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Abstract: In this paper, firstly, we define a W -direction curve and W -rectifying curve of a Frenet curve in 3-dimensional

Euclidean space E3 by using the unit Darboux vector field W of the Frenet curve and give some characterizations together

with the relationships between the curvatures of each associated curve. We also introduce a V -direction curve, which

is associated with a curve lying on an oriented surface in E3 . Later, some new associated curves of a Frenet curve are

defined in E4 .
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1. Introduction

In differential geometry, the theory of curves in Euclidean 3-space is one of the main study areas. In the theory of

curves, helices, slant helices, and rectifying curves are the most fascinating curves. Associated curves of a given

curve are also widely studied. Among these curves, the most studied ones are Bertrand curve couples, Mannheim

partner curves, spherical indicatrices, and involute-evolute curve couples (e.g., see [2–6,12,13,16,17,21]).

The Darboux vector field ω = τT+ κB , which determines the instantaneous rotation axis of the Frenet

frame along the curve, has an important place for space curves in differential geometry.

The curve whose position vector always lies in its rectifying plane is defined as a rectifying curve and

some characterizations of rectifying curves were given by Chen in 2003. According to these characterizations

he obtained that the position vector of rectifying curves are on the direction of the Darboux vector and thus

rectifying curves are interpreted kinematically as the curves whose position vectors determine the instantaneous

rotation axis at each point of the curve [6,7].

In 2008, İlarslan and Nešović defined the rectifying curve in E4 as a curve whose position vector always

lies in the orthogonal complement of its principal normal vector field and characterized such curves by means

of their curvatures [14].

Önder et al. defined B2 -slant helices in E4 as the curves whose second binormal vector (B2) makes a

constant angle with a fixed direction and specified the properties of these curves in 2008 [19].

In a recent paper, Choi and Kim introduced principal (binormal)-direction curves, principal (binormal)-

donor curves, and PD-rectifying curves. They gave nice characterizations for the general and slant helices via

their associated curves and gave a useful method to obtain general helix and slant helix from a planar curve.

They also gave a new characterization for Bertrand curves by using the PD-rectifying curve [8]. Later, Choi
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et al. introduced the notion of the principal (binormal)-directional curve and the principal (binormal)-donor

curve of the Frenet curve in the Minkowski space E3
1 [9], and Körpınar et al. gave new associated curves by

using the Bishop frame in E3 [15].

In this study, we introduce some new associated curves of a given curve. We define

W -direction curves, W -rectifying curves, V -direction curves in E3

and

principal-direction curves, B1 -direction curves, B2 -direction curves, and B2 -rectifying curves in E4 .

All these new associated curves are defined as the integral curves of vector fields taken from the Frenet

frame or Darboux frame along a curve. Some characterizations of these new curves are also studied.

2. Preliminaries

Let M be an oriented surface and β : I ⊂ R → M be a regular curve with arc-length parametrization. If the

Frenet frame along the curve is denoted by {T,N,B} , the Frenet formulas are given by T′ = κN
N′ = −κT+ τB
B′ = −τN

,

where T is unit tangent vector, N is principal normal vector, B is the binormal vector, and κ and τ are the

curvature and the torsion of β , respectively.

Since the curve β lies on M , there exists another frame, which is called the Darboux frame and is denoted

by {T,V,U} along the curve. In this frame, T is the unit tangent of the curve, U is the unit normal of the

surface restricted to the curve, and V is the unit vector given by V = U × T . The derivative formula of the

Darboux frame is [18]  T′

V′

U′

 =

 0 κg κn

−κg 0 τg
−κn −τg 0

 .

 T
V
U

 ,

where κg is the geodesic curvature, κn is the normal curvature, and τg is the geodesic torsion of β . The

relations between geodesic curvature, normal curvature, geodesic torsion, and κ and τ are given as follows:

κg = κ sinφ, κn = κ cosφ, τg = τ +
dφ

ds
,

where φ is the angle between the vectors N and U .

