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SOME NEW CLASSES

OF COMPLEX SYMMETRIC OPERATORS

STEPHAN RAMON GARCIA AND WARREN R. WOGEN

Abstract. We say that an operator T ∈ B(H) is complex symmetric if there
exists a conjugate-linear, isometric involution C : H → H so that T = CT ∗C.
We prove that binormal operators, operators that are algebraic of degree two
(including all idempotents), and large classes of rank-one perturbations of
normal operators are complex symmetric. From an abstract viewpoint, these
results explain why the compressed shift and Volterra integration operator are
complex symmetric. Finally, we attempt to describe all complex symmetric
partial isometries, obtaining the sharpest possible statement given only the
data (dim kerT, dimkerT ∗).

1. Introduction

Throughout this paper, H will denote a separable complex Hilbert space and all
operators considered will be bounded. We first require a few preliminary definitions:

Definition. A conjugation is a conjugate-linear operator C : H → H that is
both involutive (C2 = I) and isometric. We say that a bounded linear operator
T ∈ B(H) is C-symmetric if T = CT ∗C and complex symmetric if there exists a
conjugation C with respect to which T is C-symmetric.

It is not hard to see that T is a complex symmetric operator if and only if T
is unitarily equivalent to a symmetric matrix with complex entries, regarded as an
operator acting on an l2-space of the appropriate dimension (see [9, Sect. 2.4] or
[7, Prop. 2]).

The class of complex symmetric operators includes all normal operators, oper-
ators defined by Hankel matrices, compressed Toeplitz operators (including finite
Toeplitz matrices and the compressed shift), and the Volterra integration operator.
We refer the reader to [7, 8] (or [9] for a more expository pace) for further details.
Other recent articles concerning complex symmetric operators include [3, 11].

In this paper, we exhibit several additional classes of complex symmetric opera-
tors. In particular, we establish that

(i) All binormal operators are complex symmetric (Theorem 1) and that n-
normal operators that are not complex symmetric exist for each n ≥ 3
(Example 1).
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(ii) Operators that are algebraic of degree two are complex symmetric (Theo-
rem 2). This includes all idempotents and all operators that are nilpotent
of order 2.

(iii) Large classes of rank-one perturbations of normal operators are complex
symmetric (Theorem 3). On abstract grounds, this explains why the com-
pressed shift operator (Example 2) and Volterra integration operator (Ex-
ample 3) are complex symmetric.

(iv) We attempt to describe all complex symmetric partial isometries, ob-
taining the sharpest possible statement (Theorem 4) given only the data
(dimkerT, dimkerT ∗).

2. Binormal operators and n-normal operators

Definition. An operator T ∈ B(H) is called binormal if T is unitarily equivalent
to an operator of the form

(1)

(
N11 N12

N21 N22

)
,

where the entries Nij are commuting normal operators. More generally, we say that
T is n-normal if T is unitarily equivalent an n × n operator matrix whose entries
are commuting normal operators.

Needless to say, each n× n scalar matrix trivially defines an n-normal operator
on Cn. For further information concerning binormal and n-normal operators, we
refer the reader to [12, 15].

The main theorem of this section is:

Theorem 1. If T ∈ B(H) is a binormal operator, then T is a complex symmetric
operator. This result is sharp in the sense that if n ≥ 3, then there exists an
n-normal operator that is not a complex symmetric operator.

Proof. We focus our attention on the first statement, since the second will follow
from the construction of explicit examples (see Example 1). Given an operator of
the form (1), the Spectral Theorem asserts that we may assume that each Nij is a
multiplication operator Muij

on a Lebesgue space L2(μ) where μ is a Borel measure
on C with compact support Δ and that the corresponding symbols uij belong
to L∞(μ). To simplify our notation, we will henceforth identify multiplication
operators Mu with their symbols u.

Without loss of generality, we may further restrict our attention to operators on
L2(μ)(2) (the two-fold inflation of L2(μ)) of the form

(2) T =

(
u11 u12

0 u22

)
,

since any binormal operator is unitarily equivalent to an operator of form (2) [15,
Thm. 7.20].

