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SOME NECESSARY CONDITIONS FOR
RADIAL FOURIER MULTIPLIERS

WALTER TREBELS

Abstract. Necessary conditions in terms of differentiability and growth

properties for a radial function m(\z\ ) to be a Fourier multiplier of type (p, q)

are given and compared with sufficient ones.

Introduction. The starting point of the following is to be seen in the

observation (see [7, p. 114]) that a radial multiplier of type (p,p), p

< 2n/(n + 1), has to be continuous everywhere, except possibly the origin,

and the following strengthening of this result due to Tomas [9].

Theorem A. If f is a radial function on R" and f is in LP(Rn) for

1 < p < 2n/(n + 1 + 2k), k = k + 8',k integer and 0 < 8' < 1, thenf (\z\)
= f  (t), z E R",  t > 0, has k continuous derivatives away from the origin and

\f^k\t + s)- f^(t)\ < C(t0)ss'   for all t > t0 > 0.

Schoenberg [5] has proved that the Hankel transform (which arises as a

generalization of the Fourier transform of a radial integrable function on

Euclidean «-space) has [(« - l)/2] derivatives; in [6] Schwartz has improved

Schoenberg's result, actually obtaining a stronger version of Theorem A in

case p = 1. Our main result, Theorem 1, represents a combination of the

results of Schwartz and Tomas in case of ordinary derivatives; the extension

to fractional ones is new. Furthermore, Theorem 1 allows us to deduce

necessary conditions for radial Fourier Mpq multipliers (in an elementary way).

A comparison of these conditions with sufficient ones enlightens to some

extent the structure of radial Fourier multipliers.

The author is obliged to the referee for pointing out the papers of

Schoenberg [5] and Schwartz [6].

The following notation will be used: y, z E R", s, ..., x E R; S is the set

of all infinitely differentiable functions on R", rapidly decreasing at infinity.

Let LP(R"), n > 2, be the standard Lebesgue space of pth power integrable

functions with norm

11/11, = (fR„ \f(y)\pdy)'P,
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98 WALTER TREBELS

and L^ad be the subset of IP consisting of radial functions. The Fourier

transform of / E L^ad, 1 < p < 2«/(« + 1), is defined by [8, p. 155]

(1) /* (|*|) = /' (0 = /0°° K{n_2)/2(ts)f(s)s"~l ds       (n > 2),

where Ka(s) = s~aJa(s), Ja(s) denoting the Bessel function of order a, and

where we have set in abuse of notation /"(|z|) = /*(/),/(|y\) = f(s). By

Holder's inequality (\/p + l/p' = l),/"(|z|) exists for z ¥= 0, since with the

aid of Lemma 3.11 in [8, p. 158]

sup\tn/P'f(t)\<(r\f(s)\ps"-lds) "

(2) '>° V° '
W

(X" l^(„-2)/2^)|/>'^-1^)  "   <C

in the prescribed p-range.

To state our main result we need the definition of a fractional derivative in

the sense of J. Cossar (see [10, p. 31]): Consider for 0 < S < 1 the fractional

integral operator

iw-s[g](t) = ftpr^r (* - *rsg(s)*

and define

(3) g(S)(t) = - lim (d/dt)Iw-s[g](t).
v   7 w—»00

Usual differentiation of g^ yields pure fractional derivatives of order k

= k + S, i.e.,

gW(0 = (d/dt)kg^(t).

If k is an integer, take ordinary derivatives; hence g^"' is explained for all

k > 0. Our main result now reads:

Theorem I. Iff g Lpad,l < p < 2«/(« + 1), then

supk^rwwi < Cp\\f\\p
¡>0

provided 0 < k < n(\/p - 1/2) - 1/2.

Proof. First let k = k be an integer; then one may differentiate (1) k times

under the integral (see [9]). Observing that K'a(s) = -íFa+) (í) (see [8, p. 154]),

t"'p'(t(d/dt))'f (t), i = 1, ..., k, can be estimated by a linear combination of

the terms (j = 1,...,/ )

t»IP't2j£ K{n_2)/2+j(st)s2Jf(s)s»-Us

< C\\f\\p(Ç \sVK(n_2)/2+j(s)\>>'s»->ds^(4)
W

< cp\\f\\p,
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the latter being true by Holder's inequality. Hence,

<C'p\\f\\p,       j=l,...,k,

and the assertion follows by observing that

^kM - ic,k{t^Jr (t).

