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SOME NECESSARY AND SUFFICIENT CONDITIONS FOR THE OUTPUT
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Abstract. This paper investigates the output controllability problem of temporal Boolean networks
with inputs (control nodes) and outputs (controlled nodes). A temporal Boolean network is a logical
dynamic system describing cellular networks with time delays. Using semi-tensor product of matrices,
the temporal Boolean networks can be converted into discrete time linear dynamic systems. Some
necessary and sufficient conditions on the output controllability via two kinds of inputs are obtained
by providing corresponding reachable sets. Two examples are given to illustrate the obtained results.
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1. Introduction

The Boolean network (BN) was firstly proposed by Kauffman for modeling complex and nonlinear biological
systems, see [21–23]. Since then, it has been a powerful tool in describing, analyzing, and simulating the cell
networks. In this model, gene state is quantized to only two levels: true and false. Then the state of each gene
is determined by the states of its neighboring genes via logical rules.

The control of BN is a challenging problem. So far, there are only few corresponding results because there is
a shortage of systematic tool to deal with logical dynamic systems, see [6,19]. Recently, a new matrix product,
called semi-tensor product (STP) of matrices, has been proposed and a logical function can be expressed as an
algebraic function, for example, see [7–11, 32]. Using STP, a logical equation can be expressed as an algebraic
equation and the dynamics of a Boolean (control) network (BCN) can be converted into a linear (bilinear)
discrete-time (control) system. Based on this method, the structure of attractors of a BN is investigated, and
so called “rolling gears” structure is proposed in [7], which gives an explanation why tiny attractors can decide
the vast order; formulas for calculating fixed points and cycles are obtained in [9]; coordinate transformation of
BNs and the realization of BCNs are presented in [10]; A Mayer-type optimal control problem for BCNs with
multi-input and single-input has been studied in [26, 28].
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Controllability is one of the fundamental concepts in control theory, see [17,24,39,45–47]. The state controlla-
bility problem of BCNs has been discussed by the expression of reachable set in [1,8]. [27,34,44] have presented
some simple criteria to judge the controllability with respect to input-state incidence matrices of BCNs. The
aim is to determine whether expressions of some selected genes (controlled nodes) can be inhibited or activated
by expressions of the other gene (control nodes) in a gene regulatory network. In addition, Akutsu et al. proved
that this problem is NP-hard in a general setting in [1].

Output controllability is a related notion for the output of the system. The output controllability describes
the ability of an external input to move the output from any initial condition to any final condition in a finite
time interval. A controllable system is not necessarily output controllable, and an output controllable system is
not necessarily controllable. Hence, it is also an important structure property in modern control theory which
reflects the dominant ability of the control inputs over outputs [12]. For switched linear systems, [41] gave a
necessary and sufficient geometric type criterion for output controllability. In [25], a sufficient condition for a
BCN with inputs and outputs to be output-controllable is derived by exploiting an adjacency matrix of its
network topology.

It is well known that time delay phenomenon is very common in real world, and is very important in analysis
and control of dynamic systems [3,18,36]. Besides, time delay happens frequently in biological and physiological
systems [16,29,37,40,43]. In [4], a model for genetic regulatory networks (GRNs) with time delays was proposed
and nonlinear properties of the model in terms of local stability and bifurcation was analyzed. In [2], sufficient
conditions have been derived to ensure the global exponential stability of the discrete-time GRNs with delays.
Many results have been obtained on the state controllability of delayed systems [13,35,42]. For BCNs with time
delays, the controllability and observability are respectively investigated in [30, 33].

One kind of BNs, called temporal Boolean networks (TBN) were developed to model regulatory delays,
which may be caused by missing intermediary genes and spatial or biochemical delays between transcription
and regulation, see [5,15,30,38]. References [5,30] investigated the controllability and the global controllability
issues of μth order Boolean control networks respectively, which could be regarded as one kind of TBCNs
considered in our work. Firstly, the μth order Boolean control networks were converted into new BCNs with
much higher dimensions state expressed by z in both [5,30]. Then, with similar analysis as [8], authors got the
controllability of new BCNs via two types of controls in [30]. At last, with model reconstruction, some necessary
and sufficient conditions were obtained for the controllability of the original μth order Boolean control networks.
The same method was also used in [5], which investigated the global controllability of the new BCNs with state
z via Perron-Frobenius Theory as presented in [27]. Then the global controllability of the μth order Boolean
control networks was deduced with the same method of model reconstruction as [30]. In [14], the problem of
inferring genetic networks under the TBN model was considered. One can see that the BCN with time delays
in states considered in [30, 33] is a special case of temporal Boolean control network (TBCN) according to
definitions. Hence, the analysis on TBCN may be much more complex and challenging. It should be noticed
that TBCN is similar with higher-order Boolean control network according to Chapter 5 of [5, 11, 31] in which
the higher-order Boolean control network can be rewritten by a BCN by using the first algebraic form of the
network. Hence, the controllability analysis for higher-order Boolean control networks can be obtained from
the analysis of BCNs. However, if the first algebraic form is used, the dimension of network transition matrix
depending on the number of logical variables will be much larger which would make computation cost much
higher. For details, please refer to Remark 3.2. Motivated by above analysis, in this paper, we will consider the
output controllability of the TBCN without changing it into BCN. The main idea comes from [8,27, 44].

The rest of the paper is organized as follows. Section 2 provides a brief review for the STP of matrices and
the matrix expression of logical function in [6]. In Section 3, we convert the TBCNs with inputs and outputs
into discrete time delay systems. Then some necessary and sufficient conditions on the output controllability
via two kinds of inputs are present in Section 4. Examples are given to illustrate the obtained results as well.
Finally, Section 5 gives a brief conclusion.
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2. Preliminaries

Definition 2.1 [9].

