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SOME NATURAL FAMILIES OF M-IDEALS

GILLES GODEFROY and DANIEL LI

Abstract.

We characterize the subspaces of L' and the translation-invariant subspaces of .#(G) which are
duals of M-ideals, and we describe their M-ideal predual. We show that there is a separable dual
which is L-complemented in its bidual but is not the dual of an M-ideal. We show that a separable
#*-space which is isomorphic to an M-ideal is actually isomorphic to co(N).

0. Introduction.

Let X be a Banach space. An L-projection p is a linear map from X to X such
that p? = p and

(1) Ixll = PG + llx — plx)I

for every xe X. A subspace Y of X is called an M-ideal in X if there is an
L-projection from X* onto the orthogonal Y+ of X in X*. Since these notions
were introduced by Alfsen and Effros in 1972 [1], they have attracted a lot of
attention; of particular importance is the class of Banach spaces which are
M-ideals in their bidual; in the present work, such spaces will simply be called
M-ideals.

These spaces form a very rich family. Although some significative progress has
been recently made in the understanding of their structure (see e.g. [2], [13], [6],
[91, [10]), it looks hopeless to classify them or to give a complete description of
the class. In the present work, we will investigate some natural subfamilies in
which positive results are available. We will frequently work in a dual way; that is,
we will determine when there exists an L-projection from the bidual onto a space
whose kernel is w*-closed.

Let us briefly describe the contents of this article. In section I, we characterize
the subspaces of L' which are duals of an M-ideal and we describe the M-ideal
predual; our characterization involves the topology of convergence in measure.
Section IT deals with the corresponding translation-invariant results; we charac-
terize there the L', and .#,-spaces which are duals of M-ideals and the quotient
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spaces of €(G), by translation-invariant subspaces, which are M-ideals. Section
111 is devoted to the construction of an example which uses the results of section
I1. Through harmonic analysis, we construct a separable dual space Y which is
L-complemented in its bidual, but whose natural predual is not “what you would
expect”; that is, Y is not the dual of an M-ideal. This example could be considered
as an analogue within M-structure theory of a Banach lattice constructed by M.
Talagrand [23]. In section IV we use different techniques for showing that
a separable . *-space which can be renormed into an M-ideal in its bidual is
isomorphic to co(N); this result is an isomorphic version of a result of A. Lima
[16] and implies a non-commutative version of a result of [14].

NortaTioN. The closed unit ball of a Banach space X is denoted by X,. The
measure spaces (2, 2, u) we consider are always standard measurable spaces
equipped with a positive finite measure u. Most of the time, the space L'(R, Z, »)
will be denoted simply by L', The Radon-Nikodym theorem provides us with an
L-projection from L!'** onto L!; this L-projection is denoted by =, and its kernel
by LL. The topology of convergence in measure is defined on L'(€, Z, u) by the
metric

d(f,9) = Jlf — gl +1f —g) " du
2

we denote by L° the corresponding topology. If X is a subspace of L', we denote
by X * the space of linear forms on X whose restriction to the unit ball X of X is
L°-continuous.

If Z is a subspace of a dual Banach space Y*, ZT denotes the orthogonal of Z in
Y.

1. Subspaces of L' which are duals of M-ideals.

We start with two simple lemmas, which are both special instances of general
results about weakly sequentially complete Banach lattices.

LeMMA L1. Let {f,|n = 1} be a sequence in L(£, u) which converges to zero
u-almost everywhere. Then every w*-cluster point z to the sequence { f,} belongs to
the singular part L} of L'**.

PrROOF. We write z = f + v, with fe L' and ve LL. If f # O, there is ¢ > O such
that

(1) u{ifl>etze
Since { f,} converges to zero u a.e. there is N = 1 such that

2 wE\A) < ¢/2
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where we set

3 A= DN{If..I <¢/2}.
By (1) and (2) we have
@ wAN{If] > e}) 2 /2.

Wedefine p: L'(22) - L'(2) by p4(g) = g1 4. If n denotes as usual the canonical
projection from L'** onto L!, one has np%* = p**x and in particular

pi*(n(z) = palf) = n(pi*(2)).

