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Abstract

Computers and electronics play an enormous role in today’s society, impacting

everything from communication and medicine to science. The development of

computer-related technologies has led to the emergence of many new important

interdisciplinary fields, including the field of image processing. Image processing tries

to find new ways to access and extract information from digital images or videos. Due

to this great importance, many researchers have tried to utilize new and powerful

tools introduced in pure and applied mathematics to develop new concepts in

imaging science. One of these valuable research areas is the contents of fractional

differential calculus. In recent years, extensive applications to the new fractional

operators have been employed in real-world problems. This article attempts to

address a practical aspect of this era of research in the edge detecting of an image.

For this purpose, two general structures are first proposed for making new fractional

masks. Then the components in these two structures are evaluated using the

fractional integral Atangana–Baleanu operator. The performance and effectiveness of

these proposed designs are illustrated by several numerical simulations.

A comparison of the results with the results of several well-known masks in the

literature indicates that the results presented in this article are much more accurate

and efficient. This is the main achievement of this article. These fractional masks are all

novel and have been introduced for the first time in this contribution. Moreover, in

terms of computational cost, the proposed fractional masks require almost the same

amount of computations as the existing conventional ones. By observing the

numerical simulations presented in the paper, it is easily understood that with proper

adjustment for the fractional-order parameter, the accuracy of the obtained results

can be significantly improved. Each of the new suggested structures in this article can

be regarded as a valid and effective alternative for the well-known existing kernels in

identifying the edges of an image.

Keywords: Fractional kernels; Image segmentation; Edge detecting;

Atangana–Baleanu fractional integration; PSNR

1 Introduction

In the last decades, the concepts of fractional differentiation and integration have attracted

the attention of many scholars from many fields due to their wider applicability. In many
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articles it has been pointed out that fractionalmodeling of some systems in science and en-

gineering provides more efficient solutions than classical modeling of that problem using

integer-order derivatives. Nevertheless, they were used to construct ordinary and partial

differential equations that could depict real-world problems. Three classes could be identi-

fied, including differential operators with the power-law kernel, differential operators with

exponential decay kernel, and differential operators with the generalized Mittag-Leffler

kernel. Each of these mentioned operators has got success in some particular practical

problems as one differential and integral operator cannot replicate all the real-world prob-

lems accurately. In particular, the differential operatorswith the generalizedMittag-Leffler

kernel have been introduced very recently, and they have earned respect acrossmany fields

of science due to their wider applicability. Very recently, Ghanbari and Atangana [1] have

extended the Atangana–Baleanu fractional integral to the framework of image process-

ing to remove existing noise in a given image. They obtained outstanding results as the

new fractional mask was able to denoise images with great success. In this work, we aim

to further extend the use of the Atangana–Baleanu fractional integral in edge detection.

Edge detection is a fundamental tool in image processing algorithms applied to medical

imaging. The general structure of this article will be as follows. In Sect. 2, we have a brief

overview of some of the well-known algorithms for determining the edges of an image. In

the third section of the article, we utilize four categories of approximations to calculate

the value of the Atangana–Baleanu fractional integration. Then, in each case, two general

structures are employed formaking the fracturemasks in edge detecting. These results are

the main achievements of this paper since they are presented for the first time. In Sect. 4,

the performance of the proposed masks is tested using several numerical simulations. For

this purpose, seven images with different structures are used. Finally, the last part of this

article also states the conclusions.

2 A short review of some of the well-knownmethods

Edge detection is an important branch of image processing. It includes techniques used

to identify pixels from a digital image in which the brightness intensity varies drastically

compared to the adjacent pixels [2]. Many efficient algorithms have been proposed in the

literature for edge detection. Most of these algorithms are designed based on first-order,

such as the Sobel, Prewitt, and Roberts, operators and second-order differential operators

such as Laplace operator. In practical applications, this feature may lead to the defective

performance of the corresponding masks. Noise can also pose a challenge to the perfor-

mance of these algorithms to extract edges in images [3].

One of the most popular filters used to determine the edges of an image is the Prewitt

operator. This approach is based on the approximation of the first-order derivative by the

central difference. The results of the method are obtained by convolving the image with

the following two kernels:

hx =

–1 0 1

–1 0 1

–1 0 1

, hy =

–1 –1 –1

0 0 0

1 1 1

. (1)

Another important filter is the Sobel operator, which is based on central finite differences.