(1) Let X be a row vector of dimension np , and Y be a column vector of dimension p. Then we split X into
equal-size blocks as X1, . . . , Xp , which are 1 × p rows. Define the STP, denoted by �, as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
X � Y =

p∑
i=1

X iyi ∈ Rn

Y T
� XT =

p∑
i=1

yi(X i)T ∈ Rn

(2) Let A ∈ Mm×n and B ∈ Mp×q. If either n is a factor of p, say nt = p and denote it as A ≺t B, or p is a
factor of n, say n = pt and denote it as A �t B, then we define the STP of A and B, denoted by C = A�B,
as the follows: C consists of m × q blocks as C = Cij and each block is

Cij = Ai
� Bj , i = 1, . . . , m, j = 1, . . . , q

where Ai is the ith row of A and Bj is the jth column of B.

It is obvious that when n = p, A � B = AB. So it is a generalization of the conventional matrix product,
and all the fundamental properties of conventional matrix product can be applied to the STP of matrices, e.g.,
distributive rule, associative rule and so on. Because of this, we can omit � in this paper, see [11].

Proposition 2.2 [9].

(1) Assume A �t B, then (where ⊗ is the Kronecker product, It is the identity matrix with dimensions t)

A � B = A(B ⊗ It).

Assume A ≺t B, then
A � B = (A ⊗ It)B.

(2) Assume A ∈ Mm×n is given. Let Z ∈ Rt be a row vector. Then

A � Z = Z � (It ⊗ A).

Let Z ∈ Rt be a column vector. Then
Z � A = (It ⊗ A) � Z.

Furthermore, we give some notations as following:

• Define a delta set as Δk := {δi
k|i = 1, 2, . . . k}, where δi

k is the ith column of It.
• A matrix A ∈ Mm×n is called a logical matrix if the columns of A, denoted by Col(A), satisfy Col(A) ⊂ Δm.
• The set of all m × n logical matrices is denoted by Lm×n.
• If matrix A = [δi1

m, δi2
m, . . . , δin

m ], we denote it as A = δm[i1, i1, . . . , in].

Definition 2.3 [9]. An mn× mn matrix Wm,n is called swap matrix, if it is constructed in the following way:
label its columns by (11, 12, . . . , 1n, . . . , m1, m2, . . . , mn) and its rows by (11, 21, . . . , m1,
. . . , 1n, 2n, . . . , mn). Then its element in the position ((I, J), (i, j)) is assigned as

w(I,J),(i,j) = δI,J
i,j =

{
1, I = i and J = j,

0, otherwise.
(2.1)

When m = n, we briefly denote W[n] := W[m,n].
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Proposition 2.4. Let X ∈ Rm and Y ∈ Rn be two columns. Then

W[m,n] � X � Y = Y � X, W[n,m] � Y � X = X � Y.

A logical domain, denoted by D, is defined as D = {T = 1, F = 0}. To use matrix expression we identify each
element in D with a vector as T ∼ δ1

2 and F ∼ δ2
2 , and denote Δ := Δ2 = {δ1

2 , δ2
2}. Using STP of matrices, a

logical function with n arguments f : Dn → D can be expressed in its algebraic form as follows:

Lemma 2.5 [9]. Any logical function f(a1, . . . , an) with logical arguments a1, . . . , an ∈ Δ can be expressed in a
multi-linear form as

f(a1, . . . , an) = Mfa1a2 . . . an

where Mf ∈ L2×2n is unique and called the structure matrix of f .

Given logical arguments p, q ∈ Δ, we have the following structure matrices for the fundamental logical
functions: ¬p = Mnp, p∨q = Mdpq, P ∧q = Mcpq, p → q = Mipq, p ↔ q = Mepq, where Mn = δ2[2, 1], Md =
δ2[1, 1, 1, 2], Mc = δ2[1, 2, 2, 2], Mi = δ2[1, 2, 1, 1], Me = δ2[1, 2, 2, 1].

Lemma 2.6 [9]. Assume pk = a1a2 . . . ak with logical arguments a1, . . . , ak ∈ Δ, then

p2
k = Φkpk

where Φk =
∏k

i=1 I2i−1 ⊗ [(I2 ⊗ W[2,2k−i])Mr], Mr = δ4[1, 4].

3. Algebraic form of TBCNs

A BN of a set of nodes a1, . . . , an ∈ Δ can be described as:

ai(t + 1) = fi(a1(t), a2(t), . . . , an(t)), i = 1, 2, . . . , n, (3.1)

where fi, i = 1, 2, . . . , n are logical functions, t = 0, 1, 2, . . .. Note that time delay phenomena are very common
in nature, and it is well known that, in many cases, time delay cannot be avoided in practice. Motivated by
this, we consider the TBNs [38] as follows:

ai(t + 1) = fi(a1(t), . . . , an(t), a1(t − 1), . . . , an(t − 1),
. . . , a1(t − τ), . . . , an(t − τ)), i = 1, 2, . . . , n, (3.2)

where τ is a positive integer delay.
Let x(t) = �

n
i=1ai(t) which is a bijective mapping pointed out by Cheng and Qi [9]. Using Lemma 2.5, for

each logical function fi, i = 1, 2, . . . , n, we can find its structure matrix Mi. Then system (3.2) can be converted
into an algebraic form as:

ai(t + 1) = Mi �
n
j=1 aj(t) �

n
j=1 aj(t − 1) . . . �

n
j=1 aj(t − τ)

= Mix(t)x(t − 1) . . . x(t − τ), i = 1, . . . , n. (3.3)

Multiplying all system in (3.3) together yields:

x(t + 1) = �
n
i=1 ai(t + 1)

= �
n
i=1 [Mix(t)x(t − 1) . . . x(t − τ)]. (3.4)

Theorem 3.1. Equation (3.4) can be expressed as

x(t + 1) = L0x(t)x(t − 1) . . . x(t − τ), (3.5)

where L0 = M1[�n
i=2In(τ+1) ⊗ MiΦn(τ+1)] and L0 is called the network transition matrix of (3.2).