Since p%* is w*-continuous, p%*(z) belongs to the w*-closure of the sequence
{P%*(f,)ln = N}. Since the set

K={geL'(4,p| lg < ¢/2}
is weakly compact, we have by (3) that p%*(z) belongs to K and thus
pa(f) = npi*(2)) = pi*(2) e K

but this contradicts (4) and concludes the proof.

Before stating our next lemma, let us introduce a useful notation: if X is
a subspace of L', we denote by X* the vector space of linear forms on X whose
restriction to X is L°-continuous. X * is clearly a norm-closed linear subspace of
X*. The space X* can be controlled by the following lemma.

LeMMA 1.2. For every subspace X of L}, one has
X* = (XA LY,

PROOF. Let y be in (X** n L!)T and suppose that y¢ X*. Then there is
asequence {x,} in X, which converges to 0 in measure and such that y(x,) does
not converge to 0. Passing to a subsequence if necessary, we may assume that

lim x, =0 p-ae

n—+w

lim y(x,) =140

n—ow

Since {x, } is bounded we may pick a w*-cluster point z to {x, }; by .1 z belongs to
L; and clearly ze X*+; hence ze I n X+ and z(y) = 0; but on the other hand

2(y) = lim y(x,) = 2+ 0

n—+wx

and this contradiction shows that (X** n I})T = X*.
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Take now yeX* and zeX*'n L, Let {x,|acl} be a net in X with
x|l < |z|l for every « and % an ultrafilter on I such that

z = w*-lim x,.
a—%u
We claim that for every ¢ > 0
) lim x| 2 2} =0
Indeed, if not, there exist Pe % and 5 > 0 such that
wlx]Z e} zn VaeP.

Since z € L., there exists ([34], Th. 1.19) a measurable subset 4 of Q such that

wA) <n/2,12|(1 9 = liz|.
Since the map |p%*(-)|| is w*-Ls.c. there exists P’ e % such that

Jlxald# > llzll —en/3 YaeP
A

and then for everyae PN P’

lxall = flxaldu + ‘[ |Xaldp = |lzll —en/3 + en/2 > |z|
A A

and this contradiction establishes (1). Now (1) means that

limx, =0
a—u

for the topology L?, and since ye X * it follows that
z(y) = lim y(x,) =0

a—U
this shows that X* < (X** n L!)" and concludes the proof.

REMARK. For every non reflexive subspace X of L', one has X* # X* (ie.
X AL+ {0},

Indeed, by Komlos’s theorem ([357; [32], p. 122), every bounded sequence in
X has a subsequence whose Césaro-means o, converge in measure in L!; thus (d,)
is [°-Cauchyin X,.If X* = X* (0,)is then weakly Cauchy also, hence converges
weakly. From this point, there are many ways to conclude. For instance, noting
that (¢,) is norm convergent ([33], IV.8.12), we get that X has the Banach-Saks
property, and thus X is reflexive ([32], p. 212, or by using James’ theorem).

We must tell that the result follows also from a deep theorem of B. Maurey

([36]).
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We are now ready to state the main result of this section.

THEOREM L.3. Let X be asubspace of L}, The following statements are equivalent:
(i) X isisometric to the dual of an M-ideal.
(ii)y The unit ball X, of X is L°-closed, and X * separates X.

Moreover if (i), (ii) are satisfied, then the M-ideal predual of X is the space X *.

ProOF. (i)=>(ii): if we call Y the M-ideal predual of X, we have
X** = X @, Y*, and thisimplies by ([15], th. 1) that Y* = X**+ ~ L!; we give for
completeness a simplified proof of this special case.