Unlike the Prewitt operator, the main focus of themethod is to provide more partnerships
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with pixels closer to the center of the mask. The convolution kernels used in this method

are as follows:

hx =

–1 0 1

–2 0 2

–1 0 1

, hy =

–1 –2 –1

0 0 0

1 2 1

. (2)

The Sobel operator can provide more accurate edge direction information, but it will also

detect many false edges with a coarse edge width.While the Prewitt operator is more sen-

sitive to horizontal and vertical edges, the Sobel operator is more sensitive to the diagonal

edges than to the horizontal and vertical edges. All the above-mentioned kernels are based

on integral differential operators of integer-order operators. Many dramatic changes in

this area have been made by taking the fractional differential concepts into account. In

recent years, the use of fractional differential operators to improve image quality, image

texture enhancement, image noise reduction, and image edge analysis have yielded stun-

ning results [4–12].

One of the most important formulas for expanding of fractional differential operators

in image processing is to use the following general form:

T
σ
K(t)≈ ρ0K(t) + ρ1K(t – 1) + ρ2K(t – 2) + ρ3K(t – 3) + · · · , (3)

where ρ1, ρ2, and ρ3 are the consecutive coefficients in the expansion of (3). Consider-

ing this definition, the expansion can be generalized to the two-dimensional space of the

images in each of the x or y directions as follows:

x
T

σ
GLK(x, y)≈ ρ0K(x, y) + ρ1K(x – 1, y) + ρ2K(x – 2, y) + ρ3K(x – 3, y) + · · · ,

y
T

σ
GLK(x, y)≈ ρ0K(x, y) + ρ1K(x, y – 1) + ρ2K(x, y – 2) + ρ3K(x, y – 3) + · · · .

(4)

In the remainder of the paper, the following two structures will be used to make new

fractional-order masks.

Mask 1 As the first main structure in this article, we construct a 3× 3 fractional integral

mask as follows:

hx =

–ρ0 0 ρ0

–ρ1 0 ρ1

–ρ2 0 ρ2

, hy =

ρ0 ρ1 ρ2

0 0 0

–ρ0 –ρ1 –ρ2

. (5)

Mask 2 The second structure used is the same kernel as introduced in [13] is given by

hx =

ρ0 ρ1 ρ2

–ρ3 0 ρ3

–ρ2 –ρ1 –ρ0

, hy =

–ρ2 –ρ3 ρ0

–ρ1 0 ρ1

–ρ0 ρ3 ρ2

. (6)

The design of these two kernels is such that the vertical, horizontal, left, and right diagonal

pixels around the central pixel are applied. This crucial featuremakes these two kernels an
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excellent tool for extracting image details, including texture and edges. Aftermaking these

kernels, the absolute values are often used to calculate the gradient moduli approximately

as follows:

|H| ≈ |Hx| + |Hy|, (7)

where

Hx = I(x, y) ∗ hx, Hy = I(x, y) ∗ hy, (8)

and I(x, y) is the pixel value of the gray pixel of the given image.

3 New edge detectionmasks based on ABC-fractional

So far, many definitions have been provided for critical concepts such as fractional deriva-

tives and integrals. The use of these definitions seems to be increasingly used in modeling

of applied phenomena [14–39].

One of the most commonly used definitions for a fractional-order derivative is the def-

inition given by Atangana and Baleanu in the Caputo sense (ABC) [40]:

D
σ
t K(t) =

M(σ )

1 – σ

∫ t

0

Eσ

[

–σ
(t – τ )σ

1 – σ

]

K̇(τ )dτ . (9)

A prominent feature of this definition is the use of a non-local and non-singular kernel in

the derivative definition. Besides, the derivative preserves a memory property that keeps

the key function information from the starting point to the desired time. Another key fea-

ture of this definition is the use of the Mittag-Leffler function of index σ , which is defined

as follows [41, 42]:

Eσ (t) =

∞
∑

k=0

tk

Γ (σk + 1)
, σ > 0. (10)

Another function used in this definition isM(·), which is used as a normalization function,

defined by

M(σ ) = 1 – σ +
σ

Γ (σ )
.