162 Y. LIU ET AL.

Proof. By Lemma 2.6, [x(t)x(t − 1) . . . x(t − τ)]2 = Φn(τ+1)x(t)x(t − 1) . . . x(t − τ). Then

x(t + 1) = �
n
i=1 [Mix(t)x(t − 1) . . . x(t − τ)]

= M1[(I2n(τ+1) ⊗ M2)Φn(τ+1)]x(t)x(t − 1) . . . x(t − τ)M3

. . .Mnx(t)x(t − 1) . . . x(t − τ)
= M1[�3

i=2I2n(τ+1) ⊗ MiΦn(τ+1)]x(t)x(t − 1) . . . x(t − τ)M4

. . .Mnx(t)x(t − 1) . . . x(t − τ)
= . . .

= M1[�n
i=2I2n(τ+1) ⊗ MiΦn(τ+1)]x(t)x(t − 1) . . . x(t − τ). (3.6)

�

Next, we consider TBCN with outputs as follows:⎧⎪⎨
⎪⎩

ai(t + 1) = fi(u1(t), . . . um(t), a1(t), . . . , an(t), a1(t − 1), . . . , an(t − 1),
. . . , a1(t − τ), . . . , an(t − τ)), i = 1, . . . , n,

yj(t) = hj(a1(t), . . . , an(t)), j = 1, . . . , p,

(3.7)

where ui, i = 1, 2, . . . , m are inputs (or controls); yj(t), j = 1, . . . , p are outputs; fi, i = 1, . . . , n, hj , j = 1, . . . , p
are logical functions. In this paper, two kinds of inputs (or controls) are considered:

(A) The controls satisfy certain logical rules, called input networks such as:

ui(t + 1) = gi(u1(t), u2(t), . . . , um(t)), i = 1, 2, . . . , m, (3.8)

where gi, i = 1, 2, . . . , m are logical functions, and the initial states uj(0), j = 1, 2, . . . , m, can be arbitrarily
given.

(B) The controls are free Boolean sequences (or designable).

Let u(t) = �
m
j=1uj(t), y(t) = �

p
j=1yj(t). By Lemma 2.5, for every logical function fi, gj and hl, we can find

its structure matrix M1i, M2j and M3l, i = 1, . . . , n, j = 1, . . . , m, l = 1, . . . , p, respectively. Then from (3.7)
and (3.8), we can obtain

ai(t + 1) = M1iu(t)x(t) . . . x(t − τ), i = 1, . . . , n, (3.9)

uj(t + 1) = M2ju(t), j = 1, . . . , m, (3.10)

yl(t) = M3lx(t), l = 1, . . . , p. (3.11)

Similar with Theorem 3.1, multiplying (3.9) yields x(t + 1) = Lu(t)x(t)x(t − 1) . . . x(t − τ) with L =
M11[�n

i=2(I2m+n(τ+1) ⊗ M1iΦm+n(τ+1))]. Multiplying (3.10) leads to u(t + 1) = Gu(t) with G = M21(I2m ⊗
M22)Φm(I2m ⊗ M23)Φm . . . (I2m ⊗ M2m)Φm. And multiplying (3.11) gives y(t) = Hx(t), where H =
M31[�

p
l=2(I2n ⊗M3lΦn)]. Based on above analysis, a TBCN (3.7, 3.8) can be expressed in an algebraic form as

follows, {
x(t + 1) = Lu(t)x(t)x(t − 1) . . . x(t − τ),

y(t) = Hx(t),
(3.12)

and u(t + 1) = Gu(t), (3.13)

where L, H are respectively the network transition matrices of two equations in (3.7), and G is the network
transition matrix of (3.8).
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Remark 3.2. It should be noticed that by using the first algebraic form of the network from Chapter 5 of [11],
TBCN or μth order Boolean control network can be rewritten by a BCN with no delay. Hence, it can be a
good idea to study the controllability of TBCNs by using the corresponding BCNs from the results in [8, 27],
see references [5,30]. However, if the first algebraic form is used, the dimension of network transition matrix of
corresponding BCNs will be much bigger which would make computation cost much higher, see the dimension
of states in system (5) of [30] and system (5) of [5]. From (3.12), it is easy to calculate that the dimension of
L is 2n × 2n(τ+1)+m. However, if the TBCNs are rewritten by BCNs using the first algebraic form, then the
dimension of the corresponding network transition matrix of the BCNs would be 2n(τ+1) × 2n(τ+1)+m, which is
much bigger if n or τ is a large number. Hence, though the proof of our theorems is more complex relatively, the
dimension of the input-state transfer matrix is much less than the method of using the first algebraic form, and
hence the cost of the computation will be less compared with [5, 30] if n and τ are large numbers. Let us take
n = 6, m = 1, τ = 4 for example, the dimensions of the network transition matrices are 64 × 2147483648 and
1073741824 × 2147483648, respectively. Thus, it is easy to see the computation cost would be much higher if
the TBCNs are rewritten by using the above-mentioned method. Furthermore, considering the TBCNs directly,
we can find the relationship between the network transition matrix (or the Boolean functions) of the TBCN
and the state clearly, see (3.12). However, if the new BCN is used, the relationship of states x would not be
so clear, see system (5) in [30] and system (5) in [5], where the z coming from multiplying x at different times
concerning μ.

4. Output controllability of TBCNs

In this section, we consider the output controllability problem of TBCN (3.7) with inputs and outputs,
equivalently (3.12), and the analysis will be given via two kinds of inputs. Definitions 4.1 and 4.13 are similar
with the ones used in [1, 8, 33] for controllability with respect to fixed initial states. Note that the following
Definitions 4.2 and 4.14 of controllability is different from them, and can be better coincide with the classical
definition of controllability in linear systems theory (see, e.g., [20]).

4.1. Output controllability of input Boolean networks

In this subsection, we consider case (A).

Definition 4.1. Consider the TBCN (3.12) with control (3.13). Given the finite time s ∈ N
+, initial state

sequence x(−i), i ∈ {0, 1, . . . , τ} and the destination output yf ∈ Δ2p , yf is said to be s − output −
controllable (or reachable) from initial state sequence with fixed (designable) input structure G, if we can
find control input u(0) (and G), such that y(s) = yf .