Since X** = X @, Y* and X n X'+~ L! = {0}, it is enough to show that
Yt < (X1 n LY. It is classical and easily seen that two elements u and ¢ of the
Banach lattice L'** are orthogonal if and only if

o + Bt)| = laf + 18]

for all scalars « and . Therefore we have [x] A |z| = 0 for every x € X and every
ze Y*; the same relation holds for every x in the band X generated by X; and
since ze X** < (X)*, we may assume without loss of generality that X = L',
But |x| A |z| = O for every xe L' means that zeL!, and we have shown that
Yice (Xt n L)

Therefore we can write

(1 X**=X@ (XL

and this implies ([5]) that the unit ball X, of X is L°-closed; indeed let {x, |n = 1}
be a sequence in the unit ball X, of X which converges in measure to x € L'; taking
asubsequence if necessary, we may assume that x = lim(x,) u-a.e. Pick now any
w*-cluster point z e L'** to the sequence {x, }. By lemma L.1 we have x = n(z); but
zeX** and by (1) n(X*1) = X. This shows that x e X; clearly, | x|, < 1 hence
xeX,.
Finally since we have Y+ = X'+ n L! it follows by lemma I.2 that
Y=X"*nLYHY = X*.

This shows of course that if (i) is satisfied, X * separates X, and that the M-ideal
predual coincides with X *.
(ii) => (i): By the main result of [ 5] (see [11], lemme 1), if X, is L’-closed we have

XH=X@,XHALY.
If X* separates X, we have
(X*y n X = {0}
and by lemma 1.2
Xy =&AL
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but it follows from these three equalities and linear algebra that
X" =Xx4nLl

and therefore we have
X** =X @1 (X#)_L

which means that X* is an isometric predual of X which is an M-ideal in its
bidual X*. This concludes the proof.

ReMARKS. 1) The condition (i) is obviously independent of the isometric
embedding of X into L'. Hence so is the condition (ii).

Moreover, let K be a metrizable compact space and Y be a subspace of €(K)
such that Y* is separable; then #(K)/Y is M-ideal iff condition (ii) is true for
X = Y* < L)u) for some pe.#.(K), and hence it is true for every pe .4, (K)
such that Y < LY(p).

2) Itfollows from ([12], lemma 1.3) that in the statement of the condition (ii) of
theorem I.3 we can substitute to the topology L° the quasi-norm L? forany p < 1,
or the topology IL(l,0) of the Fréchet space “weak-L!”. In particular, if
X = L' n Z where Z is a closed subspace of I (p < 1) such that Z* separates Z,
then X is the dual of an M-ideal (cf. [11], théoréme 6). A typical example of this
situation is X = HYD) = L}(T) n H?(D) for any pe(0, 1).

In the next section we will investigate the translation-invariant version of these
results.

IL. L'and .#,-spaces which are duals of M-ideals.

In this section, G denotes a compact metrizable abelian group and I' = G the
discrete dual group. The additive notation will be used for I". If A = I', we denote
as usual.

Ly={fel'| =0  Vaga)
and
My={ue MG)| fo)=0 VagA}

where L' = LY(G,m) with m = Haar measure of G, and f, fi are the Fourier
transforms of f and . The group I' can be seen as a subset of L(G, m) = L'* as
well as a subset of L. Our next lemma shows that if L'* is non trivial, then it
intersects I'.

LeMMA IL1. Let ae I If ye(LY)* and (—a) = y(a) + O, then de(L)*. Here
& denotes the restriction of de L® toLl,.

Proor. Without loss of generality, we may assume that a = 1;. We define
yeLy by
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W)= J <y, fo> dm(7)
G

where f,(t) = f(z7')is a translate of /. We claim that j belongs to (L%)*. Indeed
for any 5 > O there is a neighborhood V of 0 in the unit ball of LY, such that

feV=y )l <n

without loss of generality we may assume that V = W ~ LY, where W is a transla-
tion invariant neighborhood of 0 in the unit ball of L! and then V is translation
invariant; hence

feV=yfl<n VieG
and thus |j(f)| < nfor feV and §e(L})*: Observe now that for every ae A

He) = J(y,@ () dm(t) = (y, a) J ofr) dm(z)
G G

hence (o) = 0 except if « = 1; where we have

Hle) =¥l #+ 0.