Let us denote by E the subset of Δ upon which u11 = u22:

E = { z ∈ Δ : u11(z) = u22(z) μ-a.e. }.
Letting χE denote the characteristic function of E, we note that the subspace
E1 = χEL

2(μ) and its orthogonal complement E2 = χΔ\EL
2(μ) are both reducing
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subspaces for Mz : L2(μ) → L2(μ), the operator of multiplication by the inde-

pendent variable. In particular, their inflations E(2)
1 and E(2)

2 are both reducing
subspaces for T , and we see that

T = T |E(2)
1

⊕ T |E(2)
2

.

Since the direct sum of complex symmetric operators is complex symmetric, we
need only consider the following two special cases:

(i) u11 = u22 μ-a.e.,

(ii) u11 �= u22 μ-a.e.

Case (i). Suppose that u11 = u22 μ-a.e. In this case, we may write (2) as(
u v
0 u

)
,

where u, v ∈ L∞(μ). One can immediately verify that T is C-symmetric with
respect to the conjugation C(f1, f2) = (f2, f1) on L2(μ)(2).

Case (ii). Suppose that u11 �= u22 μ-a.e. In this case, T has the form

(3)

(
u1 v
0 u2

)
,

where u1 �= u2 μ-a.e. Let F denote the subset of Δ upon which v vanishes, and
observe that T = T |F(2)

1
⊕ T |F(2)

2
, where F1 = χFL

2(μ) and F2 = χΔ\FL
2(μ).

Since v vanishes on F , it follows from (3) that T |F(2)
1

is normal and hence complex

symmetric. On the other hand, T |F(2)
2

is an operator of the form (3), where v is

μ-a.e. nonvanishing. Without loss of generality, we may therefore assume that v
does not vanish on a set of positive μ-measure.

Since u1−u2 and v are nonvanishing μ-a.e., we may define a unimodular function
γ by the formula

(4) γ =
v

|v| ·
|u1 − u2|
(u1 − u2)

.

Letting

a(z) =
γ|u1 − u2|√

|u1 − u2|2 + |v|2
, b(z) =

|v|√
|u1 − u2|2 + |v|2

,(5)

we note that the operator

U =

(
a b
b −a

)

on L2(μ)(2) is unitary since b is real and |a|2 + |b|2 = 1 μ-a.e.
Let Jf = f denote the canonical conjugation on L2(μ) and let K = J (2) denote

its two-fold inflation:

K =

(
J 0
0 J

)
.

Clearly K is a conjugation on L2(μ)(2), and a short computation shows that U∗ =
KUK (i.e. U is a K-symmetric operator).
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We now claim that C = UK is a conjugation on L2(μ)(2). Since C is obviously
conjugate-linear and isometric, we need only verify that C2 = I:

C2 = (UK)(UK) = U(KUK) = UU∗ = I.

Thus C is a conjugation on L2(μ)(2), as claimed.
We conclude the proof by showing that T is C-symmetric. We will do this by

directly verifying that CT ∗ = TC. First note that

TC = TUK

=

(
u1 v
0 u2

)(
a b
b −a

)
K

=

(
au1 + bv bu1 − av

bu2 −au2

)
K.(6)

On the other hand, we also have

CT ∗ = UKT ∗

=

(
a b
b −a

)
K

(
u1 0
v u2

)

=

(
a b
b −a

)(
u1 0
v u2

)
K

=

(
au1 + bv bu2

bu1 − av −au2

)
K.(7)

To verify the equality of (6) and (7), we need only show that bu2 = bu1 − av.
However, the preceding equation follows directly from (4) and (5). �

One might regard Theorem 1 as a generalization of the following well-known
result (alternate proofs of which can be found in [3, Cor. 3.3], [7, Ex. 6], or [18,
Cor. 3]):

Corollary 1. Every linear operator on C2 is complex symmetric. In other words,
every 2×2 matrix is unitarily equivalent to a symmetric matrix with complex entries.

In order to verify the second claim of Theorem 1, we must exhibit examples of n-
normal operators (n ≥ 3) that are not complex symmetric. The following example
does just this.

Example 1. We first claim that the operator T : C3 → C3 defined by the matrix

(8)

⎛
⎝0 a 0
0 0 b
0 0 0

⎞
⎠

(with respect to the standard basis) is a complex symmetric operator if and only
if ab = 0 or |a| = |b|. There are several possible cases to investigate: (i) a = 0 or
b = 0, (ii) |a| = |b| �= 0, (iii) a �= 0, b �= 0, and |a| �= |b|. In particular, the final case
yields 3-normal operators that are not complex symmetric.