Definition 4.2. The TBCN (3.12) with control (3.13) is said to be s− output− controllable (or reachable) if
for any ai ∈ Δ2n , i ∈ {0, 1, . . . , τ} and b ∈ Δ2p , there exist the finite time s ∈ N

+ and the control input u(0)
such that x(−i) = ai, i ∈ {0, 1, . . . , τ} to y(s) = b.

Remark 4.3. Definition 4.1 is based on fixed initial state sequence and destination output, and it describes
the controllability of the destination output. Definition 4.2 is for any initial state sequence and destination
output, and it represents the controllability of the system. The following controllability analysis will be given
with respect to both definitions one by one.

Definition 4.4. For BCN without time delay, and controller (3.13) with fixed G, the input-state transfer matrix
ΘG

i , i ∈ N
+ is defined as follows: for any u(0) ∈ Δ2m and any x(0) ∈ Δ2n , we have

x(i) = ΘG
i u(0)x(0), i ∈ N

+. (4.1)



164 Y. LIU ET AL.

From Definition 4.4, the input-state transfer matrix for BCN shows a clear relationship between the input and
state. Given an initial state and an input, we can get the state at any time if the input-state transfer matrix
is obtained. Similar with the statement of input-state transfer matrix for BCN, we have the corresponding
input-state transfer matrix for TBCN in the following definition. For simplicity, we first denote the vector

X(i) = �
i
j=0x(−j) ∈ Δ2n(i+1) , i ∈ {0, 1, . . . , τ}. (4.2)

Definition 4.5. For TBCN (3.12) and controller (3.13) with fixed G, the input-state transfer matrix LG
i , i ∈ N

+

is defined as follows: for any u(0) ∈ Δ2m and any x(−i) ∈ Δ2n , i ∈ {0, 1, . . . , τ}, we have

x(i) =LG
i u(0)X(τ), i ∈ N

+, (4.3)

where X(τ) = �
τ
j=0x(−j) ∈ Δ2n(τ+1) from (4.2).

We start from the case of fixing s and fixing G. Theorem 4.6 and Corollary 4.8 will present the controllability
for TBCNs with respect to given initial x(−i), i ∈ {0, 1, . . . , τ} and yf , i.e., in the sense of Definition 4.1.

Theorem 4.6. Consider the TBCN (3.12) with control (3.13), where G is fixed. yf is s-output-reachable from
x(−i), i ∈ {0, 1, . . . , τ}, if and only if y�

f HLG
s W[2n(τ+1),2m]X(τ) �= (0, . . . , 0︸ ︷︷ ︸

2m

)� or equivalently, there exists at

least one entry of y�
f HLG

s W[2n(τ+1),2m]X(τ) equaling 1, where

LG
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L, t = 1,

LG[(I2m ⊗ LG
1 )Φm][I2m ⊗ W2nτ ,2n(τ+1)Φn(τ)], t = 2,

LGs−1[(I2m ⊗ LG
s−1)Φm][�1

i=s−2(I2m+n(τ+1) ⊗ LG
i Φm+n(τ+1))]

� [I2m ⊗ W[2n(τ−s+2),2n(τ+1)]Φn(τ−t+2)], s = 3, . . . , τ + 1,

LGs−1[(I2m ⊗ LG
s−1)Φm][�s−τ−1

i=s−2 (I2m+n(τ+1) ⊗ LG
i Φm+n(τ+1))], s > τ + 1.

(4.4)

If it is the ith entry, then u(0) = δi
2m .

Proof. A straightforward computation gives that

x(1) = Lu(0)X(τ) � LG
1 u(0)X(τ),

x(2) = Lu(1)x(1)X(τ − 1)

= LGu(0)LG
1 u(0)X(τ)X(τ − 1)

= LG[(I2m ⊗ LG
1 )Φm]u(0)X(τ)X(τ − 1)

= LG[(I2m ⊗ LG
1 )Φm]u(0)W[2nτ ,2n(τ+1)]ΦnτX(τ)

= LG[(I2m ⊗ LG
1 )Φm][I2m ⊗ W[2nτ ,2n(τ+1)]Φnτ ]u(0)X(τ)

� LG
2 u(0)X(τ),

x(3) = Lu(2)x(2)x(1)X(τ − 2)

= LG2u(0)LG
2 u(0)X(τ)LG

1 u(0)X(τ)X(τ − 2)

= LG2[(I2m ⊗ LG
2 )Φm]u(0)X(τ)LG

1 u(0)X(τ)X(τ − 2)

= LG2[(I2m ⊗ LG
2 )Φm][(I2m+n(τ+1) ⊗ LG

1 )Φm+n(τ+1)]u(0)X(τ)X(τ − 2)

= LG2[(I2m ⊗ LG
2 )Φm][(I2m+n(τ+1) ⊗ LG

1 )Φm+n(τ+1)]
� [I2m ⊗ W[2n(τ−1),2n(τ+1)]Φn(τ−1)]u(0)X(τ)

� LG
3 u(0)X(τ).
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For 3 ≤ t ≤ τ , we assume that

LG
t = LGt−1[(I2m ⊗ LG

t−1)Φm][�1
i=t−2(I2m+n(τ+1) ⊗ LG

i Φm+n(τ+1))]
� [I2m ⊗ W[2n(τ−t+2),2n(τ+1)]Φn(τ−t+2)].

Then for s = t + 1, we have that

x(t + 1) = Lu(t)x(t) . . . x(1)X(0)

= LGtu(0)[�1
i=tL

G
i u(0)X(τ)]X(0)

= LGt[(I2m ⊗ LG
t )Φm][�1

i=t−1(I2m+n(τ+1) ⊗ LG
i Φm+n(τ+1))]

� [I2m ⊗ W[2n(τ−t+1),2n(τ+1)]Φn(τ−t+1)],

and

LG
t+1 =LGt[(I2m ⊗ LG

t )Φm][�1
i=t−1(I2m+n(τ+1) ⊗ LG

i Φm+n(τ+1))]
� [I2m ⊗ W[2n(τ−t+1),2n(τ+1)]Φn(τ−t+1)].