It follows that § coincides on LY with the restriction of a non-zero constant
function, and the result follows.

REMARK. We can observe that #(f) = #0)£(0) = y(15)£(0).

With this lemma we can characterize the spaces .#, which are duals of an
M-ideal. The main result of this section is the following:

THEOREM I1.2. Let A be a subset of the abelian discrete group I'. The following
assertions are equivalent:
() LY is isometric to the dual of an M-ideal Y.
(i) .#, is isometric to the dual of an M-ideal Z.
(ii) The unit ball of LY, is L°-closed, and the restriction of &: f — f(a) to L', belongs
to (LY)* for every ac A.

Moreover, if the conditions (i){iii) are satisfied, then .#, = L' and the M-ideal
predual of M, = L, is the space €(G)/%r- »(G) (i.e. L\ N L, = L A&,

In the above statement , €\ 4(G) = €(G) N L} 4, Let us recall that the sets
A such that 4, = L} are called Riesz sets; the sets A which satisfy (iii) are called
Shapiro sets in [12].

PROOF. (i) <> (ii): If LY (resp. .#,) satisfies (i) (resp. (ii)), it has the Ra-
don-Nikodym property (see [31]) and hence L, = .#, ([20]).
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(iii) = (i): If A satisfies (iii) then (L!)* separates L, so theorem 1.3 gives (i).

(i) = (iii) Now by theorem 1.3 the unit ball of LY is L° closed, and (L!)*
separates LY; in particular, for every aeA, there exists ye(L!)* such that
(@) % 0, and this implies by lemma II.1 that the restriction of & to I}, belongs to
(LY)*. Let us observe now that under the condition (ii), ([12], Prop. 4.1) shows
that the predual M-ideal of .#, = LY, is indeed 4(G)/%p- 4,(G). This can also be
seen directly: since .#, = LY, the space /% - 4 is an isometric predual of L;
but the restriction of I to LY, spans this space and is contained in (L!)* by the
above; and two preduals which are contained in each other must coincide. This
concludes the proof.

We refer to [ 12] for examples and for a systematic study of Shapiro sets. In the
next section, we will use harmonic analysis, together with theorem I1.2, to
produce an example in the theory of L- and M-structure.

We conclude this section by the observation that theorem II.2 provides in
particular a characterization of the quotient spaces of %(G) by transla-
tion-invariant subspaces which are M-ideals in their bidual, since the dual of such
a space in an -space.

HI. An example.

The main result of this section provides an example of a Banach space which is
L-complemented in its bidual and behaves in a somehow unexpected way; the
construction uses crucially the results of §II. We work in this section within the
frame of the “little Fourier analysis”, thatis, G=Tand I' = Z

Before stating it, let us recall that the dual X* of a space X which is M-ideal in
its bidual has the Radon-Nikodym property (see [31]). If Y < X* is such that
there exists an L-projection 7 from Y** onto Y, then by ([15], th. 1) one has
Kern = (Y11 n X1), and thus Ker nis w*-closed and Y is the dual of an M-ideal.

This leads to the question to know whether or not every space Y with the
Radon-Nikodym property which is L-complemented in Y** is the dual of an
M-ideal. The next statement provides in particular a negative answer to this
question.

THEOREM II1.1. There exists a separable space Y which satisfies the following
conditions:
(i) Y is isometric to a dual space
(ii) There is an L-projection n from Y** onto Y
(iii) Ker(n) is not w*-closed in Y**.

Proor. For every n 2 1, we set
D, = {k2'| |k| < n}
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and
A= D,
n=1

The properties of such sets are studied in ([12], §3.8). We recall for completeness
what we need for the present work.

