb{N}^*\}$$

and $\varphi: \mathbf{Z} \to \hat{D} = \hat{\mathbf{Z}}/D^{\perp}$ is the canonical injection, then $\varphi(\Lambda)$ is closed in \hat{D} . Therefore:

- a) Λ is closed in **Z** for the Bohr topology and in particular, the unit ball of L_A^1 is L^0 -closed ([12], Cor. 2.6 (1)); moreover, since $\Lambda \cap P_j$ is finite for every $j \ge 0$, 0 is the only accumulation point of Λ in **Z**.
- b) $\mathscr{C}_{\Lambda} = L^{\infty}_{\Lambda}$ has the Schur property ([29], Th. 3). Hence Λ is a Rosenthal set (see also [26], Th. B and [27]); in particular Λ is a Riesz set ([20], Th. 3) and more generally $\mathbb{N} \cup \Lambda$ is a Riesz set ([27], Th. 2).
- 4) For non-translation invariant subspaces H of $L^1(T)$ which are duals of M-ideals, we cannot expect in general that $H^{\perp \perp} \cap L^1_s = H^{\perp \perp} \cap \mathscr{C}(T)^{\perp}$; for instance, if $h_n, n \geq 1$, are disjoint positive functions of L^1 of norm $1, H = [h_n, n \geq 1]$ is isometric to $\mathscr{C}^1 = C_0^*$ but $H^{\perp \perp} \cap L^1_s \neq \mathscr{C}(T)^{\perp}$. This comes from the fact that if we consider non-translation invariant subspaces of $L^1(T)$, the topology of T, and then $\mathscr{C}(T)$, plays no canonical role any more.
- 5) If Z has the Radon-Nikodym property and $V \subset Z^{**}$ is a subspace such that $Z \cap V = \{0\}$, then the unit ball of V cannot be w^* -dense in the unit ball of Z^{**} , since Z_1 has a strongly exposed point x, which would belong to $V \cap Z$. This shows that it is not possible to replace the condition (iii) of theorem III.1 by the stronger condition: the unit ball of (Ker π) is w^* -dense in Y_1^{**} .

However, it is not clear whether or not (Ker π) can be w^* -dense in Y^{**} . Within the frame of the L^1_A -spaces, this boils down to the following question, which belongs to harmonic analysis.

QUESTION III.2. Does there exist a Riesz subset Λ of Z which satisfies the following conditions:

- (i) The unit ball of L_A^1 is L^0 -closed;
- (ii) For every $n \in \Lambda$, the restriction of the Fourier coefficient at n to the unit ball of L_A^1 is not L^0 -continuous?

6) It is shown in [23] that there exists a separable Banach lattice T with the Radon-Nikodym property such that the band T_s orthogonal to T in T^{**} is w^* -dense in T^{**} . Theorem III.1 is the analogue of M. Talagrand's result for L-structure; but we should mention that Talagrand did not stop so early, since he proved in [24] that any separable Banach lattice with the Radon-Nikodym property is a dual Banach lattice. Within the frame of L-structure, we do not know the answer to the:

QUESTION III.3. Is every space Y with the R.N.P., and L-complemented in its bidual, isometric to a dual space?

Observe that by [20], the answer is yes for translation-invariant subspaces of L^1 .

IV. \mathscr{L}^{∞} -spaces which are isomorphic to M-ideals.

In our last section we will investigate isomorphic properties. Let us observe that if X is a separable \mathcal{L}^{∞} -space (see [18]) which is isomorphic to an M-ideal then X^* is isomorphic to $\ell^1(\mathbb{N})$ by [17] since then X^* is a separable dual \mathcal{L}^1 -space. This does not say much, however, about the space X since $\ell^1(\mathbb{N})$ has a huge supply of isomorphic preduals.

The main result of this section is that X is in fact the *natural* isomorphic predual of $\ell^1(N)$; that is, X is isomorphic to $c_0(N)$. The crucial point of the proof is Zippin's deep characterization of $c_0(N)$ [25]. Let us mention that theorem IV.1 and its proof were obtained independently and almost simultaneously by D. Werner.

We refer to [18] and [4] for properties and examples of \mathscr{L}^{∞} -spaces. We state now

THEOREM IV.1. Let X be a separable \mathcal{L}^{∞} -space which can be renormed into an M-ideal in its bidual. Then X is isomorphic to $c_0(N)$.

We are grateful to an anonymous referee for a simplification of the original argument.

PROOF. Since X^* is separable [13] and is an \mathcal{L}^1 -space, it is isomorphic to $\ell^1(N)$ [17] and thus X^{**} is isomorphic to $\ell^{\infty}(N)$. We denote by $i: X \to \ell^{\infty}(N)$ the canonical injection.