Case (i). If a = 0 or b = 0, then T is the direct sum of complex symmetric operators
by Corollary 1.
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Case (ii). If |a| = |b| �= 0, then a short computation shows that (8) is unitarily
equivalent to a constant multiple of a 3 × 3 nilpotent Jordan matrix. It follows
from [7, Example 4] or [9, Sect. 2.2] that T is a complex symmetric operator.

Case (iii). Let a �= 0, b �= 0, and |a| �= |b|, and suppose toward a contradiction
that T = CT ∗C for some conjugation C. Let e1, e2, e3 denote the standard basis
for C3 and observe that e1 and e3 span the eigenspaces of T and T ∗, respectively,
corresponding to the eigenvalue zero. Since T ix = 0 if and only if (T ∗)i(Cx) = 0,
we see that

Ce1 = α1e3, Ce2 = α2e2, Ce3 = α3e1,

where α1, α2, α3 are certain unimodular constants. The desired contradiction will
arise from computing ‖Te2‖ in two different ways. On one hand, we have

‖Te2‖ = ‖T ∗Ce2‖ = ‖T ∗(α2e2)‖ = ‖T ∗e2‖ = ‖(0, 0, b)‖ = |b|.

On the other hand, we also have ‖Te2‖ = ‖(a, 0, 0)‖ = |a|. However, this contradicts
the fact that |a| �= |b|. Therefore T is not a complex symmetric operator.

If n > 3, then we can use the preceding ideas to construct examples of n-normal
operators that are not complex symmetric. Specifically, let T : C3 → C3 be defined
as in (8), with ab �= 0 and |a| �= |b| as in Case (iii). The operator T ⊕ I on Cn,
where I denotes the identity operator on C

n−3, is trivially n-normal. The same
argument used in Case (iii) reveals that T ⊕ I is not complex symmetric.

We remark that matrices of the form (8) arose in a related unitary equivalence
problem. Consideration of Jordan canonical forms reveals that each n × n matrix
is similar to its transpose. On the other hand, the matrix⎛

⎝0 2 0
0 0 1
0 0 0

⎞
⎠

is not unitarily equivalent to its transpose [14, Prob. 159].
We close this section with a corollary:

Corollary 2. If N is a normal operator having spectral multiplicity ≤ 2 and if T
is an operator commuting with N , then T is a complex symmetric operator.

Proof. If N is a normal operator having spectral multiplicity ≤ 2, then we may

write N = N1 ⊕ N
(2)
2 , where N1 and N2 are mutually singular ∗-cyclic normal

operators [2, Thm. IX.10.20]. Moreover, we also have T = T1 ⊕ T2, where T1

commutes with N1 and T2 commutes with N
(2)
2 (see the discussion following [2,

Lem. IX.10.19] or [11]). From this we immediately see that T1 is normal and T2 is
binormal [2, Cor. IX.6.9, Prop. IX.6.1.b]. It then follows from Theorem 1 that T is
a complex symmetric operator. �

In the preceding, observe that if N has spectral multiplicity two, then the con-
jugation corresponding to the operator T depends on T (as well as N).

Our next corollary asserts that any square root (normal or otherwise) of a normal
operator is itself a complex symmetric operator:

Corollary 3. If T 2 is normal, then T is a complex symmetric operator.

Licensed to Claremont Graduate Univ. Prepared on Thu Jun 27 16:17:12 EDT 2013 for download from IP 134.173.131.145.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



6070 STEPHAN RAMON GARCIA AND WARREN R. WOGEN

Proof. This follows immediately from Theorem 1 and the fact that T must be of
the form

T = A⊕
(
B C
0 −B

)
,

where A and B are normal and C is a positive operator that commutes with B [16,
Thm. 1]. �

3. Algebraic operators

Definition. An operator T ∈ B(H) is algebraic if p(T ) = 0 for some polyno-
mial p(z). The degree of an algebraic operator is defined to be the degree of the
polynomial p(z) of least degree for which p(T ) = 0.

Although the following theorem is essentially a corollary of Theorem 1, we choose
to state it as a theorem since it will have several useful corollaries of its own.