Claim 1. A is a Riesz set (i.e. .4, = L.). For any j = 0, we let
P, = {2 + k2! |keZ).
It is easily seen that ne P; if and only if 2/ divides n and 2/*! does not divide n;
hence {P;|j = 0} is a partition of Z\{0}, and P,n D, = @ if k < n. Therefore
(A~ P,) is contained in U {D,|n < k} and in particular it is finite.
Let now u = u, + u,€.#,; we have to show that u, = 0. For every ne Z\{0},

there is je N such that ne P;. There exists a Radon measure v; on T with finite
support such that ¥; = 15 ; since v; is discrete, we have

(L*v))s = ps*v;
and since (u *vj)" = fi-V;, we have
U*Vi€ Mynp,
but (4 ~ P;) is finite and thus (u * v;) is a trigonometric polynomial and
(v =ps*v;=0

in particular, (4 *v;)" (n) = f4,(n)9,(n) = f,(n) = 0. We have shown that j(n) = 0
for every n % 0 and it follows that u, = 0 since y is singular.

Claim 2. The unit ball of L', is L°-closed. Let { f; |k = 1} be a sequence in the
unit ball of L!, which converges in measure to g€ L'. Let ne Z\A; we have to show
that g(n) = 0.

We pick as before j such that n e P;and v;such that ¥; = 1, . Since v;has a finite
support, we have

lim fi*v; = g*v;
k
in measure, but also in norm since ( f, * v;) belongs to the finite dimensional space
Ly » - In particular, we have
likm (fe*v)" () = (g*v)" (n) = g(n)
but(f, v ;) "n) = ()" (n) = Ofor every k since n ¢ A and it follows that §(n) = 0.

Claim 3, The restriction of 1 € L(T) to the unit ball of L, is not L°-continuous.
Indeed it is easy to construct a sequence { f; | k 2 1} of functions in the unit ball
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of L(T) such that

jﬂ =(f)"0=0 vk

lim f, =1/2-1; ae.

k~ o
By approximation, we may assume that the f,’s are trigonometric polynomials.
Observe now that the functions (z) and (z2") have the same distribution for any n.
Now if we substitute (z2") to (z) in the expression of (f;), then we obtain, if we
choose n big enough, a trigonometric polynomial(g,) whose Fourier transform is
supported by A, and since the distribution is unchanged, we still have ||g,||; < 1

and

limg, = 1/2-1; a.e.
k- o
This shows that the Fourier coefficient in 0 is not I°-continuous on the unit
ball of LY, and proves the claim 3.

We are now ready to complete the proof of theorem IIL 1. We let Y = LY(T),
where A = U {D,|n = 1} is defined above.

By the claim 1, A is a Riesz set and thus Y = .#/, is canonically isometric to the
dual of the space €(T)/Ez - 4(T).

By [5] —see ([11], lemme 1) — and the claim 2, we have

YR = Y@, (Y ALY

and therefore the restriction to Y+ of the canonical projection from L!** onto L'
is an L-projection = from Y** onto Y.

Finally, the space Ker(n) = Y** n L! is w*-closed if and only if Y is isometric
to the dual of an M-ideal; and by theorem II.2 this would imply that the
restriction of every Fourier coefficient to the unit ball of LY, would be L’-continu-
ous; and this contradicts the claim 3.

ReEMARKS. 1) If we drop the requirement Y separable, then very simple
examples are available, since for instance the space €(T)* itself satisfies the
conditions (i), (ii), (iii); but of course this space does not have the Radon-Nikodym
property, in contrast with our space Y which has R.N.P. since it is a separable
dual.