In the differential geometry of surfaces, for a curve β lying on a surface M , the following are well known:

i) β is a geodesic curve if and only if κg = 0,

ii) β is an asymptotic line if and only if κn = 0,

iii) β is a principal line if and only if τg = 0.

Let α : I ⊂ R → E4 be an arbitrary curve with arc-length parametrization. If {T,N,B1,B2} is the

moving Frenet frame along α , then the Frenet formulas are given by [10]

T′ = k1N, N′ = −k1T+ k2B1, B′
1 = −k2N+ k3B2, B′

2 = −k3B1, (2.1)

where T,N,B1 , and B2 denote the tangent, the principal normal, the first binormal, and the second binormal

vector fields; ki, (i = 1, 2, 3) denotes the ith curvature functions (k1, k2 > 0) of the curve α .
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Definition 1 (Ternary product) Let {e1, e2, e3, e4} be the standard basis of 4-dimensional Euclidean space

E4 . The ternary product (or vector product) of the vectors x =
4∑

i=1

xiei , y =
4∑

i=1

yiei , and z =
4∑

i=1

ziei is

defined by [11, 20]

x⊗ y ⊗ z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ .
Theorem 1 Let α : I → E4 be a unit-speed curve. Then the Frenet vectors of the curve are given by [1]

T = α′, N =
α′′

||α′′||
, B2 = − α′ ⊗ α′′ ⊗ α′′′

||α′ ⊗ α′′ ⊗ α′′′||
, B1 = B2 ⊗ T⊗ N. (2.2)

Theorem 2 Let α : I → E4 be a unit-speed curve. Then the curvatures of the curve are given by [1]

k1 = ||α′′||, k2 =
⟨B1, α

′′′⟩
k1

, k3 =
⟨B2, α

(4)⟩
k1k2

. (2.3)

Definition 2 (Slant helix) A unit speed curve is called slant helix if its unit principal normal vector makes a

constant angle with a fixed direction [12].

Theorem 3 Let γ be a unit speed curve with κ ̸= 0 . Then γ is a slant helix if and only if

σ(s) =

(
κ2

(κ2 + τ2)
3/2

( τ
κ

)′)
(s) (2.4)

is a constant function [12].

Definition 3 (Rectifying curve in E3 ) Let γ be a curve in E3 . γ is called a rectifying curve if the position

vector of γ always lies in its rectifying plane [6].

Definition 4 (Rectifying curve in E4 ) Let γ be a curve in E4 . γ is called a rectifying curve if the position

vector of γ always lies in the orthogonal complement of its principal normal vector field [14].

Definition 5 (Frenet curve) A unit speed curve β : I → En of class Cn is called a Frenet curve if the

vectors β′(s), β′′(s), ..., β(n−1)(s) are linearly independent at each point along the curve.

For a Frenet curve γ : I ⊂ R → E3 with the Frenet frame {T,N,B} , consider a vector field V given by

V(s) = u(s)T(s) + v(s)N(s) + w(s)B(s), (2.5)

where u, v, w are functions on I satisfying u2(s)+v2(s)+w2(s) = 1. Then an integral curve γ(s) of V defined

on I is a unit speed curve in E3 [8].

Remark 1 The arc-length parameter s of an integral curve γ of V(s) is obtained as s = s + c for some

constant c . Thus, without loss of generality, one can assume s = s . The integral curve γ is unique up to

translation of E3 . In fact, γ is determined by the initial point [8].
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3. W -direction curves

In this section we introduce the W -direction curve, second W -direction curve, and W -rectifying curve in E3

and give some characterizations.

Definition 6 (W -direction curves) Let γ be a Frenet curve in E3 and W be the unit Darboux vector field

of γ . We call an integral curve of W (s) the W -direction curve of γ .

Namely, if γ(s) is the W -direction curve of γ , then W (s) = γ′(s) , where W = 1√
κ2+τ2

(τT+ κB) .

Remark 2 For planar curves, the W -direction curve corresponds to the binormal direction curve. Additionally,

W -direction curves of planar curves are lines that are perpendicular to the plane that the curve lies on.