By mathematical induction, one can get that

LG
1 = L,

LG
2 = LG[(I2m ⊗ LG

1 )Φm][I2m ⊗ W2nτ ,2n(τ+1)Φn(τ)],

LG
t = LGt−1[(I2m ⊗ LG

t−1)Φm][�1
i=t−2(I2m+n(τ+1) ⊗ LG

i Φm+n(τ+1))]
� [I2m ⊗ W[2n(τ−t+2),2n(τ+1)]Φn(τ−t+2)], t = 3, . . . , τ + 1. (4.5)

Furthermore,

x(τ + 2) =Lu(τ + 1)x(τ + 1) . . . x(1)

=LGτ+1u(0)[�1
i=τ+1L

G
i u(0)X(τ)]

=LGτ+1[(I2m ⊗ LG
τ+1)Φm][�1

i=τ (I2m+n(τ+1) ⊗ LG
i Φm+n(τ+1))]u(0)X(τ)

�LG
τ+2u(0)X(τ),

x(τ + 3) =Lu(τ + 2)x(τ + 2) . . . x(2)

=LGτ+2u(0)[�2
i=τ+2L

G
i u(0)X(τ)]

=LGτ+2[(I2m ⊗ LG
τ+2)Φm][�2

i=τ+1(I2m+n(τ+1) ⊗ LG
i Φm+n(τ+1))]u(0)X(τ)

�LG
τ+3u(0)X(τ).

For t > τ + 1, we assume that

LG
t = LGt−1[(I2m ⊗ LG

t−1)Φm][�s−τ−1
i=t−2 (I2m+n(τ+1) ⊗ LG

i Φm+n(τ+1))]. (4.6)

Then for s = t + 1, one can obtain that

x(t + 1) = Lu(t)x(t) . . . x(t − τ)

= LGtu(0)[�s−τ
i=t LG

i u(0)X(τ)]

= LGt[(I2m ⊗ LG
t )Φm][�t−τ

i=t−1(I2m+n(τ+1) ⊗ LG
i Φm+n(τ+1))]u(0)X(τ),

and

LG
t+1 =LGt[(I2m ⊗ LG

t )Φm][�t−τ
i=t−1(I2m+n(τ+1) ⊗ LG

i Φm+n(τ+1))]u(0)X(τ).
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By mathematical induction, we have

LG
s = LGs−1[(I2m ⊗ LG

s−1)Φm][�s−τ−1
i=s−2 (I2m+n(τ+1) ⊗ LG

i Φm+n(τ+1))], s > τ + 1.

Hence, we get the explicit expression of LG
s as (4.4). Moreover,

x(s) = LG
s u(0)X(τ) = LG

s W[2n(τ+1),2m]X(τ)u(0), s ∈ N
+. (4.7)

It follows from (3.12) and (4.7) that

y(s) = HLG
s W[2n(τ+1),2m]X(τ)u(0), s ∈ N

+.

It is noticed that HLG
s W[2n(τ+1),2m]X(τ) is an 2p×2m matrix whose columns are elements in Δ2p . Since yf ∈ Δ2p ,

y�
f HLG

s W[2n(τ+1),2m]X(τ) �= [0, . . . , 0︸ ︷︷ ︸
2m

]� means that at least one column of the matrix HLG
s W[2n(τ+1),2m]X(τ)

equals to yf . Then we can get the conclusion by u(0) ∈ Δ2m . �

Remark 4.7. When the time delay τ = 0, then the TBCN (3.12), (3.13) become a Boolean control network.
In this case, it can be induced from (4.4) that

LG
t =

{
L, t = 1,

LGt−1[(I2m ⊗ LG
t−1)Φm], t > 1.

(4.8)

Then Theorems 9 of [8] on the controllability of the BCNs respects to Definition 4.1 can be directly deduced
from Theorem 4.6.

Now, we consider the case where s is fixed and G is designable. Notice that there are (2m)2
m

possible distinct
Gs. Each G can be expressed in the condensed form and ordered in increasing order, see [9]. When m = 2,
we have G1 = δ4[1111], G2 = δ4[1112], G3 = δ4[1113], . . . , G256 = δ4[4444]. In general, we consider a subset
Λ ⊂ {1, 2, . . . , (2m)2

m}, and allow G to be chosen from the admissible set {Gλ|λ ∈ Λ}. The following result can
be obtained immediately from Theorem 4.6.

Corollary 4.8. Consider the TBCN (3.12) with control (3.13), where G ∈ {Gλ|λ ∈ Λ}. Then yf

is s-output-reachable from x(−i), i ∈ {0, 1, . . . , τ}, if and only if there exists at least one entry of
{y�

f HLGλ
s W[2n(τ+1),2m]X(τ)|λ ∈ Λ} equaling 1, where LG

s is given by (4.4).

For TBCNs without time delays, it is noticed that the matrix M in [44] which equals to Q in [27] is induced
to show the controllability of BCNs with respect to any initial states and destination states. Motivated by [44]
and [27], in the following, we will give necessary and sufficient conditions on the controllability of TBCNs (3.12)
in terms of Definition 4.2.

Proposition 4.9. The number of different controls u(0) that steer TBCNs (3.12) with control (3.13) from
x(−i), i ∈ {0, 1, . . . , τ} to y(s) = yf in s time steps is

l(s; X(τ), yf) = y�
f QsX(τ), s ∈ N

+,

where Qs = HLG
s 12m , 12m = [1, . . . , 1︸ ︷︷ ︸

2m

]� and LG
s is given by (4.4).