By Zippin's theorem [25], it is enough to show that for every isomorphic injection j from X into a separable space Y, the space j(X) is complemented in Y. Since $\ell^{\infty}(\mathbb{N})$ is injective, the map $k = i[j^{-1}]$ from j(X) into $\ell^{\infty}(\mathbb{N})$ has an extension \tilde{k} from Y to $\ell^{\infty}(\mathbb{N})$. We denote by Z the norm-closed subalgebra of $\ell^{\infty}(\mathbb{N})$ generated by $\tilde{k}(Y)$; the space Z is isomorphic to a separable $\mathscr{C}(K)$ -space.

It is classical and easily checked that i(X) is an M-ideal in Z since it is an M-ideal in $\ell^{\infty}(\mathbb{N})$ and $i(X) \subset Z \subset \ell^{\infty}(\mathbb{N})$. Let us mention at this point that the

space $\ell^{\infty}(N)$ is equipped here with an equivalent norm and not with the canonical one. Moreover, the quotient space Z/i(X) has the bounded approximation property. Indeed we may write

$$\ell^{\infty}(\mathsf{N})^* = \ell^1(\mathsf{N}) \oplus i(X)^{\perp}$$

and since $Z^{\perp} \subset i(X)^{\perp}$

$$Z^* = \ell^{\infty}(\mathsf{N})^*/Z^{\perp} = \ell^{1}(\mathsf{N}) \oplus i(X)^{\perp}/Z^{\perp}.$$

The space $i(X)^{\perp}/Z^{\perp}$ is complemented in the space $Z^* = \mathcal{M}(K)$ which has the B.A.P. and therefore $i(X)^{\perp}/Z^{\perp}$ has the B.A.P.; and $i(X)^{\perp}/Z^{\perp}$ is canonically isomorphic to the orthogonal of i(X) in Z^* , hence to the dual of Z/i(X); hence Z/i(X) has the B.A.P. since $(Z/i(X))^*$ has it (see [19], p. 34).

In these circumstances there exists by a result of Ando ([2], th. 5) a linear projection p from Z onto i(X). If we let

$$\tilde{p} = ji^{-1}p\tilde{k}$$
.

Then \tilde{p} is a linear projection from Y onto j(X).

REMARKS. 1) Theorem IV.1 has a quantitative version, namely: there is a function $\varphi(\lambda)$ such that every $\mathscr{L}^{\infty}_{\lambda}$ -space which is M-ideal in its bidual satisfies $d(X, c_0(\mathsf{N})) \leq \varphi(\lambda)$. Indeed if not, there is $\lambda_0 \in \mathsf{R}$ and a sequence $\{X_n \mid n \geq 1\}$ of $\mathscr{L}^{\infty}_{\lambda_0}$ -spaces which are M-ideals and such that $d(X_n, c_0(\mathsf{N})) \geq n$. We consider the space

$$Y = (\sum \bigoplus X_n)_{c_0}$$

which is *M*-ideal in its bidual and is also $\mathcal{L}_{\lambda_0}^{\infty}$; by theorem IV.1 Y is isomorphic to $c_0(\mathbb{N})$ and since the spaces X_n are uniformly complemented in Y, their distance to $c_0(\mathbb{N})$ is bounded; this is a contradiction.

- 2) It is not clear whether or not the assumption X separable is necessary in theorem IV.1. The decomposition result ([7], Th. 3) supports the impression that it is not.
- 3) Theorem IV.1 shows that there exist separable Asplund spaces such as $\mathscr{C}(\omega^{\omega})$ which contain hereditarily $c_0(N)$ but which cannot be renormed into M-ideals in their bidual. This answers a question of M. Fabian (personal communication).

We should mention however that the following question is open.

QUESTION IV.2. Let X be an isomorphic predual of $\ell^1(N)$ which has the property (u) of A. Pelczynski [21]. Is X isomorphic to $c_0(N)$?

A positive answer would extend [22], and trivialize theorem IV.1 since the authors have recently shown that every M-ideal in its bidual has property (u)

[10]. On the other hand, a negative answer would give an example of a separable Asplund space with (u) which is not isomorphic to an *M*-ideal (another open question).

Since the class of M-ideals in their bidual is hereditary and stable under quotient maps [13], theorem IV.1 applies to \mathcal{L}^{∞} -spaces which are subspaces of quotients of M-ideals. Let us mention for instance the

COROLLARY IV.3. Let X be a separable \mathcal{L}^{∞} -space which is a subspace of a quotient of the space $K(\ell^2)$ of compact operators in the Hilbert space. Then X is isomorphic to $c_0(N)$.

This corollary is a non-commutative version of a result of [14]. We refer to [22], [8] for extensions of [14] in another direction.