2) The proof of theorem III.1 gives more information on the structure of Y**.
Indeed the proof of claim 2 shows that the restriction of every Fourier coefficient
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but one to Y is L’-continuous. It follows from this fact and lemma 1.2 that the
space M = Y n LN 4(T)* is of codimension one in Y+~ 4(T)* and in
(Y44 A L), and is not w*-closed, since (Y** n L‘) is not w*-closed. And since
Mis ahyperplanein Y+ A @M it follows that M* = Y14 A 4(T)4; afortiori we
have Yt L1 > €(T)*, and by lemma I.2. Y* is contained in the restriction of
#(T) to Y. From this latter fact it finally follows that Y * is the space

={fIYIfedM), f(O)=

3) Actually, the Alexandrov’s set A has stronger properties. By adapting the
proof of [28], Example 2, p. 122-123, it can be shown that if D is the countable
dense subgroup of T:

D = {*™M2"| keZ, neN*}

and ¢: Z— D =2/D* is the canonical injection, then ¢(A) is closed in D.
Therefore:

a) Aisclosed in Z for the Bohr topology and in particular, the unit ball of L, is
L°-closed ([12], Cor. 2.6 (1)); moreover, since A N P; is finite for every j = 0,01is
the only accumulation point of A in Z.

b) €, = L% has the Schur property ([29], Th. 3). Hence A is a Rosenthal set
(seealso [26], Th. B and [273); in particular A is a Riesz set ([20], Th. 3) and more
generally N U A is a Riesz set ([27], Th. 2).

4) For non-translation invariant subspaces H of LYT) which are duals of
M-ideals, we cannot expect in general that H* n Ll = H** n €(T)*; for in-
stance, if h,, n = 1, are disjoint positive functions of L! of norm 1, H = [h,,n 2 1]
isisometric to ! = c} but H** ~ L! ¢ 4(T)*. This comes from the fact that if we
consider non-translation invariant subspaces of L}(T), the topology of T, and then
%(T), plays no canonical role any more,

5) IfZ has the Radon-Nikodym property and V < Z** isa subspace such that
Z NV = {0}, then the unit ball of ¥ cannot be w*-dense in the unit ball of Z**,
since Z, has a strongly exposed point x, which would belong to ¥V n Z. This
shows that it is not possible to replace the condition (iii) of theorem III.1 by the
stronger condition: the unit ball of (Ker n) is w*-dense in Y**.

However, it is not clear whether or not (Ker ) can be w*-dense in Y**. Within
the frame of the L}, -spaces, this boils down to the following question, which
belongs to harmonic analysis.

QuesTiON H1.2. Does there exist a Riesz subset A of Z which satisfies the
following conditions:
() The unit ball of LY, is L°-closed;
(i) Forevery ne A, the restriction of the Fourier coefficient at n to the unit ball of
LY, is not I°-continuous?
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6) It is shown in [23] that there exists a separable Banach lattice T with the
Radon-Nikodym property such that the band T, orthogonal to T in T** is
w*-dense in T**. Theorem III.1 is the analogue of M. Talagrand’s result for
L-structure; but we should mention that Talagrand did not stop so early, since he
proved in [24] that any separable Banach lattice with the Radon-Nikodym
property is a dual Banach lattice. Within the frame of L-structure, we do not
know the answer to the:

QuesTioN I11.3. Is every space Y with the R.N.P., and L-complemented in its
bidual, isometric to a dual space?

Observe that by [20], the answer is yes for translation-invariant subspaces of
L

IV. Z*-spaces which are isomorphic to M-ideals.

In our last section we will investigate isomorphic properties. Let us observe
that if X is a separable .#®-space (see [18]) which is isomorphic to an M-ideal
then X* is isomorphic to #!(N) by [17] since then X* is a separable dual
#'-space. This does not say much, however, about the space X since ¢!(N) has
a huge supply of isomorphic preduals.

The main result of this section is that X is in fact the natural isomorphic
predual of #1(N); that is, X is isomorphic to co(N). The crucial point of the proofis
Zippin’s deep characterization of ¢4(N) [25]. Let us mention that theorem IV.1
and its proof were obtained independently and almost simultaneously by D.
Werner.