Next, let 0 < k = 8 < 1. First we note that we can equivalently define

g^(t) = - hm (d/dt)I^[g](t)
w—»00

if g(t) is bounded for large /. Now we show that/~^'(i) exists for each

t > íq > 0. To this end, fix t and choose w sufficiently large. First observe that

/  (s)=)Q    K(n_2)/2(sx)f(x)x"-xdx

/•oo

= J0     *0,-2)/2W* + W - t))f(x)x"~X dx

ds

and that

d rw+'

d    fW   roo

it    Jo     i*("-2)/2W« +'-'))- ^2)/2W}/W^' dxdu

dt

rw+t <t   roo ,

ft      (s- tyS Jo    K(n_2)/2(x(s + w - t))f(x)x"-x dx ds - 0.

ds

Then integrate by parts to obtain

-^-2)/2M}/Wx"-l<¿c¿«iri;

The first term on the right side ats = t + w (inside the limit-sign) behaves like

0(w~s) for large w and, therefore, vanishes in the limit; at s — t it vanishes

identically if one uses Theorem A with 8 < 8'. Furthermore, again by

Theorem A and relation (2), the triple integral converges absolutely for

0 < t0 < t < w, w fixed; thus, by Fubini's theorem and a change of the 5

variable,

^'>-Äiff<V.Vl-'
d rw_1_

h   r(-<
0   {^(«-2)/2Ww + •*)) - K{n_2)/2(xu))f(x)xn-xdxdsdu

r(-fi) Jo= fdô)/o°° S~S~] Jo* ̂ («-2)/2W' + *» - K(n_2)/2(xt))f(x)x"-xdxds,
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100 WALTER TREBELS

the double integral being absolutely convergent by Theorem A and (2) for

t > to > 0. Thus it follows by Holder's inequality that

\t^/p'f(%)\ < C\\f\\pÇ s~s'^Ç \ts(.--}\>>'t»x»^yPds

/* 00 /     /* OO ' \

= C||/||Jo   í-s-'(/0    \K(n_2)/2(u(\+s))-K{n_2)/2(u)\pu^du)     ds.

Clearly, J",00 (j"0°°) converges absolutely by (2); thus consider So (Jo°)> sPut tne

inner integration into three integrations over (0,1), (1,1/i), (1/i, oo), use Min-

kowski's inequality, and denote the resulting double integrals by I3, I4, I5,

respectively. I5 is easily estimated without using the difference; I3 and I4 are

estimated analogous to Tomas [9]:

r\ / r\ ■ \'p

J3 » X   S~S~\fo   \K(n-2)/lW  + *)) - Kift,m{u)\P """'^)       ds

<fos~Ííou"~lduÍ/P^

where we used the mean value theorem

l^(«-2)/2("(1  + s)) - K(n-2)/l(u)\   <  us        SUP       \xKn/2Ml

and the standard properties of the Bessel function (see [8, Chapter IV]).

Analogously,   choosing   <5', 0 < 8 < ó" < n(\/p - 1/2) - 1/2,   there   holds

I4 < /J s-'-sss'(f'/U \us'u]-("+]y2\p'u"-]du\/P ds < 00.

Hence the assertion is true for all 8, 0 < 8 < n(\/p - 1/2) - 1/2 < 1. The

general case k > 1 now follows by a combination of both methods, observing

that

mo = cj; i-*-'/; {(i)k K{n_2)/2(x(t + i)) - ($ K{n_2)/2(xt)}

•f(x)xn-{dxds.

Corollary. Let m(\z\) G Mp, 1 < p < 2«/(« + 1), then

sup|r"in«(0| < C\\m\\w

provided 0 < k < «(1/p - 1/2) - 1/2.

Proof. First let k = k be an integer; choose g0 G S such that

m il h      X1'       2_1 < l*l<2
gov) = go(\z\) = \

\z\ < 2~2, |z| > 22,
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FOURIER MULTIPLIERS 101

and set g¡(t) = g0(2~Jt),j = 0, ±1,- Then, ^-1  denoting the inverse

Fourier transformation,  ||^_1[^(IZI)]IIP = }Jn,lf W^hSp < C2J"lp'■ Now

w(|z|) G MpP implies m(|z|)g7(jz|) G [LpT¡¡d]~ and, therefore, by Theorem 1

sup tk+nIP'[^j[m(t)gj(t)]\ < Cllf-'M * 9'%)%

<c|WU/||íf-1[^]IIp<c'2^'hu/.

But this implies

sup       \tkm^k)(t)\ < C||m|
2^-'<i<2^

A//

uniformly in/ and hence the assertion. If k is not an integer, choose a radial

partition of unity with ej(t) = e0(2~Jt), e0(\z\) E S such that

1,        2-'/3 < / < 2'/3,

lo,     t
e0(t)

Then, as before,
00

sup      \tK+n/p'«W(/)| <    2 sup
2^-'<i<2>+1 l-J-l 2J~l^t<2J+'

2,"-„ *,-(') - l, f > o.
<2-2/3!Í>22/3>

<C||m||A//2^' + (2^lr+"//''   2 sup       \U\[m(t)ei(t)]
p i=j+2 2J-'<t<2J+1 I \al /

Now observe that for t E [27-1,2-'+1] one has

/ dV /-2'+2/3

which implies for /' > / + 2

sup       (ä>) M'MOl < c(2-'niwiu

and, therefore,

sup       KK(^) rn(t)

<c'i|w||w/+c(2>+iri 1-1 \-It
«llw/   2   (2'-1)

r-y+2

which is uniformly bounded in/. Hence the assertion follows.