Proof. Let w1(0), w2(0), . . . , wl(s;X(τ),yf )(0) be the different control steer x(−i), i ∈ {0, 1, . . . , τ} to y(s) = yf ,
i.e.,

yf = HLG
s wi(0)X(τ), i = 1, 2, . . . , l(s; X(τ), yf ), (4.9)
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from (4.7). Since each control wi(0) ∈ Δ2m , this implies that there exist t(s; X(τ), yf ) = 2m − l(s; X(τ), yf )
different control vj(0) ∈ Δ2m such that

yf �= HLG
s vj(0)X(τ), j = 1, 2, . . . , t(s; X(τ), yf ). (4.10)

Multiplying (4.9) and (4.10) from the left by y�
f yields

1 = y�
f HLG

s wi(0)X(τ), i = 1, 2, . . . , l(s; X(τ), yf ),

0 = y�
f HLG

s vj(0)X(τ), j = 1, 2, . . . , t(s; X(τ), yf ). (4.11)

Summing up this set of 2m equations yields

l(s; X(τ), yf) = y�
f HLG

s 12mX(τ) = y�
f QsX(τ). (4.12)

The proof is completed. �

Theorem 4.10. The TBCN (3.12) with control (3.13) is s-output-controllable if and only if all the entries of
Qs are different from zero.

Proof. Necessity: Suppose that entry (i, j) in Qs is zero, then

δi
2pQsδ

j
2n(τ+1) = 0.

From Theorem 4.9, there is no control u(0) such that X(τ) = δj

2n(τ+1) and y(s) = δi
2p . Hence, the TBCN is not

s-output-controllable.
Sufficiency: From the Proof of Proposition 4.9, we can observe that if all the entries of Qs are different from

zero, then they are all positive. Hence δi
2pQsδ

j
2n(τ+1) > 0 for any i ∈ {1, 2, . . . , 2p} and j ∈ {1, 2, . . . , 2n(τ+1)},

and further the TBCN is s-output-controllable. �

Now we give an algorithm to find a control, which drives given x(−i), i ∈ {0, 1, . . . , τ} to y(s) = yf in s time
steps. Since the trajectory from X(τ) to y(s) is in general not unique, see Proposition 4.9, we only try to find
one of them. A similar way can produce all the required trajectories. Assume X(τ) = δi

2n(τ+1) and y(s) = δj
2p .

We give the following algorithm.

Algorithm 4.11. Assume the TBCN is given with its logical expression as (3.7) and input networks as (3.8).

(A) Convert (3.7) and (3.8) into a linear discrete time delay system as (3.12) and (3.13) such that G, L, H
can be expressed by matrices.

(B) Compute LG
s by (4.4).

(C) Get l(s; X(τ), y(s)) = y(s)�QsX(τ) to see the number of different controls u(0) that steers the TBCN from
X(τ) to y(s). If l(s; X(τ), y(s)) = 0, it means there is no existence of such u(0), then stop.

(D) Find which entry of vector y(s)�HLG
s W[2n(τ+1),2m]X(τ) equals 1. If it is the 1st one, then u(0) = δ1

2m .
Similarly, if the ith one, then u(0) = δi

2m .

Example 4.12. Consider a simple TBCN as follows,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(t + 1) = u1(t) ∧ A(t) ↔ B(t − 1),
B(t + 1) = u2(t) ∨ B(t − 1) → B(t − 2),
y1(t) = B(t),
y2(t) = A(t),

(4.13)
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with control satisfying {
u1(t + 1) =¬u2(t),
u2(t + 1) =u1(t).

(4.14)

Let s = 4, τ = 2, x(t) = A(t)B(t) and u(t) = u1(t)u2(t). Now assume A(0) = δ1
2 , A(−1) = δ2

2 , A(−2) =
δ1
2 , B(0) = δ2

2 , B(−1) = δ2
2 , B(−2) = δ1

2 , y(4) = δ1
4 , then X(τ) = δ29

64 .

(A) Express (4.13), (4.14) as (3.12), (3.13) respectively with G = MnW[2] = δ4[3, 1, 4, 2], H = W[2] and
L = MeMc(I23 ⊗MiMd)(I22 ⊗W[2])(I2 ⊗W[2])(I22 ⊗EdW[2])(I24 ⊗MrEd)(I26 ⊗Ed). For the details of Ed,
see [9].

(B) Formula (4.4) yields LG
4 ∈ L4×256 as LG

4 = LG3[(I22 ⊗ LG
3 )Φ2][�1

i=2(I28 ⊗ LG
i Φ8)].

(C) l(4; δ29
64 , δ

1
4) = 2 > 0.

(D) y(s)�HLG
s W[2n(τ+1),2m]X(τ) = [0, 1, 1, 0]. Hence, u(0) = δ2

4 or u(0) = δ3
4 .

4.2. Control via free Boolean sequence

In the following, we consider the case (B) where the controls are free Boolean sequences.

Definition 4.13. Given initial state x(−i), i ∈ {0, 1, . . . , τ}, the destination output yf ∈ Δ2p and the finite
time s ∈ N

+, the TBCN (3.12) is said to be s−output−controllable (or reachable) from initial state x(−i), (i ∈
0, 1, . . . , τ) to yf (by free Boolean sequence), if we can find the control inputs {u(0), u(1), . . . , u(s − 1)} such
that y(s) = yf .

Definition 4.14. The TBCN (3.12) is said to be s−output−controllable (or reachable) if for any ai ∈ Δ2n , i ∈
{0, 1, . . . , τ} and b ∈ Δ2p , there exist the finite time s ∈ N

+ and the control input u(t) steers the TBCN from
x(−i) = ai, i ∈ {0, 1, . . . , τ} to y(s) = b.