Theorem 4 Let γ be the W -direction curve of a nonplanar curve γ . Then γ is a general helix if and only if

γ is a straight line.

Proof (⇒) Let γ be a general helix. Then τ
κ = c(constant). Since γ is the W -direction curve of γ , we have

γ′(s) = W (s) =
1√

1 +
(
τ
κ

)2 ( τκT+ B
)
.

Differentiating gives γ′′(s) = 0, i.e. κ = 0. Thus, γ is a straight line.

(⇐) Let γ be a straight line. Then the velocity γ′(s) = W (s) is constant. Hence,

γ′′(s) = W ′(s) =
κ(τ ′κ− τκ′)

(κ2 + τ2)
3/2

T+
τ(τκ′ − τ ′κ)

(κ2 + τ2)
3/2

B = 0.

Since κ ̸= 0 and τ ̸= 0, we obtain τ ′κ− τκ′ = 0, i.e. τ
κ = constant . This means that γ is a general helix. 2

Theorem 5 Let γ be a Frenet curve in E3 with the curvature κ and the torsion τ , and γ be W-direction

curve of γ . If γ is not a general helix, then the curvature κ and the torsion τ of γ are given by

κ =
|τκ′ − τ ′κ|
κ2 + τ2

, τ =
√
κ2 + τ2. (3.1)

Proof We can use the same arc-length parameter s for γ and γ . By the definition of the W -direction curve,

we have W (s) = γ′(s) = T(s). Then we have

T =
τ√

κ2 + τ2
T+

κ√
κ2 + τ2

B,

and the curvature of γ is given by

κ =∥ T
′ ∥=

√
κ2(τ ′κ− τκ′)2

(κ2 + τ2)
3 +

τ2(τκ′ − τ ′κ)2

(κ2 + τ2)
3

or

κ =
|τκ′ − τ ′κ|
κ2 + τ2

.
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If we assume τκ′ − τ ′κ > 0, then the principal normal vector field N and the binormal vector field B of γ are

obtained as

N =
−κ√

κ2 + τ2
T+

τ√
κ2 + τ2

B,

B = T× N = −
(

τ2

κ2 + τ2
+

κ2

κ2 + τ2

)
N = −N.

If τκ′ − τ ′κ < 0, then they have another signature.

Since τ = −
⟨
B
′
,N
⟩
, we get τ =

√
κ2 + τ2 . 2

Theorem 6 Let γ be the W -direction curve of γ , which is not a general helix. Then γ is a general helix if

and only if γ is a slant helix.

Proof (⇒) Let γ be a general helix. Then we have τ
κ = c(constant). Using Theorem 5, we find

τ

κ
=

√
κ2 + τ2

τκ′−τ ′κ
κ2+τ2

=

(
κ2 + τ2

) 3
2

τκ′ − τ ′κ
= c ⇒ κ2

(κ2 + τ2)
3
2

( τ
κ

)′
=

1

c
(constant).

This means that γ is a slant helix.

(⇐) Let γ be a slant helix. In this case, from Thereom 3 we have κ2

(κ2+τ2)
3
2

(
τ
κ

)′
= c or

(κ2+τ2)
3
2

|τ ′κ−τκ′| = 1
c (constant);

that is, τ
κ = constant. This means that γ is a general helix. 2

Definition 7 (Second W -direction curve) Let γ be a W -direction curve of a Frenet curve γ and γ be a

W -direction curve of γ in E3 . In this case we call γ the second W -direction curve of γ .

Corollary 1 If γ is a slant helix, then the second W -direction curve of γ is a straight line.

Definition 8 (W -rectifying curve) Let γ be a Frenet curve and γ be its W -direction curve. The curve γ

is called a W -rectifying curve if the position vector of γ always lies in the rectifying plane of γ .

Theorem 7 Let γ be a Frenet curve and γ its W -direction curve. If γ is a W -rectifying curve, then γ is a

general helix.