For a function K(t), the corresponding definition for the fractional integral of Atangana–

Baleanu of order σ is also defined as follows:

I
σ
t K(t) =

1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

∫ t

0

K(τ )(t – τ )σ–1 dτ . (11)

So far, using various ideas, a variety of numerical methods have been introduced to ap-

proximate these fractional operators. In what follows, we will use several different ap-

proaches to designing and making new masks.
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3.1 The masks based on the Grunwald–Letnikov (GL) approximation

The starting point of this approach is taking into account the definition of the fractional

integral in the sense of Atangana–Baleanu as follows:

I
σ
GLK(t) =

1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

∫ t

0

K(τ )(t – τ )σ–1 dτ . (12)

Now we approximate the corresponding integral Grunwald–Letnikov [43]:

I
σ
GLK(t) ≈

∫ t

0

K(τ )

(t – τ )1–σ
dτ

= lim
h→0

h–σ

(

K(t) + σK(t – h) +
(–σ )(–σ + 1)

2
K(t – h)

+ · · · +
Γ (–σ + 1)

k!Γ (–σ –N + 1)
K(t –Nh)

)

. (13)

This definition is perhaps one of the most common definitions in discrete fractional cal-

culus, and it has also been used in image processing.

Setting h = 1 in (13) along with (12), we have

I
σ
GLK(t) ≈

1 – σ

M(σ )
K(t) +

σ

M(σ )

(

K(t) + σK(t – h) +
σ (σ – 1)

2
K(t – 2h)

+
σ (1 – σ 2)

6
K(t – 3h) + · · ·

)

. (14)

The corresponding fractional GL-integral in x and y directions is obtained respectively as

follows:

x
I

σ
GLK(x, y)≈

1

M(σ )
K(x, y) +

σ 2

M(σ )
K(x – 1, y) +

σ 3 – σ 2

2M(σ )
K(x – 2, y)

+
σ 2 – σ 4

6M(σ )
K(x – 3, y) + · · · , (15)

y
I

σ
GLK(x, y)≈

1

M(σ )
K(x, y) +

σ 2

M(σ )
K(x, y – 1) +

σ 3 – σ 2

2M(σ )
K(x, y – 2)

+
σ 2 – σ 4

6M(σ )
K(x, y – 3) + · · · . (16)

In this way the required coefficients for the method are calculated as follows:

ρ0 =
1

M(σ )
,

ρ1 =
σ 2

M(σ )
,

ρ2 =
σ 3 – σ 2

2M(σ )
,

ρ3 =
σ 2 – σ 4

6M(σ )
.

(17)
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Using the general structures presented in (5) and (6), then utilizing the coefficients of σ s

obtained in (17), two new masks can be used to determine the edges of an image outlined

in what follows.

MaskGL1 Using the values obtained in Eq. (17) and using them in (5), the following 3×3

masks are introduced:

hx =

– 1
M(σ )

0 1
M(σ )

– σ 2

M(σ )
0 σ 2

M(σ )

– σ 3–σ 2

2M(σ )
0 σ 3–σ 2

2M(σ )

, hy =

1
M(σ )

σ 2

M(σ )
σ 3–σ 2

2M(σ )

0 0 0

– 1
M(σ )

– σ 2

M(σ )
– σ 3–σ 2

2M(σ )

.

Mask GL2 Similarly, by inserting the values into the structure presented in (6), the fol-

lowing σ fractional order-dependent mask is constructed:

hx =

1
M(σ )

σ 2

M(σ )
σ 3–σ 2

2M(σ )

– σ 2–σ 4

6M(σ )
0 σ 2–σ 4

6M(σ )

– σ 3–σ 2

2M(σ )
– σ 2

M(σ )
– 1

M(σ )

, hy =

– σ 3–σ 2

2M(σ )
– σ 2–σ 4

6M(σ )
1

M(σ )

– σ 2

M(σ )
0 σ 2

M(σ )

– 1
M(σ )

σ 2–σ 4

6M(σ )
σ 3–σ 2

2M(σ )

.