Theorem 2. If T ∈ B(H) is algebraic of degree ≤ 2, then T is a complex symmetric
operator. This result is sharp in the sense that for each finite n ≥ 3 and for each
H satisfying dimH ≥ n, there exists an algebraic operator on H of degree n that is
not a complex symmetric operator.

Proof. The first statement follows from Theorem 1 and an old lemma of Brown [1,
Lem. 7.1] that asserts that if T is algebraic of degree ≤ 2, then T is binormal.
Suppose now that 3 ≤ n ≤ dimH and consider the operator T ⊕D, where T has
a matrix of the form (8) with ab �= 0 and |a| �= |b| and D is a diagonal operator
chosen so that T ⊕D is algebraic of degree n. An argument similar to that used in
Case (iii) of Example 1 shows that this operator is not complex symmetric. �

Two particular classes of operators stand out for special consideration:

Corollary 4. Let T ∈ B(H). If T is idempotent (i.e. T 2 = T ) or nilpotent of
order 2 (i.e. T 2 = 0), then T is a complex symmetric operator.

A direct proof of the second portion of Corollary 4, involving the explicit con-
struction of the associated conjugation, can be found in [5]. Yet another basic class
of operators that happen to be complex symmetric are the rank-one operators:

Corollary 5. If T ∈ B(H) and rank(T ) = 1, then T is a complex symmetric
operator.

Proof. Any rank-one operator T is of the form Tf = 〈f, v〉u for certain vectors u, v
(this operator is frequently denoted u⊗ v). Since T 2 − 〈u, v〉T = 0, it follows from
Theorem 2 that T is a complex symmetric operator. �

It is important to note that although every operator on C
2 is a complex sym-

metric operator (Corollary 1), there are certainly operators having rank two that
are not complex symmetric operators (Example 1).

4. Perturbations of normal operators

In light of Corollary 5 and the fact that all normal operators are complex sym-
metric (see [9, Ex. 2.8] or [7, Sect. 4.1]), it is natural to attempt to identify those
rank-one perturbations of normal operators that are also complex symmetric.
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Theorem 3. If N ∈ B(H) is a normal operator, U is a unitary operator in W∗(N)
(the von Neumann algebra generated by N), a ∈ C, and v ∈ H, then the operator
T = N + a(Uv ⊗ v) is a complex symmetric operator.

Proof. We may without loss of generality assume that N is a ∗-cyclic normal op-
erator with cyclic vector v. Otherwise let H1 denote the reducing subspace of N
generated by v and let H2 = H⊥

1 . Now write N = N1 ⊕ N2 relative to the or-
thogonal decomposition H = H1 ⊕ H2. It follows that N1 is ∗-cyclic and, since
H1 reduces U , we have T = (N1 + a(U1v ⊗ v))⊕N2, where U1 = U |H1

belongs to
W∗(N1).

By the Spectral Theorem, we may further presume that N = Mz (the operator
of multiplication by the independent variable on a Lebesgue space L2(μ)), that v is
the constant function 1, and that U = Mθ (the operator of multiplication by some
unimodular function θ in L∞(μ)). At this point, a straightforward computation
shows that Cf = θf is a conjugation on L2(μ) with respect to which both Mz and
θ ⊗ 1 are C-symmetric. �

On an abstract level, the preceding theorem indicates that compressed shifts
are complex symmetric operators. In other words, starting from the fact that the
Aleksandrov-Clark unitary operators are complex symmetric, we can directly derive
the fact that the compressed shift is also complex symmetric. In essence, this is
the reverse of the path undertaken in [9] (which the reader may consult for further
details concerning the following example).

Example 2. Let ϕ denote a nonconstant inner function and let H2 denote the
Hardy space on the unit disk D. For each λ in the open unit disk D, we define the
unit vectors

bλ(z) =
z − λ

1− λz
,(9)

kλ(z) =

√
1− |λ|2

1− |ϕ(λ)|2 · 1− ϕ(λ)ϕ(z)

1− λz
,(10)

qλ(z) =

√
1− |λ|2

1− |ϕ(λ)|2 · ϕ(z)− ϕ(λ)

z − λ
.(11)

In particular, the function kλ is a normalized reproducing kernel for the so-called
model space H2  ϕH2.

For each unimodular constant α, we define the generalized Aleksandrov-Clark
operator by setting

Uλf =

{
bλf, f ⊥ qλ,

αkλ, f = qλ.