Proof Using the definition of a W -rectifying curve, we can write

γ = λ(s)T(s) + µ(s)B(s), (3.2)

where λ(s) and µ(s) are nonzero functions and {T,N,B} is the Frenet frame along γ . By differentiating this

equation we get

T = λ′T+ (λκ− µτ)N+ µ′B. (3.3)

On the other hand, we also have W = γ′ = T . So, from (3.3), we obtain

τ√
κ2 + τ2

T+
κ√

κ2 + τ2
B = λ′T+ (λκ− µτ)N+ µ′B
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or 
λκ− µτ = 0,
λ′ = τ√

κ2+τ2
,

µ′ = κ√
κ2+τ2

.

Using these equations we obtain λ′µ− λµ′ = 0. This means that λ
µ = c(constant). Then λ

µ = τ
κ = c , i.e. γ is

a general helix. 2

Example 1 The W-direction curve of the circular helix γ(s) =
(
cos
(

s√
2

)
, sin

(
s√
2

)
, s√

2

)
is

γ(s) = (c1, c2, s+ c3), c1, c2, c3 = constants,

since W (s) = (0, 0, 1) (Figure 1).

Figure 1. W -direction curve of a circular helix (c1 = c2 = c3 = 0).

Example 2 Let us find the W-direction curve of the slant helix

γ(s) =

(
−3

2
cos
(s
2

)
− 1

6
cos

(
3s

2

)
,−3

2
sin
(s
2

)
− 1

6
sin

(
3s

2

)
,
√
3 cos

(s
2

))
.

We obtain

T(s) =

(
3

4
sin
(s
2

)
+

1

4
sin

(
3s

2

)
,−3

4
cos
(s
2

)
− 1

4
cos

(
3s

2

)
,−

√
3

2
sin
(s
2

))
,

B(s) =

(
−1

2
cos
(s
2

)(
2 cos2

(s
2

)
− 3
)
, sin3

(s
2

)
,

√
3

2
cos
(s
2

))
,
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κ(s) =

√
3

2
cos
(s
2

)
, τ(s) = −

√
3

2
sin
(s
2

)
.

Hence,

W (s) =

(
−1

8

(
9 + 24 cos

(s
2

)
+ 6 cos(s) + cos(2s)

)
,
1

2
sin(s),

√
3

2

)
,

and thus the W -direction curve (shown in Figure 2) is obtained as

γ(s) =

(
−9s

8
− 6 sin

(s
2

)
− 3

4
sin(s)− 1

16
sin(2s),−1

2
cos(s),

√
3s

2

)
+ (c1, c2, c3), ci = constants.

Figure 2. W -direction curve of the slant helix (c1 = c2 = c3 = 0).

4. V-direction curves

In this section, we introduce an associated curve of a surface curve in E3 .

Let M be an oriented surface in E3 and γ be a regular curve lying on M . Let us denote the Darboux

frame along γ with {T,V,U}, where T is the unit tangent vector field of γ, U is the unit normal vector field

of the surface, which is restricted to the curve γ , and V = U× T .

Definition 9 (V-direction curve) Let γ be a unit speed curve on an oriented surface M and {T,V,U} be

the Darboux frame along γ . The curve γ lying on M is called the V -direction curve of γ if it is the integral

curve of V . In other words, if γ is the V -direction curve of γ , then V(s) = γ′(s) .

Remark 3 It is easy to see that the V -direction curve of the planar curves coincides with the principal direction
curve.

1029
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Remark 4 a) If the surface M is given with its parametric equation X = X(u, v) , then the curve γ(s) =

X(p(s), q(s)) , which satisfies

V(s) = Xu(p(s), q(s))
dp

ds
+Xv(p(s), q(s))

dq

ds
, (4.1)

is the V -direction curve of γ .

b) If the surface M is given with the implicit form f(x, y, z) = 0 , then the curve γ = (γ1, γ2, γ3) , which

satisfies the equations

V(s) = (γ′
1, γ

′
2, γ

′
3) and f(γ1, γ2, γ3) = 0, (4.2)

is the V -direction curve of γ .