3.2 The masks based on Toufik–Atangana (TA) approach

Another approximate method is based on the use of function interpolation of K(τ ) on

[tk , tk+1] as follows:

K(τ ) =
K(tk)

h
(τ – tk–1) +

K(tk–1)

h
(τ – tk). (18)

On the other hand, setting t = tn in ABC-fractional integral (11), one gets

I
σ
t K(tn) =

1 – σ

M(σ )
K(tn) +

σ

Γ (σ )M(σ )

∫ tn+1

0

K(τ )(t – τ )σ–1 dτ (19)

=
1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

n
∑

k=0

∫ tk+1

tk

K(τ )(t – τ )σ–1 dτ . (20)

Using (18) in (20) and doing some necessary calculations, we get [44]

I
σ
t K(tn) =

1 – σ

M(σ )
K(tn) +

σhσ

M(σ )Γ (σ + 2)

×

n
∑

m=0

(

K(tm)
[

(n –m + 1)σ (n –m + 2 + σ ) – (n –m)σ (n –m + 2 + 2σ )
]

–K(tm–1)
[

(n –m + 1)σ+1 – (n –m)σ (n –m + 1 + σ )
])

. (21)

Equation (21) can be rewritten as

I
σ
TAK(tn) =

[

(1 – σ )Γ (σ + 2) + σhσ (σ + 2)

B(σ )Γ (σ + 2)

]

K(tn)

+

[

σhσ ((σ + 3)2σ – 2σ – 4)

B(σ )Γ (σ + 2)

]

K(tn–1)
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+

[

σhσ ((σ + 4)3σ – (2σ + 5)2σ + σ + 2)

B(σ )Γ (σ + 2)

]

K(tn–2)

+

[

σhσ ((σ + 5)4σ – (2σ + 6)3σ + (σ + 3)2σ )

B(σ )Γ (σ + 2)

]

K(tn–3) + · · · . (22)

For h = 1 in (22), the following expansions are obtained:

x
I

σ
TAK(x, y)

=

[

(1 – σ )Γ (σ + 2) + σ (σ + 2)

B(σ )Γ (σ + 2)

]

K(x, y) +

[

(σ 2 + 3σ )2σ – 2σ 2 – 4σ

B(σ )Γ (σ + 2)

]

K(x – 1, y)

+

[

(σ 2 + 4σ )3σ – (2σ 2 + 5σ )2σ + σ 2 + 2σ

B(σ )Γ (σ + 2)

]

K(x – 2, y)

+

[

(σ 2 + 5σ )4σ – (2σ 2 + 6σ )3σ + (σ 2 + 3σ )2σ

B(σ )Γ (σ + 2)

]

K(x – 3, y) + · · · , (23)

y
I

σ
TAK(x, y)

=

[

(1 – σ )Γ (σ + 2) + σ (σ + 2)

B(σ )Γ (σ + 2)

]

K(x, y) +

[

(σ 2 + 3σ )2σ – 2σ 2 – 4σ

B(σ )Γ (σ + 2)

]

K(x, y – 1)

+

[

(σ 2 + 4σ )3σ – (2σ 2 + 5σ )2σ + σ 2 + 2σ

B(σ )Γ (σ + 2)

]

K(x, y – 2)

+

[

(σ 2 + 5σ )4σ – (2σ 2 + 6σ )3σ + (σ 2 + 3σ )2σ

B(σ )Γ (σ + 2)

]

K(x, y – 3) + · · · . (24)

Therefore, the coefficients for this type of fractional approximation are calculated as fol-

lows:

ρ0 =
(1 – σ )Γ (σ + 2) + σ (σ + 2)

B(σ )Γ (σ + 2)
,

ρ1 =
(σ 2 + 3σ )2σ – 2σ 2 – 4σ

B(σ )Γ (σ + 2)
,

ρ2 =
(σ 2 + 4σ )3σ – (2σ 2 + 5σ )2σ + σ 2 + 2σ

B(σ )Γ (σ + 2)
,

ρ3 =
(σ 2 + 5σ )4σ – (2σ 2 + 6σ )3σ + (σ 2 + 3σ )2σ

B(σ )Γ (σ + 2)
.

(25)

Mask TA1 In this case, using the results of (25), the following masks of fractional order

σ are formed:

hx =

– (1–σ )Γ (σ+2)+σ (σ+2)
B(σ )Γ (σ+2)

0 (1–σ )Γ (σ+2)+σ (σ+2)
B(σ )Γ (σ+2)

– (σ 2+3σ )2σ–2σ 2–4σ
B(σ )Γ (σ+2)

0 (σ 2+3σ )2σ –2σ 2–4σ
B(σ )Γ (σ+2)

– (σ 2+4σ )3σ–(2σ 2+5σ )2σ +σ 2+2σ
B(σ )Γ (σ+2)

0 (σ 2+4σ )3σ –(2σ 2+5σ )2σ +σ 2+2σ
B(σ )Γ (σ+2)