Each Uλ is C-symmetric with respect to the conjugation (defined in terms of bound-
ary functions) [Cf ](z) = fzϕ on H2ϕH2. Moreover, we also note that qλ = Ckλ
for each λ.

By Theorem 3, it follows that the operator

(12) Sλ = Uλ − (α+ ϕ(λ))(kλ ⊗ qλ)

is complex symmetric since it is of the form Uλ + a(Uλv⊗ v), where a is a complex
constant and v = qλ. More specifically, tracing through the proof of Theorem 3,
we expect that Sλ will be C-symmetric with respect to the C described above.
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The significance of this example lies in the fact that, for the choice

α = −ϕ(λ)/|ϕ(λ)|,

the operator (12) turns out to be

(13) Sλf = Pϕ(bλf),

the compression of the operator Mbλ : H2 → H2 to the subspace H2  ϕH2.
Here Pϕ denotes the orthogonal projection from H2 onto H2  ϕH2. The oper-
ator S0f = Pϕ(zf) is commonly known as the compressed shift or Jordan model
operator corresponding to ϕ. In summary, purely operator-theoretic considerations
guarantee that the operators Sλ are complex symmetric. We refer the reader to [9]
and [17] for more information.

In fact, the preceding example can be greatly generalized (without any reference
to function theory whatsoever). Given a contraction T ∈ B(H), there is a unique
decomposition H = H0 ⊕ Hu, where H0 and Hu are both T -invariant, T |Hu

is
unitary, and T |H0

is completely nonunitary (i.e., T |H0
is not unitary when restricted

to any of its invariant subspaces). The operator DT = (I − T ∗T )1/2 is called the
defect operator of T , and the defect spaces of T are defined to be the subspaces
DT = DTH and DT∗ = DT∗H. The defect indices of T are the numbers ∂T =
dimDT and ∂T∗ = dimDT∗ . We say that T ∈ C0· if Tn → 0 (SOT) and that
T ∈ C·0 if T ∗ ∈ C0·. Finally, we also define C00 = C0· ∩ C·0.

It turns out that any Hilbert space contraction with defect indices ∂T = ∂T∗ = 1
is complex symmetric. Although this is known (see [3, Cor. 3.2] for a general proof)
and easy to prove if T ∈ C00 (see [9, Thm. 5.1], [7, Prop. 3], and [17, Lem. 2.1]), we
are able to establish this result in the abstract – without the use of characteristic
functions and complex analysis.

Corollary 6. If T ∈ B(H) is a contraction such that ∂T = ∂T∗ = 1, then T is a
complex symmetric operator.

Proof. Since ∂T = 1, it follows that I − T ∗T = u⊗ u for some nonzero vector u. If
x is any vector orthogonal to u, then we have

‖x‖2 − ‖Tx‖2 = 〈(I − T ∗T )x, x〉 = |〈u, x〉|2 = 0.

Thus T is isometric on a subspace of H having codimension one. Similarly, we see
that I − TT ∗ is also of rank one, whence I − TT ∗ = v ⊗ v for some nonzero vector
v. Putting this together, we find that T = T |u⊥ + c(u ⊗ v) for some constant c.
In particular, there exists a unitary U such that T = U + c′(u ⊗ v) is a rank-one
perturbation of U . Since T is of the form T = U + a(Uv ⊗ v) where U is unitary,
it follows from Theorem 3 that T is a complex symmetric operator. �

Following Theorem 3 in another direction, we obtain the following:

Corollary 7. Let T = A + iB denote the Cartesian decomposition of T ∈ B(H)
(i.e. A = A∗ and B = B∗). If rank(A) = 1 or rank(B) = 1, then T is a complex
symmetric operator.
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Proof. If A has rank one, then A = a(v ⊗ v) for some a ∈ R and v ∈ H. Apply
Theorem 3 with N = iB and U = I. �

The preceding corollary easily furnishes many examples of nonnormal complex
symmetric operators. Indeed, if A is an arbitrary selfadjoint operator and B is a
rank-one selfadjoint operator that does not commute with A, then T = A + iB is
a nonnormal complex symmetric operator. Despite the apparent simplicity of such
a recipe, nontrivial examples abound. Consider the following example:

Example 3. It is well known that the Volterra integration operator

[V f ](x) =

∫ x

0

f(y) dy

on L2[0, 1] is a rank-one selfadjoint perturbation of a skew-selfadjoint operator (see
[4] or [13, Pr. 188] for further details). Indeed, a short computation shows that the
selfadjoint component of V is

A = 1
2 (V + V ∗) =

∫ 1

0

f(y) dy = 1
2 (1⊗ 1),

where the 1 above denotes the constant function. By Corollary 7, we conclude that
V is a complex symmetric operator. In fact, V = CV ∗C, where C denotes the
conjugation [Cf ](x) = f(1− x) on L2[0, 1] (see [8, Ex. 6] and [9, Sect. 4.1]).