Remark. For a quasi-characterization of radial Fourier multipliers it is
convenient to introduce the following classes:

(i) WBVK1X, k > 0, a > 0, consists of all sufficiently smooth functions such
that

HrwB,: = H'MOIL + «pJ^T' /"+fll<few(OI < oo.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



102 WALTER TREBELS

(ii) WBVBaq, 1 < q < oo, ß > \/q, a > 0 consists of all sufficiently smooth

functions such that

\e\\wBvßy = H'MOILo + (sup/2r' \tß+aeW(t)\q*J     < oo

(this is a generalization of (i) inspired by the localized Bessel potential spaces

in Connett and Schwartz [3]).

(iii) WBVf^, ß > O, a > 0 consists of all sufficiently smooth functions

such that

MwBV^- = II'MOIL + Ik^^ML < «>■

Now combining the above Corollary with results of Bonami and Clerc [1] we

obtain

(5) WBVB°+X C M/(rad) C WBVK%,        \<p< 2«/(« + 1),

where k < n(\/p - 1/2) - 1/2 and ß integer, ß >(« - \)(\/p - 1/2) (in a

forthcoming paper it will be shown by using results of [3] and [11] that this

holds also for fractional ß). Forp near 1, i.e., ß « k, WBVb\x and WBV.®X are

not so far away from each other, since WBVKlx C rVBVK°x, but rVBVKlx

<t WBV¿it x for any e > 0, as the example e(t) = max{(l - f)K,0} shows (cf.

[10, p. 42])!
Now there arises the question if one can improve (5) in the sense that the

difference of the differentiation orders ß + 1 and k becomes small. It suggests

itself to use the WB Vß°q-spaces (which essentially obey Sobolev embedding

relations) and to conjecture that

(6) Mpp(raà) G WBVK%        1< q < oo, k < n(± - ±) + (± - £),

2«
1 <P <

« + 1

But (6) is not true for any q <C oo,p near 1. Namely, consider for a > —1 the

function ga(y) = max{(l - \y\2)a,0} with g^(\z\) = CaK /2(\z\) (see [8,

p. 171]). Since for large t, all k > 0, ga~(k)(t) = 0(ra-{n+x)lï), it would follow

by (6) that g'a g Mp if a + (« + l)/2 < k < n(\/p - 1/2) + (1/2 - \/q'\
But this is a contradiction if p is near 1, q < oo fixed, a near -1, to ga

G [L1]" C Mp for each a > -1.

Since the right side of (5) cannot be improved in the above sense, let us try

with the left side and conjecture that

Wß\ G M/(rad),       1< q < oo, ß > n(j - i) + Q - 1),

2«1 <P<
« + r

This time (7) is not true for q > 2. For consider the famous example

/(|z|) - «p(|z|)(l + |z|2)-V>l°,        «>0,y>0,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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where <p(|z|) is a smooth function which vanishes near the origin and is 1 for

sufficiently large |z|. Observing f^(t) = 0(t ß<-a~x)~2y) for large /, it would

follow by (7) that / G M/ if n(\/p - 1/2) + (1/2 - \/q') < ß < 2y/a. In
case 2y/a« is near (\/p — \/2), q > 2 fixed, this is a contradiction to the result

of S. Wainger (see [7, p. 113]) that/ G M/ if \/p - 1/2 > 2y/an. There are

reasons to conjecture that (7) holds for q = 2 (and hence also for 1 < q < 2);

this would harmonize with various known Hörmander multiplier conditions;

see, e.g., [7, p. 96], [3]; also the Herz conjecture concerning the Bochner-Riesz

kernel would follow in the prescribed (a,/?)-range, i-e., max((l — |z| )a,0}

G Mpp if a > n(\/p — 1/2) - 1/2 and otherwise G Mp; a concise review

concerning how much is already proved of the Herz conjecture is contained in

Fefferman [4]; observe also the recent progress of Tomas [9].

Concluding, let us briefly mention inclusion relations for radial M? multi-

pliers, where we omit an analogous discussion:

|e; Uf/MOILo +/0°° tP+^'\de^(t)\ < a,] C <(rad) C WBV¿£',

(the left inclusion is proved in [10, p. 83] in case q = 1 and otherwise in [2]).

If 1 < p < q < 2n/(n + 1) there holds (see [11])

WBVßfi C m; C WBV¿£,       \/q = \/p + \/r - 1,

where ß > n(\/r - 1/2) - 1/2, k < n(l/q -' 1/2) - 1/2.
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