,

hy =

(1–σ )Γ (σ+2)+σ (σ+2)
B(σ )Γ (σ+2)

(σ 2+3σ )2σ–2σ 2–4σ
B(σ )Γ (σ+2)

(σ 2+4σ )3σ –(2σ 2+5σ )2σ +σ 2+2σ
B(σ )Γ (σ+2)

0 0 0

– (1–σ )Γ (σ+2)+σ (σ+2)
B(σ )Γ (σ+2)

– (σ 2+3σ )2σ–2σ 2–4σ
B(σ )Γ (σ+2)

– (σ 2+4σ )3σ –(2σ 2+5σ )2σ +σ 2+2σ
B(σ )Γ (σ+2)

.
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Mask TA3 The parameters obtained in (25) can also be used to determine new fractional

masks in determining the edges of the images as follows:

hx =

(1–σ )Γ (σ+2)+σ (σ+2)
B(σ )Γ (σ+2)

(σ 2+3σ )2σ –2σ 2–4σ
B(σ )Γ (σ+2)

(σ 2+4σ )3σ –(2σ 2+5σ )2σ +σ 2+2σ
B(σ )Γ (σ+2)

– (σ 2+5σ )4σ –(2σ 2+6σ )3σ +(σ 2+3σ )2σ

B(σ )Γ (σ+2)
0 (σ 2+5σ )4σ–(2σ 2+6σ )3σ +(σ 2+3σ )2σ

B(σ )Γ (σ+2)

– (σ 2+4σ )3σ –(2σ 2+5σ )2σ +σ 2+2σ
B(σ )Γ (σ+2)

– (σ 2+3σ )2σ –2σ 2–4σ
B(σ )Γ (σ+2)

– (1–σ )Γ (σ+2)+σ (σ+2)
B(σ )Γ (σ+2)

,

hy =

– (σ 2+4σ )3σ –(2σ 2+5σ )2σ +σ 2+2σ
B(σ )Γ (σ+2)

– (σ 2+5σ )4σ –(2σ 2+6σ )3σ +(σ 2+3σ )2σ

B(σ )Γ (σ+2)
(1–σ )Γ (σ+2)+σ (σ+2)

B(σ )Γ (σ+2)

– (σ 2+3σ )2σ –2σ 2–4σ
B(σ )Γ (σ+2)

0 (σ 2+3σ )2σ –2σ 2–4σ
B(σ )Γ (σ+2)

– (1–σ )Γ (σ+2)+σ (σ+2)
B(σ )Γ (σ+2)

(σ 2+5σ )4σ –(2σ 2+6σ )3σ +(σ 2+3σ )2σ

B(σ )Γ (σ+2)
(σ 2+4σ )3σ –(2σ 2+5σ )2σ +σ 2+2σ

B(σ )Γ (σ+2)

.

3.3 The masks based on the Euler method (Eu)

The following expansion is introduced in the reference [45] to approximate ABC-fractional

integral (11) at t = tn as follows:

I
σ
EuK(tn) =

1 – σ

M(σ )
K(tn) +

σhσ

M(σ )Γ (σ + 1)

n–1
∑

m=0

θn,mK(tm), (26)

where

θn,m = (n –m)σ – (n –m – 1)σ . (27)

Equation (26) can be transformed into the following form:

I
σ
EuK(tn) =

[

1 – σ

B(σ )

]

K(tn) +

[

σhσ

B(σ )Γ (σ + 1)

]

K(tn–1) +

[

σhσ (2σ – 1)

B(σ )Γ (σ + 1)

]

K(tn–2)

+

[

σhσ (3σ – 2σ )

B(σ )Γ (σ + 1)

]

K(tn–3) + · · · . (28)

So, we can write corresponding expressions related to x and y directions as follows:

x
I

σ
EuK(x, y)≈

[

1 – σ

B(σ )

]

K(x, y)

+

[

σ

B(σ )Γ (σ + 1)

]

K(x – 1, y) +

[

σ (2σ – 1)

B(σ )Γ (σ + 1)

]

K(x – 2, y)

+

[

σ (3σ – 2σ )

B(σ )Γ (σ + 1)

]

K(x – 3, y) + · · · , (29)

y
I

σ
EuK(x, y) ≈

[

1 – σ

B(σ )

]

K(x, y)

+

[

σ

B(σ )Γ (σ + 1)

]

K(x, y – 1) +

[

σ (2σ – 1)

B(σ )Γ (σ + 1)

]

K(x, y – 2)

+

[

σ (3σ – 2σ )

B(σ )Γ (σ + 1)

]

K(x, y – 3) + · · · . (30)
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Then, the following sequence of required coefficients is derived:

ρ0 =
1 – σ

B(σ )
,

ρ1 =
σ

B(σ )Γ (σ + 1)
,

ρ2 =
σ (2σ – 1)

B(σ )Γ (σ + 1)

ρ3 =
σ (3σ – 2σ )

B(σ )Γ (σ + 1)
.