Setting U = I in Theorem 3 provides a generalization of Corollary 7:

Corollary 8. If N ∈ B(H) is a normal operator, P is a rank-one orthogonal
projection, and a ∈ C, then T = N + aP is a complex symmetric operator.

It is important to note that not every rank-one perturbation of a normal operator
will be complex symmetric (unless dimH = 2; see Corollary 1). In fact, even a rank-
one perturbation of an orthogonal projection may fail to be complex symmetric:

Example 4. We claim that the operator T : C3 → C3 defined by the matrix⎛
⎝0 0 1
0 1 1
0 0 0

⎞
⎠

(with respect to the standard basis) is not a complex symmetric operator. First
observe that the eigenspaces of T (and hence of T ∗) for the eigenvalues 0 and 1
are both one-dimensional. The eigenspaces of T corresponding to the eigenvalues 0
and 1 are spanned by the unit vectors v0 = (1, 0, 0) and v1 = (0, 1, 0), respectively.
The eigenspaces of T ∗ corresponding to the eigenvalues 0 and 1 are spanned by the
unit vectors w0 = (0, 0, 1) and w1 = (0, 1√

2
, 1√

2
), respectively. If C is a conjugation

such that T = CT ∗C, then 0 = |〈v0, v1〉| = |〈Cv1, Cv0〉| = |〈w1, w0〉| = 1√
2
, which

is absurd.

5. Partial isometries

In this section, we attempt to classify those partial isometries that are complex
symmetric. This question is related to the preceding material in the sense that
if ϕ(0) = 0 in Example 2, then the corresponding compressed shift operator is a
complex symmetric partial isometry.
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Given only the dimensions of the kernels of a partial isometry and its adjoint,
the following theorem is as definitive as possible:

Theorem 4. Let T ∈ B(H) be a partial isometry.

(i) If dimkerT = dimkerT ∗ ≤ 1, then T is a complex symmetric operator.

(ii) If dimkerT �= dimkerT ∗, then T is not a complex symmetric operator.

(iii) If 2 ≤ dim kerT = dimkerT ∗ ≤ ∞, then either possibility can (and does)
occur.

Proof. (i) If dim kerT = dimkerT ∗ = 0, then T ∗T = TT ∗ = I, whence T is unitary
and hence complex symmetric. Suppose that T is a partial isometry satisfying
dim kerT = dimkerT ∗ = 1 and that kerT and kerT ∗ are spanned by the unit
vectors v and w, respectively. Since the operator N = T + w ⊗ v is unitary, it
follows that T = N −Nv ⊗ v is a complex symmetric operator by Theorem 3. For
a different proof, see [3, Cor. 3.2].

(ii) We prove the contrapositive. If T is C-symmetric, then it is easy to see that
Tx = 0 if and only if T ∗(Cx) = 0. Therefore C furnishes an isometric, conjugate-
linear bijection between kerT and kerT ∗, whence dim kerT = dimkerT ∗.

(iii) This portion of the theorem follows upon consideration of several examples.
It is trivial to produce complex symmetric partial isometries with dim kerT =
dimkerT ∗ = n for any n. In fact, T = I ⊕ 0, where 0 is the zero operator on an
n-dimensional Hilbert space, is such an example. On the other hand, finding partial
isometries that are not complex symmetric when 2 ≤ n ≤ ∞ is more involved.