For simplicity, we denote matrix L̃ = LW[2n(τ+1),2m], vectors U(i) = �
i
j=0u(j) ∈ Δ2m(i+1) , i ∈ N. Then the

first equation of (3.12) can be expressed as

x(t + 1) = L̃x(t)x(t − 1) . . . x(t − τ)u(t). (4.15)

Theorem 4.15. Consider TBCN (3.12). yf is s-output-reachable from x(−i), i ∈ {0, 1, . . . , τ} by controls of
Boolean sequences U(s − 1) of length s if and only if there exists at least one entry of y�

f HL̃sX(τ) equaling 1,
where

L̃s =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L̃, s = 1

L̃L̃1W[2nτ ,2m+n(τ+1)]Φnτ , s = 2,

L̃L̃s−1[�1
i=s−2(W[2n,2(s−1)m+n(τ+1)]L̃iΦim+n(τ+1))]

� W[2(τ+2−s)n,2(s−1)m+n(τ+1)]Φ(τ+2−s)n, s = 3, . . . , τ + 1.

L̃L̃s−1[�s−τ−1
i=s−2 (W[2n,2(s−1)m+n(τ+1)]L̃iΦim+n(τ+1))], s > τ + 1.

(4.16)

If it is the ith one, then U(s − 1) = δi
2sm .
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Proof. A straightforward computation along (4.15) gives the following:

x(1) = L̃X(τ)u(0) = L̃1X(τ)U(0),

x(2) = L̃x(1)X(τ − 1)u(1)

= L̃L̃1X(τ)U(0)X(τ − 1)u(1)

= L̃L̃1W[2nτ ,2m+n(τ+1)]ΦnτX(τ)U(1)

= L̃2X(τ)U(1),

x(3) = L̃x(2)x(1)X(τ − 2)u(2)

= L̃L̃2X(τ)U(1)L̃1X(τ)U(0)X(τ − 2)u(2)

= L̃L̃2W[2n,22m+n(τ+1)]L̃1Φm+n(τ+1)X(τ)U(1)X(τ − 2)u(2)

= L̃L̃2W[2n,22m+n(τ+1)]L̃1Φm+n(τ+1)W[2n(τ−1),22m+n(τ+1)]Φn(τ−1)X(τ)U(2)

= L̃3X(τ)U(2).

For 3 ≤ t ≤ τ , we assume that

L̃t = L̃L̃t−1[�1
i=t−2(W[2n,2(t−1)m+n(τ+1)]L̃iΦim+n(τ+1))]

� W[2(τ+2−t)n ,2(t−1)m+n(τ+1)]Φ(τ+2−t)n. (4.17)

Then we have for s = t + 1 that

x(t + 1) = L̃x(t) . . . x(1)X(0)u(τ)

= L̃[�1
i=tL̃iX(τ)U(i − 1)]X(0)u(τ)

= L̃L̃t[�1
i=t−1(W[2n,2τm+n(τ+1)]L̃iΦim+n(τ+1))]W[2(τ+1−t)n ,2tm+n(τ+1)]Φ(τ+1−t)nX(τ)U(τ),

and

L̃t+1 = L̃L̃t[�1
i=t−1(W[2n,2τm+n(τ+1)]L̃iΦim+n(τ+1))]W[2(τ+1−t)n,2tm+n(τ+1)]Φ(τ+1−t)n.

By mathematical induction, one can get that

L̃1 = L̃,

L̃2 = L̃L̃1W[2nτ ,2m+n(τ+1)]Φnτ ,

L̃s = L̃L̃s−1[�1
i=s−2(W[2n,2(s−1)m+n(τ+1)]L̃iΦim+n(τ+1))]

� W[2(τ+2−s)n,2(s−1)m+n(τ+1)]Φ(τ+2−s)n, s = 3, . . . , τ + 1.

Moreover,

x(τ + 2) = L̃x(τ + 1) . . . x(1)u(τ + 1)

= L̃[�1
i=τ+1L̃iX(τ)U(i − 1)]u(τ + 1)

= L̃L̃τ+1[�1
i=τ (W[2n,2(τ+1)m+n(τ+1)]L̃iΦim+n(τ+1))]X(τ)U(τ + 1)

= L̃τ+2X(τ)U(τ + 1),

x(τ + 3) = L̃x(τ + 2) . . . x(2)u(τ + 2)

= L̃[�2
i=τ+2L̃iX(τ)U(i − 1)]u(τ + 2)

= L̃L̃τ+2[�2
i=τ+1(W[2n,2(τ+2)m+n(τ+1)]L̃iΦim+n(τ+1))]X(τ)U(τ + 2)

= L̃τ+3X(τ)U(τ + 2). (4.18)
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For t > τ + 1, we assume that

L̃t = L̃L̃t−1[�t−τ−1
i=t−2 (W[2n,2(t−1)m+n(τ+1)]L̃iΦim+n(τ+1))].

Then we have for s = t + 1 that

x(t + 1) = L̃x(t) . . . x(t − τ)u(t)

= L̃[�t−τ
i=t L̃iX(τ)U(i − 1)]u(t)

= L̃L̃t[�t−τ
i=t−1(W[2n,2tm+n(τ+1)]L̃iΦim+n(τ+1))]X(τ)U(t),

and

L̃t+1 = L̃L̃t[�t−τ
i=t−1(W[2n,2tm+n(τ+1)]L̃iΦim+n(τ+1))].

By mathematical induction, one can get that

L̃s = L̃L̃s−1[�s−τ−1
i=s−2 (W[2n,2(s−1)m+n(τ+1)]L̃iΦim+n(τ+1))], s > τ + 1.

It follows from (3.12) that

y(s) = HL̃sX(τ)U(s − 1), s ∈ N
+, (4.19)

where L̃s is given by (4.16). From the form of HL̃sX(τ) and U(s−1) ∈ Δ2sm , where HL̃sX(τ) is a 2p×2sm matrix
whose columns are elements in Δ2p , we can drive the conclusion by using the similar analysis as Theorem 4.6. �

Remark 4.16. Especially, from Theorems 4.6 and 4.15, when τ = 1, the third explicit expressions of LG
s in (4.4)

and L̃s in (4.16) for s = 3, . . . , τ + 1 should be omitted.