Theorem 8 Let γ be a unit speed curve on an oriented surface M and γ be its V -direction curve. Then the

geodesic curvature (κg) , the normal curvature (κn) , and the geodesic torsion (τg) of γ are given by

κn = τg sin θ − κg cos θ,
τg = −θ′ − κn,
κg = κg sin θ + τg cos θ,

(4.3)

where θ is the angle between T and U in which T is the unit tangent vector field of γ and U is the unit normal

vector field of M restricted to γ , and κg, κn, and τg are the geodesic curvature, the normal curvature, and

the geodesic torsion of γ, respectively.

Proof Let {T,V,U} denote the Darboux frame along γ . We can write V = γ′ = T, since γ is the V -direction

curve of γ . Thus, U is perpendicular to V . If θ denotes the angle between T and U , then

U = T cos θ + U sin θ, V = U cos θ − T sin θ (4.4)

(−π < θ < π according to the orientation). Using these equations we get

κn = ⟨T′
,U⟩ = τg sin θ − κg cos θ,

τg = ⟨V′
,U⟩ = −θ′ − κn,

κg = ⟨T′
,V⟩ = κg sin θ + τg cos θ.

2

Corollary 2 a) Let γ be a geodesic curve on M . Then:

γ is also a geodesic curve ⇔ γ is a principal line or θ = π
2 .

γ is an asimptotic curve ⇔ γ is a principal line or θ = 0 .

b) Let γ be an asymptotic curve on M . Then:

γ is a principal line ⇔ θ = constant .

c) Let γ be a principal line on M . Then:

γ is an asymptotic curve ⇔ γ is a geodesic curve or θ = π
2 .

γ is a geodesic curve ⇔ γ is a geodesic curve or θ = 0 .
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Corollary 3 Let γ be the V -direction curve of γ . The geodesic curvature, normal curvature, and geodesic

torsion of γ can be given by means of the curvature and the torsion of γ as

κn = τ sin θ + φ′ sin θ − κ sinφ cos θ,

τg = −θ′ − κ cosφ,

κg = κ sinφ sin θ + τ cos θ + φ′ cos θ,

where cosφ = ⟨N,U⟩ and N is the principal normal vector field of γ .

Theorem 9 Let M be an oriented surface in E3, γ be a unit speed curve on M , and γ be the V -direction

curve of γ . The relations between the curvature (κ) and the torsion (τ) of γ and the geodesic curvature,

normal curvature, and geodesic torsion of γ are given by

κ =
√

κ2
g + τ2g , τ = −κn +

κgτ
′
g − κ′

gτg

κ2
g + τ2g

. (4.5)

Proof Let us denote the Darboux frame of γ with {T,V,U} . Since we can write V = γ′ = T , we obtain

κ = ∥T′∥ = ∥V′∥ =
√

κ2
g + τ2g .

On the other hand, differentiating γ′ = V yields

γ′′ = −κgT+ τgU, γ′′′ = (−κ′
g − τgκn)T+ (−τ2g − κ2

g)V + (τ ′g − κgκn)U.

Using these equations we get τ = −κn +
κgτ

′
g−κ′

gτg
κ2
g+τ2

g
. 2

Example 3 Let us find the V -direction curve of γ(s) =
(
cos
(

s√
2

)
, sin

(
s√
2

)
, s√

2

)
which lies on the circular

cylinder X(u, v) = (cosu, sinu, v) . We have X
(

s√
2
, s√

2

)
= γ(s) .

Since Xu(u, v) = (− sinu, cosu, 0) and Xv(u, v) = (0, 0, 1) , the unit normal vector field of the sur-

face is U = Xu×Xv

∥Xu×Xv∥ = (cosu, sinu, 0) . Hence, the unit normal vector field restricted to γ is U(s) =(
cos
(

s√
2

)
, sin

(
s√
2

)
, 0
)
. Then V(s) = U(s)× T(s) =

(
1√
2
sin
(

s√
2

)
,− 1√

2
cos
(

s√
2

)
, 1√

2

)
.

Now let us look for the curve γ = X(p(s), q(s)) , which satisfies

V(s) = γ′(s) = Xu(p(s), q(s))
dp

ds
+Xv(p(s), q(s))

dq

ds
.