We refer to [18] and [4] for properties and examples of ¥ ®-spaces. We state
now

THEOREM IV.1. Let X be a separable ¥ *-space which can be renormed into an
M-ideal in its bidual. Then X is isomorphic to co(N).

We are grateful to an anonymous referee for a simplification of the original
argument.

ProOF. Since X* is separable [13] and is an £ !-space, it is isomorphic to #*(N)
[17] and thus X** is isomorphic to #°(N). We denote by i: X — /°(N) the
canonical injection.

By Zippin's theorem [25], it is enough to show that for every isomorphic
injection j from X into a separable space Y, the space j(X) is complemented in Y.
Since #*°(N)is injective, the map k = i[j~!] from j(X) into #°(N) has an extension
k from Y to #°(N). We denote by Z the norm-closed subalgebra of #*(N)
generated by k(Y); the space Z is isomorphic to a separable €(K)-space.

It is classical and easily checked that i(X) is an M-ideal in Z since it is an
M-ideal in £°(N) and i(X) = Z = ¢(N). Let us mention at this point that the
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space #°(N) is equipped here with an equivalent norm and not with the canonical
one. Moreover, the quotient space Z/i(X) has the bounded approximation
property. Indeed we may write

£2(N)* = £AN) @ i(X)*
and since Z* < i(X)*
Z* = 2 (NY/Z* = AN @ i(X)*/Z~

The space i(X)*/Z* is complemented in the space Z* = .#(K) which has the
B.A.P. and therefore i(X)'/Z' has the B.A.P.; and i(X)*/Z* is canonically
isomorphic to the orthogonal of i(X) in Z*, hence to the dual of Z/i(X); hence
Z/i(X) has the B.A.P. since (Z/i(X))* has it (see [19], p. 34).

In these circumstances there exists by a result of Ando ([2], th. 5) a linear
projection p from Z onto i(X). If we let

p=Jji~'pk.
Then j is a linear projection from Y onto j(X).

REMARKS. 1) Theorem IV.1 has a quantitative version, namely: there is a func-
tion ¢(A) such that every #-space which is M-ideal in its bidual satisfies
d(X,co(N)) £ @(4). Indeed if not, there is ;€ R and a sequence {X,|n = 1} of
Z-spaces which are M-ideals and such that d(X,,, co{N)) = n. We consider the
space

Y=©3%&X),

whichis M-ideal in its bidual and is also #,;>; by theorem I'V.1 Y is isomorphic to
¢o(N) and since the spaces X, are uniformly complemented in Y, their distance to
¢o(N) is bounded; this is a contradiction.

2) It is not clear whether or not the assumption X separable is necessary in
theorem IV. 1. The decomposition result ([ 7], Th. 3) supports the impression that
itis not.

3) Theorem IV.1 shows that there exist separable Asplund spaces — such as
¢(w”) — which contain hereditarily co(N) but which cannot be renormed into
M-ideals in their bidual. This answers a question of M. Fabian (personal
communication).

We should mention however that the following question is open.

QUEsTION IV.2. Let X be an isomorphic predual of #/(N) which has the
property (u) of A. Pelczynski [21]. Is X isomorphic to co(N)?

A positive answer would extend [22], and trivialize theorem IV.1 since the
authors have recently shown that every M-ideal in its bidual has property (u)
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[10]. On the other hand, a negative answer would give an example of a separable
Asplund space with (u) which is not isomorphic to an M-ideal (another open
question).

Since the class of M-ideals in their bidual is hereditary and stable under
quotient maps [13], theorem IV.1 applies to £ *-spaces which are subspaces of
quotients of M-ideals. Let us mention for instance the

COROLLARY IV.3. Let X be a separable & ®-space which is a subspace of
a quotient of the space K(¢?) of compact operators in the Hilbert space. Then X is
isomorphic to co(N).

This corollary is a non-commutative version of a result of [14]. We refer to
[22], [8] for extensions of [14] in another direction.
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