(31)

Mask EU1 The first form of 3×3 fractional masks based on the Eulermethod are defined

as follows:

hx =

– 1–σ

B(σ )
0 1–σ

B(σ )

– σ

B(σ )Γ (σ+1)
0 σ

B(σ )Γ (σ+1)

– σhσ (2σ –1)
B(σ )Γ (σ+1)

0 σhσ (2σ –1)
B(σ )Γ (σ+1)

, hy =

1–σ

B(σ )
σ

B(σ )Γ (σ+1)
σhσ (2σ –1)
B(σ )Γ (σ+1)

0 0 0

– 1–σ

B(σ )
– σ

B(σ )Γ (σ+1)
– σhσ (2σ –1)

B(σ )Γ (σ+1)

.

Mask EU2 The second group of 3×3 fractionalmasks can be also constructed as follows:

hx =

1–σ

B(σ )
σ

B(σ )Γ (σ+1)
σhσ (2σ –1)
B(σ )Γ (σ+1)

– σhσ (3σ –2σ )
B(σ )Γ (σ+1)

0 σhσ (3σ –2σ )
B(σ )Γ (σ+1)

– σhσ (2σ –1)
B(σ )Γ (σ+1)

– σ

B(σ )Γ (σ+1)
– 1–σ

B(σ )

,

hy =

– σhσ (2σ –1)
B(σ )Γ (σ+1)

– σhσ (3σ –2σ )
B(σ )Γ (σ+1)

1–σ

B(σ )

– σ

B(σ )Γ (σ+1)
0 σ

B(σ )Γ (σ+1)

– 1–σ

B(σ )
σhσ (3σ –2σ )
B(σ )Γ (σ+1)

σhσ (2σ –1)
B(σ )Γ (σ+1)

.

3.4 The masks based on a middle point (MP) approach

This part also looks for a new structure for the fractional mask. To this end, we reconsider

the ABC-fractional integral as

I
σ
K(t) =

1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

∫ t

0

K(ω)

(t –ω)1–σ
dω. (32)

Applying the new variable of τ = t –ω in the integral (32), we have

I
σ
K(t) =

1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

∫ t

0

K(t – τ )

τ 1–σ
dτ . (33)

Now, by dividing the integral in (33), we have

I
σ
t K(t) =

1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

n–1
∑

m=0

∫ tm+1

tm

K(t – τ )

τ 1–σ
dτ . (34)

The integrals in the above relation can be approximated as follows:

∫ tm+1

tm

K(τ )

τ 1–σ
dτ ≈

K(tm) +K(tm+1)

2

∫ tm+1

tm

dτ

τ 1–σ
. (35)
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Given this approximation, (34) will lead to the following form:

I
σ
K(t) =

1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

n–1
∑

m=0

K(t – tm) +K(t – tm+1)

2

∫ tm+1

tm

dτ

τ 1–σ
,

=
1 – σ

M(σ )
K(t) +

σ

Γ (σ )M(σ )

n–1
∑

m=0

K(t – tm) +K(t – tm+1)

2σ

[

tσm+1 – tσm
]

. (36)

Inserting t = tn = nh in (34), one gets

I
σ
K(tn) =

1 – σ

M(σ )
K(tn)

+
σ

Γ (σ )M(σ )

n–1
∑

m=0

K(tn – tm) +K(tn – tm+1)

2σ

[(

(m + 1)h
)σ

– (mh)σ
]

,

=
1 – σ

M(σ )
K(tn) +

hσ

Γ (σ )M(σ )

n–1
∑

m=0

K(tn–m) +K(tn–m–1)

2

[

(m + 1)σ –mσ
]

. (37)

By performing a series of simple algebraic calculations, Eq. (37) can be transformed into

the following equation:

I
σ
MPK(tn) =

[

1 – σ

M(σ )
+

hσ

2M(σ )Γ (σ )