Since Xu(p(s), q(s)) = (− sin p, cos p, 0) and Xv(p(s), q(s)) = (0, 0, 1), we get

V(s) =

(
1√
2
sin

(
s√
2

)
,− 1√

2
cos

(
s√
2

)
,
1√
2

)
= (−p′ sin p, p′ cos p, q′)

or 
−p′ sin p = 1√

2
sin
(

s√
2

)
,

p′ cos p = − 1√
2
cos
(

s√
2

)
,

q′ = 1√
2
.
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If we solve these differential equations, we find

p(s) =
s√
2
+ (2k − 1)π, (k ∈ Z), q(s) =

s√
2
+ c2, c2 = constant.

Thus, the V -direction curve (shown in Figure 3) of γ is obtained as

γ(s) =

(
− cos

(
s√
2

)
,− sin

(
s√
2

)
,
s√
2
+ c2

)
.

Figure 3. V -direction curve of a cylindrical helix (c2 = 0).

Example 4 Let us find the V -direction curve of

γ(s) =
(s
2
cos
(√

2 ln
s

2

)
,
s

2
sin
(√

2 ln
s

2

)
,
s

2

)
, s > 0,

which is lying on the circular cone x2 + y2 = z2 .

Let f(x, y, z) = x2 + y2 − z2 . Then the unit normal vector field of the surface is

U =
∇f

∥ ∇f ∥
=

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
−z√

x2 + y2 + z2

)
.

Thus,

U(s) =

(
1√
2
cos
(√

2 ln
s

2

)
,
1√
2
sin
(√

2 ln
s

2

)
,− 1√

2

)
,

V(s) =

(
1√
2
sin
(√

2 ln
s

2

)
+

1

2
cos
(√

2 ln
s

2

)
,
1

2
sin
(√

2 ln
s

2

)
− 1√

2
cos
(√

2 ln
s

2

)
,
1

2

)
.
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Therefore, we obtain the V -direction curve (shown in Figure 4) of γ as

γ(s) =

(
−1

6
s
(
cos
(√

2 ln
s

2

)
− 2

√
2 sin

(√
2 ln

s

2

))
,−1

6
s
(
2
√
2 cos

(√
2 ln

s

2

)
+ sin

(√
2 ln

s

2

))
,
s

2

)
.

Figure 4. V -direction curve of a curve that is on a cone.

5. Associated curves of a Frenet curve in 4-dimensional Euclidean space

In this section, we define new associated curves in E4 .

Definition 10 Let γ be a Frenet curve and {T,N,B1,B2} be its Frenet frame in E4 .

• An integral curve of the principal normal vector field of γ is called the principal-direction curve of γ ,

• An integral curve of the first binormal vector field of γ is called the B1 -direction curve of γ ,

• An integral curve of the second binormal vector field of γ is called the B2 -direction curve of γ .

Theorem 10 Let γ be a Frenet curve whose curvatures are k1, k2, k3 and let γ be the principal-direction curve

of γ . The curvatures of γ are given by

k1 =
√
k21 + k22,

k2 =

√
(k′2k1 − k′1k2)

2
+ k22k

2
3 (k

2
1 + k22)

(k21 + k22)
,

k3 =

√
k2
1+k2

2

[
2(k′

2)
2
k1k3+k′

2k2(k′
3k1−2k′

1k3)+k2

(
−k′

1k
′
3k2+k3(−k′′

2 k1+k2k
′′
1 +k1k2k

2
3)
)]

(k′
2k1−k′

1k2)
2
+k2

2k
2
3(k2

1+k2
2)

.
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Proof Let {T,N,B1,B2, k1, k2, k3} be the Frenet apparatus of γ . By the definition of the principal-direction

curve, we may write N(s) = γ′(s) = T(s). Hence, T
′
(s) = N′(s) = −k1T + k2B1 . The first curvature of γ is

then given by k1 =
√
k21 + k22 .