By (4.19), one can rewrite y(s) as follow:

y(s) = HL̃sW[2sm,2n(τ+1)]U(s − 1)X(τ), s ∈ N
+. (4.20)

Then similar with Proposition 4.9 and Theorem 4.10, we will give the necessary and sufficient conditions on the
controllability of TBCNs (3.12) in terms of Definition 4.2.

Proposition 4.17. The number of different controls u(t) that steer TBCN (3.12) from x(−i), i ∈ {0, 1, . . . , τ}
to y(s) = yf in s time steps is

l′(s; X(τ), yf ) = y�
f PsX(τ), s ∈ N

+,

where Ps = HL̃sW[2sm,2n(τ+1)]12sm and L̃s is given by (4.16).

Theorem 4.18. The TBCN (3.12) is s − output− controllable (or reachable) if and only if all the entries of
Ps are different from zero.

Remark 4.19. As a special case, when τ = 0, then from the Proof of Theorem 4.15, we have L̃s = L̃s for
s > 0. In this case, Theorem 4.15 deduces Theorem 18 in [8], and

Ps = HL̃sW[2sm,2n]12sm = H(L12m)s.
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In fact, the last equality can be proved as follows. For any a ∈ Δ2n ,

L̃sW[2sm,2n]12sma = L̃sa12sm

= (LW[2n,2m])sa �
s
i=1 12m

= (LW[2n,2m])s−1LW[2n,2m]a12m �
s−1
i=1 12m

= (LW[2n,2m])s−1(L12ma) �
s−1
i=1 12m

= (LW[2n,2m])s−2LW[2n,2m](L12ma)12m �
s−2
i=1 12m

= (LW[2n,2m])s−2(L12m(L12ma)) �
s−2
i=1 12m

...
= (L12m)sa, (4.21)

which means that any corresponding columns of L̃sW[2sm,2n]12sm and (L12m)s are equal. Hence,
HL̃sW[2sm,2n]12sm = H(L12m)s. It is noticed that both of the matrix M given by (14) in [44], and Q de-
fined by Theorem 3 of [27] equal to L12m . Then it indicates that Theorem 4.18 in this paper generalizes the
controllability criteria of Corollary 3.6 in [44], and Corollary 2 in [27] to the case of TBCNs.

The following algorithm is to find a control driving given x(−i), i ∈ {0, 1, . . . , τ} to y(s) = yf in s time steps
with free controls. Similar with Algorithm 4.11, we assume X(τ) = δi

2n(τ+1) and y(s) = δj
2p .

Algorithm 4.20. If the TBCN is given with its logical expression as (3.7).

(A) Convert (3.7) into a linear discrete time delay system as (3.12) such that L, H can be expressed by matrices.
(B) Compute L̃s by (4.16).
(C) Get l′(s; X(τ), y(s)) = y�

f PsX(τ) to see the number of different controls {u(0), u(1),
. . . , u(s − 1)} that steer the TBCN from X(τ) to y(s). If l(s; X(τ), y(s)) = 0, it means there is no such
control, then stop.

(D) Find which entry of vector y(s)�HL̃sX(τ) equals 1. If it is the ith one, then U(s − 1) = δi
2sm .

Example 4.21. Consider the following TBCN⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(t + 1) = C(t) ∧ B(t − 1),
B(t + 1) = A(t) ∨ C(t − 1),
C(t + 1) = ¬u(t) → A(t − 1),
y1(t) = A(t) ∧ C(t),
y2(t) = B(t).

(4.22)

Let s = 3, τ = 1, x(t) = A(t)B(t)C(t). Assume A(0) = δ1
2 , A(−1) = δ2

2 , B(0) = δ1
2 , B(−1) = δ2

2 , C(0) =
δ2
2 , C(−1) = δ1

2 , y(3) = δ4
4 , then X(τ) = A(0)B(0)C(0)A(−1)B(−1)

C(−1) = δ15
64 .

(A) We can express (4.22) with H = Mc(I2 ⊗ W[2]) and L̃ = Mc(I22 ⊗ Md)(I24 ⊗ MiMn)W[2,25]

W[2]Ed(I22 ⊗ W[2,22])W[2,22] as (4.15).
(B) From Remark 4.16, formula (4.16) yields L̃3 ∈ L8×512 as L̃3 = L̃L̃2[W[23,28]L̃1Φ7].
(C) l′(3; δ15

64 , δ
4
4) = 2 > 0.

(D) y(s)�HL̃sX(τ) = [0, 0, 0, 0, 0, 1, 0, 1]. Hence, U(2) = δ6
8 or δ8

8 . We choose for example, u(0)u(1)u(2) = δ8
8 ,

which means that the corresponding controls are

u(0) = u(1) = u(2) = δ2
2 .
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One can see that the BCN with time delays in states considered in [30,33] is a special case of TBCN. Hence,
results in [8,27,30,44] are not applicable to judge the controllability of both examples. In fact, we can also use
Algorithm 4.20 to consider the controllability for more complex TBCNs, e.g., time-delayed regulation networks
for human HeLa cell cycling [29]. The detail is omitted here.

Remark 4.22. The obtained results in this paper are theoretical, and the model as well as examples we have
considered here are idealized. There are many constraints on the genetic network in the real world, which may
be difficult to be expressed by simple BCNs or TBCNs. Based on STP method, it is found that many existing
basic results on BCNs can hardly be directly used in real world, see [7–11, 26, 28, 32]. However, the proposed
theoretical research on BCNs or TBCNs would contribute to analyzing the related actual biological systems.
We will consider more practical factors of biological systems in our future research, and attempt to verify the
effectiveness of the obtained results with the data of real biological systems.

5. Conclusion

In this paper, some necessary and sufficient conditions for a TBCN model to be output-controllable have been
derived. Based on semi-tensor product of matrices and the matrix expression of logic, we have converted the
TBCNs into discrete time systems with time delays. Two kinds of definitions of output controllability have been
proposed and further investigated via different controls. The obtained results generalize some existing results
in [8, 27, 44]. Finally, two examples are given to illustrate the efficiency of the proposed results.
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