]

K(tn)

+

[

hσ

2B(σ )Γ (σ )

(

2σ
)

]

K(tn–1) +

[

hσ

B(σ )Γ (σ )

(

3σ – 1

2

)]

K(tn–2)

+

[

hσ

B(σ )Γ (σ )

(

4σ – 2σ

2

)]

K(tn–3) + · · · . (38)

So, we can write corresponding expressions related to x and y directions as follows:

x
I

σ
MPK(x, y)≈

[

2Γ (σ )(1 – σ ) + 1

2M(σ )Γ (σ )

]

K(x, y)

+

[

2σ–1

M(σ )Γ (σ )

]

K(x – 1, y) +

[

3σ – 1

2M(σ )Γ (σ )

]

K(x – 2, y)

+

[

4σ – 2σ

2M(σ )Γ (σ )

]

K(x – 3, y) + · · · , (39)

y
I

σ
MPK(x, y)≈

[

2Γ (σ )(1 – σ ) + 1

2M(σ )Γ (σ )

]

K(x, y)

+

[

2σ–1

M(σ )Γ (σ )

]

K(x, y – 1) +

[

3σ – 1

2M(σ )Γ (σ )

]

K(x, y – 2)

+

[

4σ – 2σ

2M(σ )Γ (σ )

]

K(x, y – 3) + · · · . (40)
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Finally, the coefficients needed to make two new fractional masks are as follows:

ρ0 =
2Γ (σ )(1 – σ ) + 1

2M(σ )Γ (σ )
,

ρ1 =
2σ–1

M(σ )Γ (σ )
,

ρ2 =
3σ – 1

2M(σ )Γ (σ )
,

ρ3 =
4σ – 2σ

2M(σ )Γ (σ )
.

(41)

These coefficients will be used to construct the following fractional masks.

MaskMP1 The first fractional mask to determine the edges of an image takes the follow-

ing structure:

hx =

– 2Γ (σ )(1–σ )+1
2M(σ )Γ (σ )

0 2Γ (σ )(1–σ )+1
2M(σ )Γ (σ )

– 2σ–1

M(σ )Γ (σ )
0 2σ–1

M(σ )Γ (σ )

– 3σ –1
2M(σ )Γ (σ )

0 3σ –1
2M(σ )Γ (σ )

,

hy =

2Γ (σ )(1–σ )+1
2M(σ )Γ (σ )

2σ–1

M(σ )Γ (σ )
3σ –1

2M(σ )Γ (σ )

0 0 0

– 2Γ (σ )(1–σ )+1
2M(σ )Γ (σ )

– 2σ–1

M(σ )Γ (σ )
– 3σ –1

2M(σ )Γ (σ )

.

Mask MP2 Taking (6) and (41) into account, the second structure for the mask is also

proposed:

hx =

2Γ (σ )(1–σ )+1
2M(σ )Γ (σ )

2σ–1

M(σ )Γ (σ )
3σ –1

2M(σ )Γ (σ )

– 4σ –2σ

2M(σ )Γ (σ )
0 4σ –2σ

2M(σ )Γ (σ )

– 3σ –1
2M(σ )Γ (σ )

– 2σ–1

M(σ )Γ (σ )
– 2Γ (σ )(1–σ )+1

2M(σ )Γ (σ )

,

hy =

– 3σ –1
2M(σ )Γ (σ )

– 4σ –2σ

2M(σ )Γ (σ )
2Γ (σ )(1–σ )+1
2M(σ )Γ (σ )

– 2σ–1

M(σ )Γ (σ )
0 2σ–1

M(σ )Γ (σ )

– 2Γ (σ )(1–σ )+1
2M(σ )Γ (σ )

4σ –2σ

2M(σ )Γ (σ )
3σ –1

2M(σ )Γ (σ )

.

It is important to note that all themasks presented in this section are new, and they have

not been reported in the corresponding previous literature.

4 Numerical simulations

The main criterion for measuring the efficiency of the proposed kernels in this paper is

the use of peak signal to noise ratio (PSNR) definition. This index can be calculated using

the following formula:

PSNR = 10 log10

512× 512

MSE
, (42)
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Figure 1 Best PSNR obtained by different methods for the flower image

where

MSE =
1

512× 512

N
∑

j=1

M
∑

i=1

[

I∗(i, j) – I(i, j)
]2
, (43)
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Figure 2 Best PSNR obtained by different methods for the hotel image

where I∗ is the original image, and I denotes the values of the pixels in the comparing

image.