If we use Theorem 1, we find the principal normal vector field and the first and second binormal vector

fields of γ as

N =
−k1√
k21 + k22

T+
k2√

k21 + k22
B1,

B1 =
1√

k42k
2
3 + k21k

2
2k

2
3 + (k′1k2 − k′2k1)

2

[
−k′1k

2
2 + k′2k1k2√
k21 + k22

T+
k21k

′
2 − k1k2k

′
1√

k21 + k22
B1 +

k32k3 + k21k2k3√
k21 + k22

B2

]
,

B2 = −k22k3T+ k1k2k3B1 + (k′1k2 − k′2k1)B2√
k42k

2
3 + k21k

2
2k

2
3 + (k′1k2 − k′2k1)

2
.

Thus, using Theorem 2, the second and the third curvatures of γ are obtained from

k2(s) =

⟨
B1(s), γ

′′′(s)
⟩

k1(s)
and k3(s) =

⟨
B2(s), γ

(4)(s)
⟩

k1(s)k2(s)
.

2

Theorem 11 Let γ be a Frenet curve whose curvatures are k1, k2, k3 and let γ̂ be the B1 -direction curve of

γ . The curvatures of γ̂ are given by

k̂1 =
√
k22 + k23,

k̂2 =

√
k42k

2
1 + k21k

2
2k

2
3 + (k′3k2 − k′2k3)

2

k22 + k23
,

k̂3 =

√
k22 + k23

(
2 (k′2)

2
k1k3 + k2k

′
2 (−2k′3k1 + k′1k3) + k2

(
−k′1k2k

′
3 + k′′3k1k2 − k′′2k1k3 + k31k2k3

))
k42k

2
1 + k21k

2
2k

2
3 + (k′3k2 − k′2k3)

2 .

Theorem 12 Let γ be a Frenet curve whose curvatures are k1, k2, k3 and let γ̃ be its B2 -direction curve. The

curvatures of γ̃ are given by

k̃1 = |k3(s)| , k̃2 = k2(s), k̃3 = sgn(k3)k1(s).

Proof Let {T̃, Ñ, B̃1, B̃2, k̃1, k̃2, k̃3} be the Frenet apparatus of γ̃ . By the definition of the B2 -direction curve,

we can write B2(s) = γ̃′(s) = T̃(s), which yields T̃′(s) = B′
2(s) = −k3B1 . The first curvature of γ̃ is then given

by k̃1 = |k3(s)| .
Additionally, the principal normal vector field, the first-binormal vector field, and the second-binormal

vector field of γ̃ are obtained as

Ñ = −sgn(k3)B1(s), B̃1 = sgn(k3)N(s), B̃2 = −T(s).
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Thus,

k̃2(s) =

⟨
B̃1(s), γ̃

′′′(s)
⟩

k̃1(s)
= k2(s), k̃3(s) =

⟨
B̃2(s), γ̃

(4)(s)
⟩

k̃1(s)k̃2(s)
= sgn(k3)k1(s).

2

Theorem 13 1) Let γ be a Frenet curve in E4 and γ be the principal-direction curve of γ . Then γ is a slant

helix ⇔ γ is a general helix.

2) Let γ be a Frenet curve in E4 and γ̃ be the B2 -direction curve of γ . Then γ is a B2 -slant helix ⇔
γ̃ is a general helix.

Proof Let {T,N,B1,B2} denote the Frenet frame of γ .

1) By the definition of the principal-direction curve, we have N(s) = γ′(s) = T(s). Hence,

γ is a slant helix ⇔ ⟨N,u⟩ = cos θ , (θ=constant, u=constant unit vector)

⇔ ⟨T,u⟩ = cos θ

⇔ γ is a general helix.

2) By the definition of the B2 -direction curve, we have B2(s) = γ̃′(s) = T̃(s). Hence,

γ is a B2 -slant helix ⇔ ⟨B2,v⟩ = cos θ , (θ=constant, v=constant unit vector)

⇔ ⟨T̃,v⟩ = cos θ

⇔ γ̃ is a general helix. 2

Definition 11 Let γ be a Frenet curve whose Frenet apparatus is {T,N,B1,B2, k1, k2, k3} in E4 and γ be

the B2 -direction curve of γ . The curve γ in E4 with nonzero curvatures is called a B2 -rectifying curve if its

position vector always lies in the orthogonal complement of the principal normal vector of γ .