For the remainder of this proof, we choose not to distinguish between matrices
and the operators they induce (with respect to the standard basis). We must first
study a certain auxiliary matrix that will be used in our construction. Specifically,
we intend to prove that

A =

⎛
⎝0 1

2 0
0 0 1

4
1 0 0

⎞
⎠

is not a complex symmetric operator. This will follow from a careful study of the
eigenstructures of A and A∗. First, note that the eigenvalues of A are

λ1 = 1
2 , λ2 = − 1

4 + i
√
3
4 , λ3 = − 1

4 − i
√
3
4 ,

and that these are also the eigenvalues of A∗. A straightforward computation shows
that corresponding unit eigenvectors of A are

v1 = 1√
6
(1, 1, 2),

v2 = 1
2
√
6
(−1 + i

√
3, −1− i

√
3, 4),

v3 = 1
2
√
6
(1 + i

√
3, 1− i

√
3, −4).

Since A has three distinct eigenvalues, it follows that v1, v2, v3 must be sent to
unimodular scalar multiples of the corresponding unit eigenvectors

w1 = 1
3 (2, 2, 1),

w2 = 1
3 (−1− i

√
3, −1 + i

√
3, 1),

w3 = 1
3 (−1 + i

√
3, −1− i

√
3, 1)
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of A∗. Now observe that

|〈v1, v2〉| = |〈v2, v3〉| = |〈v3, v1〉| = 1
2 ,

whereas

|〈w1, w2〉| = |〈w2, w3〉| = |〈w3, w1〉| = 1
3 .

The same argument used in Example 4 now reveals that A cannot be a complex
symmetric operator.

We are now ready to construct our desired partial isometry. Noting that

A∗A =

⎛
⎝1 0 0
0 1

4 0
0 0 1

16

⎞
⎠ ,

we see that if 2 ≤ n ≤ ∞, then the n× 3 matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

0
√
3
2 0

0 0
√
15
4

0 0 0
...

...
...

0 0 0

⎞
⎟⎟⎟⎟⎟⎠

satisfies A∗A+B∗B = I (the 3× 3 identity matrix). The (n+ 3)× (n+ 3) matrix

T =

(
A 0
B 0

)
is a partial isometry since T ∗T is the orthogonal projection

P =

(
I 0
0 0

)
.

Since it is clear from the construction of T that dimkerT = dimkerT ∗ = n, we
need only prove that T is not a complex symmetric operator.

Suppose toward a contradiction that T is C-symmetric. By [8, Thm. 2 & Cor.
1], we may write T = CJP , where J is an auxiliary conjugation that commutes
with P . Since JP = PJ we find that

J(PT )J = J(PCJP )J = PJCP = T ∗P = (PT )∗,

whence PT is J-symmetric. However,

PT =

(
A 0
0 0

)
,

and the same argument that showed that A was not a complex symmetric operator
also shows that PT is not a complex symmetric operator. This contradiction shows
that our partial isometry T is not a complex symmetric operator, as desired. �

We remark that in the final paragraph of the proof, we could have appealed
to the fact that the Aluthge transform of a complex symmetric operator is also
complex symmetric [5].

Based upon the preceding material, we can prove that every partial isometry on
a three-dimensional Hilbert space is complex symmetric:

Corollary 9. If dimH = 3, then every partial isometry T ∈ B(H) is complex
symmetric.
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Proof. Suppose that dimH = 3 and that T is a partial isometry on H. There are
four cases to discuss:

(i) If dimkerT = 0, then T is unitary and thus complex symmetric. Indeed,
the Spectral Theorem asserts that T has a diagonal matrix representation
with respect to some orthonormal basis of H.

(ii) If dim kerT = 1, then T is complex symmetric by (i) of Theorem 4.
The condition dimkerT = dimkerT ∗ holds trivially since H is finite-
dimensional.

(iii) If dim kerT = 2, then rank(T ) = 1. By Corollary 5, it follows that T is
complex symmetric.

(iv) If dimkerT = 3, then T = 0 and the result is trivial. �

Based on the construction used in the proof of Theorem 4, it is clear that many
partial isometries that are not complex symmetric exist if the dimension of the
underlying Hilbert space is ≥ 5. On the other hand, we were for a considerable time
unable to determine whether all partial isometries on a four-dimensional Hilbert
space are complex symmetric (they are). In this setting, the method of Corollary
9 suffices to resolve all but the case dim kerT = 2.

Significant numerical evidence in favor of the assertion that all partial isometries
on a four-dimensional Hilbert space are complex symmetric has been produced by
J. Tener [18]. We refer the reader to [10] for the resolution of this problem.
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