REFERENCES

- 1. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces I, Ann. of Math. 96 (1972), 98-128.
- T. Ando, A theorem on non-empty intersection of convex sets and its application, J. Approx. Theory 13 (1975), 158–166.
- E. Behrends and P. Harmand, Banach spaces which are proper M-ideals, Studia Math. 81 (1985), 159-169.
- J. Bourgain, New classes of L^P-spaces, Lecture Notes in Mathematics n° 889, Springer-Verlag, 1981.
- A. V. Buchvalov and G. Lozanovski, On sets closed in measure, Trans. Moscow Math. Soc. 2 (1978), 127-148. In Russian: Trudy Moskov Mat. Obshch. 34 (1977).
- Chong-Man Cho and W. B. Johnson, A characterization of subspaces X of ℓ^P for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470.
- M. Fabian and G. Godefroy, The dual of every Asplund space admits a projectional resolution of the identity, Studia Math. 91 (1988), 141-151.
- N. Ghoussoub and W. B. Johnson, Factoring operators through Banach lattices not containing C(0, 1), Math. Z. 194 (1987), 153-171.
- G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1989), 407–418.
- G.Godefroy and D. Li, Banach spaces which are M-ideals in their bidual have property (u), Ann. Inst. Fourier, 39 (1989), 361-371.
- G. Godefroy, Sous-espaces bien disposés de L¹-Applications, Trans. Amer. Math. Soc. 286 (1984), 227-249.
- 12. G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331.
- P. Harmand and A. Lima, On spaces which are M-ideals in their bidual, Trans. Amer. Math. Soc. 283 (1984), 253-264.
- 14. W. B. Johnson and M. Zippin, On subspaces of quotients of $(\sum G_n)_{e^n}$ and $(\sum G_n)_{e_0}$, Israel J. Math. 13 (1972), 311-316.
- D. Li, Espaces L-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodym, Quarterly J. Math. Oxford Ser. (2) 38 (1987), 229-243.
- A. Lima, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979). 207-217.
- D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to ℓ¹(Γ), J. Funct. Anal. 12 (1973), 177-187.
- 18. J. Lindenstrauss and H. P. Rosenthal, The L_P-spaces, Israel J. Math. 7 (1969), 325-349.

- J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Sequence spaces, Springer-Verlag, 1977.
- F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris 282 (1976), 833.
- 21. A. Pelczynski, Banach spaces on which every unconditionally convergent operator is weakly compact, Bull. Polish Acad. Sci. Math. 10 (1962), 641-648.
- 22. H. P. Rosenthal, A characterization of c₀, Longhorn Seminar Notes (1982/83).
- M. Talagrand, Dual Banach lattices and Banach lattices with the Radon-Nikodym property, Israel
 J. Math. 38 (1981), 46-50.
- M. Talagrand, La structure des espaces de Banach réticulés ayant la propriété de Radon-Nikodym, Israel J. Math. 44 (1983), 213–220.
- 25. M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), 372-387.
- 26. R. C. Blei, A simple diophantine condition in harmonic analysis, Studia Math. 52 (1975), 195-202.
- 27. R. E. Dressler and L. Pigno, Rosenthal sets and Riesz sets, Duke Math. J. 41 (1974), 675-677.
- 28. J. J. F. Fournier and L. Pigno, Analytic and arithmetic properties of thin sets, Pac. J. Math. 105 (1983), 115-141.
- F. Lust, L'espace des fonctions presque-périodiques dont le spectre est contenu dans un ensemble compact dénombrable a la propriété de Schur, Coll. Math. XLI(2) (1979), 273-284.
- L. Pigno and S. Saeki, On the spectra of almost periodic functions, Indiana Univ. Math. J. 25 (1976), 191-194.
- 31. A. Lima, On M-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), 27-36.
- 32. J. Diestel, Sequences and Series in Banach Spaces, GTM 92, Springer-Verlag, 1984.
- 33. N. Dunford and J. Schwartz, Linear Operators I, Interscience, New York, 1958.
- 34. G. Hewitt and K. Yosida, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66.
- 35. J. Komlos, A generalization of a problem of Steinhaus, Acta Math. Hungar. 18 (1967), 217-229.
- B. Maurey, Types and ℓ¹-subspaces, Longhorn Notes, Texas Functional Analysis Seminar, Austin, Texas (1982/1983).

EQUIPE D'ANALYSE UNIVERSITÉ PARIS VI TOUR 46-0, 4ÈME ÉTAGE 4. PLACE JUSSIEU 75252 PARIS CEDEX 05 FRANCE EQUIPE D'ANALYSE UNIVERSITÉ PARIS VI UNIVERSITÉ DE PARIS-SUD MATHÉMATIQUES-BÂTIMENT 425 91405 ORSAY CEDEX FRANCE