For a B2 -rectifying curve γ , we may write

γ = λ1T+ λ2B1 + λ3B2, (5.1)

where λ1, λ2, λ3 are differentiable functions.

Theorem 14 Let γ be a Frenet curve in E4 whose curvatures are k1, k2, k3 . γ is congruent to a B2 -rectifying

curve if and only if there exists a constant c such that

−
(
ck3

k2

)′

+

(
s− c

∫
k1k3

k2
ds

)
k1 = 0. (5.2)

Proof (⇒) Let γ be a B2 -rectifying curve. By the definition, γ is the B2 -direction curve of the curve γ .

Thus, from Theorem 12 we have T = −B2, B1 = −sgn(k3)N, B2 = T . Substituting these equations into (5.1)

and differentiating yields 
λ′
3 + sgn(k3)λ2k1 = 1,

−sgn(k3)λ
′
2 + λ3k1 = 0,

λ1k3 − sgn(k3)λ2k2 = 0,
λ′
1 = 0.
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The last equation gives us λ1 = c = constant . Substituting this into the third equation yields λ2 =

ck3

sgn(k3)k2
and, thus, from the first equation we get λ3 = s− c

∫
k1k3

k2
ds . Substituting the obtained results into

the second equation gives

−
(
ck3

k2

)′

+

(
s− c

∫
k1k3

k2
ds

)
k1 = 0.

(⇐) Let γ be an arbitrary curve in E4 whose curvatures satisfy (5.2). Let us consider the vector

X = γ + cB2 +
ck3

k2
N−

(
s− c

∫
k1k3

k2
ds

)
T.

By differentiating we get X ′ = 0. This means that X is a constant vector. Hence,

γ = −cB2 −
ck3

k2
N+

(
s− c

∫
k1k3

k2
ds

)
T+X.

If we substitute B2 = −T, N = −sgn(k3)B1, T = B2 into the last equation, we obtain

γ = cT+ sgn(k3)
ck3

k2
B1 +

(
s− c

∫
k1k3

k2
ds

)
B2 +X,

i.e. γ is congruent to a B2 -rectifying curve with a translation by the constant vector X . 2
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[5] Babaarslan M, Tandoğan YA, Yaylı Y. A note on Bertrand curves and constant slope surfaces according to Darboux

frame. Journal of Advanced Mathematical Studies 2012; 5: 87–96.

[6] Chen BY. When does the position vector of a space curve always lie in its rectifying plane? Am Math Mon 2003;

110: 147–152.

[7] Chen BY, Dillen F. Rectifying curves as centrodes and extremal curves. Bulletin of the Institute of Mathematics

Academia Sinica 2005; 33: 77–90.

[8] Choi JH, Kim YH. Associated curves of a Frenet curve and their applications. Appl Math Comput 2012; 218:

9116–9124.

1036

http://dx.doi.org/10.1016/j.cagd.2008.12.001
http://dx.doi.org/10.1016/j.cagd.2008.12.001
http://dx.doi.org/10.1016/j.jmaa.2009.11.026
http://dx.doi.org/10.1016/j.jmaa.2009.11.026
http://dx.doi.org/10.1016/j.joems.2011.12.005
http://dx.doi.org/10.1016/j.joems.2011.12.005
http://dx.doi.org/10.1016/j.amc.2012.02.064
http://dx.doi.org/10.1016/j.amc.2012.02.064
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[14] İlarslan K, Neśović E. Some characterizations of rectifying curves in the Euclidean space E4 . Turk J Math 2008;

32: 21–30.

[15] Körpınar T, Sarıaydın MT, Turhan E. Associated curves according to Bishop frame in Euclidean 3-space. Advanced

Modelling and Optimization 2013; 15: 713–717.

[16] Kula L, Yaylı Y. On slant helix and its spherical indicatrix. Appl Math Comput 2005; 169: 600–607.
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