To assess the performance of the proposed fractional-order masks, different input im-

ages are used: “flower”, “hotel”, “cottages”, and “fractional man” with a size of 512 × 512

pixels are considered. The examinedmask also include “GL1”, “GL2”, “TA1”, “TA2”, “Eu1”,

“Eu2”, “MP1”, and “MP2”.
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Figure 3 Best PSNR obtained by different methods for the cottages image

One of the main features of the designed masks in this paper is that their structures

depend on knowing the order of the fractional parameter, say σ . It is important to note that

determining the optimal value for σ , in general, is very difficult and complicated. In fact,

for each block of the image, the appropriate value for this parameter should be determined

considering the structure of the image in that block. In this paper, the performance of the

algorithms is compared with the assumption that sigma is within a range of [0.2, 2]. Then,
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Figure 4 Best PSNR obtained by different methods for the fractional man image

the value for σ is determined in such a way that the corresponding image has the largest

possible PSNR value compared to the other values. In this case the corresponding image is

considered as the output of the method for that image. The values obtained for σ and the

resulting images are reported in Figs. 1–4. In these experiments, the performance of the

proposed masks is compared with three knownmask types, including the Canny, Prewitt,

and Sobol masks. In Figs. 5–8, we have also plotted the graph of the calculated values of

the PNSR for each image for σ in that interval. All simulations have been performed via

MATLAB. The comparison results of PSNR of the proposed masks are compared with

some well-known algorithms in Table 1. By comparing the results reported in Table 1, it is

apparent that in any approximation considered for the fractional operator, the structures

related to mask (6) have a much better performance than the masks obtained by (5). This

feature can be seen in all four approximations considered in the article. Moreover, from

the visual quality of the acquired images and their corresponding PSNRs, it seems that the

best performance among the methods belongs to two corresponding TAmasks, which in

most cases have the highest possible value for PSNR. By comparing themethods presented

in this paper with other well-known methods, it can be concluded that these masks have
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Figure 5 Comparisons between PSNR of proposed masks for different σ s in the flower image

Figure 6 Comparisons between PSNR of proposed masks for different σ s in the hotel image

much better results than these algorithmswith almost equal computation cost. These new

masks can be a good alternative to classic masks in defining the edge of an image.

5 Conclusions

Integrals and derivatives of fractional order have been used successfully in many research

fields. One of these very important and practical fields, in which the fractional differential

account has been used a lot, is image processing. Using basic concepts of fractional differ-

ential calculus, such as derivative and integral, has made significant progress role in many

branches of image processing. Thismanuscript attempts to design several new edge detec-

tors using the fractional definition for integral in the sense of Atangana–Baleanu operator.

Using the advantages of fractional calculus, such as flexibility in choosing the fractional

derivative order, one can overcome the existing problems in the well-known masks such

as Canny, Prewitt, and Sobel. The empirical results prove that the new fractional kernels
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Figure 7 Comparisons between PSNR of proposed masks for different σ s in the cottages image

Figure 8 Comparisons between PSNR of proposed masks for different σ s in the fractional man image

Table 1 Comparisons of PSNRs obtained by different masks

Image Canny Prewitt Sobol GL1 GL2 TA1 TA2 Eu1 Eu2 MP1 MP2

flower –45.509 3.235 3.311 3.433 3.414 3.466 3.611 3.253 3.462 3.387 3.505

hotel –43.673 6.305 6.435 6.452 6.444 6.46 6.407 6.382 6.403 6.466 6.394

cottages –42.879 8.072 8.426 8.511 8.503 8.516 8.45 8.374 8.468 8.512 8.448

fractional man –44.523 4.512 4.479 4.517 4.507 4.534 4.535 4.523 4.515 4.527 4.52

presented in this paper have better performance than other existing methods in improv-

ing edge information and preserving image quality. It is also concluded that they can be

considered as new excellent alternative kernels to enhance edge information of an image.

In fact, they can reveal more accurate information than traditional algorithms. The com-

putational cost of each of the new fractional masks is the same as the computational cost

of conventional fractional masks. It is important to note that the masks used in this article
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can also be easily applied to color images. The next step in this regard could be to provide

an idea for calculating the optimal value for the order of fractional operator.
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