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Abstract. New uniform error estimates are established for finite element ap-
proximations uh of solutions u of second-order elliptic equations Lu = f using
only the regularity assumption ‖u‖1 ≤ c‖f‖−1. Using an Aubin–Nitsche type
duality argument we show for example that, for arbitrary (fixed) ε sufficiently
small, there exists an h0 such that for 0 < h < h0

‖u− uh‖0 ≤ ε‖u− uh‖1.
Here, ‖ · ‖s denotes the norm on the Sobolev space Hs. Other related results
are established.

1. Introduction and results in a special case

The aim of this paper is to prove some new error estimates for Ritz–Galerkin
methods when they are applied to problems whose solutions have “finite energy”
but in general are not “smoother”. Among other things, it will be shown that
the Aubin–Nitsche duality argument yields improved convergence in norms weaker
than the energy norm under such low regularity conditions. This has applications to
existence, uniqueness and error estimates for nonsymmetric problems, and extends
some results given in Schatz [6]. It also has applications to domain decomposition
and multigrid methods [7, 8, 2, 3, 4, 9]. A general theory and applications will be
discussed in §2, but in order to fix the ideas more concretely, we shall first give
some of the results in the special but important case of the finite element method
for Dirichlet’s problem for a second-order elliptic equation on a polyhedral domain
Ω ⊂ RN .

Consider the boundary value problem

Lu =
N∑

i,j=1

− ∂

∂xj

(
aij(x)

∂u

∂xi

)
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f in Ω,(1.1)

u = 0 on ∂Ω.

We shall assume that the coefficients aij(x), bi(x), c(x) ∈ L∞(Ω) and the L is
uniformly elliptic on Ω, i.e., there exists an a0 > 0 such that for all real vectors
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ζ = (ζ1, . . . , ζN ) and all x ∈ Ω

a0

N∑
i=1

ζ2
i ≤

N∑
i,j=1

aij(x)ζiζj .(1.2)

The weak formulation of (1.1) is: Find u ∈ H1
0 (Ω) satisfying

B(u, v) ≡
∫

Ω

( N∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
+

N∑
i=1

bi
∂u

∂xi
v + cuv

)
dx

=

∫
Ω

fv dx ≡ (f, v), ∀v ∈ H1
0 (Ω).

(1.3)

Note that in general B(·, ·) is nonsymmetric and satisfies for some c1 > 0 and
c2 ≥ 0 a Garding-type inequality

c1‖u‖21 − c2‖u‖20 ≤ B(u, u) ∀u ∈ H1
0 (Ω).(1.4)

Furthermore, B(·, ·) is bounded, i.e., there exists a c3 > 0 such that

|B(u, v)| ≤ c3‖u‖1‖v‖1 ∀u, v ∈ H1
0 (Ω).(1.5)

Here, for s ≥ 0, ‖ · ‖s denotes the norm on the Sobolev space Hs(Ω).
Now let us consider the finite element method for (1.3). For each h ∈ (0, 1), we

triangulate Ω with a quasi–uniform mesh of size h, and relative to this triangulation
we let Sh ⊂ H1

0 (Ω) denote a finite element space. For simplicity we will take Sh to
be the continuous piecewise linear functions vanishing on ∂Ω. The finite element
method corresponding to the problem (1.3) is: Find uh ∈ Sh satisfying

B(uh, ϕ) = (f, ϕ) ∀ϕ ∈ Sh.(1.6)

Let us note that if u satisfies (1.3) and uh satisfies (1.6), then u− uh satisfies

B(u− uh, ϕ) = 0 ∀ϕ ∈ Sh.(1.7)

We shall consider two separate cases. In the first it will be assumed that B(·, ·)
is symmetric positive definite. The nonsymmetric case will be considered later on
in this section.

1A. B(·, ·) is symmetric positive definite. Suppose that bi(x) = 0 for i =
1, . . . , N and that (1.4) holds with c2 = 0 so that B(·, ·) is coercive on H1

0 (Ω).
Then it is well known that a unique solution u ∈ H1

0 (Ω) exists for each f ∈ H−1(Ω)
and satisfies

‖u‖1 ≤ c4‖f‖−1(1.8)

for some c4 > 0. Here, for s > 0 the norm on H−s(Ω) is defined in the standard
way by

‖f‖−s = sup
v∈Hs0 (Ω)
‖v‖s=1

(f, v).

For each f ∈ H−1(Ω) the equation (1.6) also has a unique solution uh ∈ Sh. Our
aim here is to derive error estimates for u− uh, using no further properties of the
solution other than those implied by the inequality (1.8). It is important to remark
that under our assumptions on the coefficients it is not known in general whether
u ∈ Hs(Ω) for some s > 1 even if f ∈ C∞(Ω).

We shall prove the following:
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Theorem 1. Suppose that B(·, ·) is positive definite and symmetric and that u ∈
H1

0 (Ω) and uh ∈ Sh satisfy (1.3) and (1.6), respectively, for f ∈ H−1(Ω). Then
(a) Given any ε > 0, there exists an h0 = h0(ε) > 0 such that for all 0 < h <

h0(ε)

‖u− uh‖0 ≤ ε‖u‖1.(1.9)

(b) If f ∈ L2(Ω), then given any ε > 0, there exists an h1 = h1(ε) > 0 such that
for all 0 < h < h1(ε)

‖u− uh‖1 ≤ ε‖f‖0.(1.10)

Let us postpone the proof for a moment and discuss this result. Now it is well
known that

‖u− uh‖1 ≤ c5 inf
χ∈Sh

‖u− χ‖1.(1.11)

Furthermore, Sh becomes dense in H1
0 (Ω) as h→ 0. By this we mean that the Sh

have the property that for each fixed u ∈ H1
0 (Ω) and any given ε > 0 there is an

h2 = h2(ε, u) such that corresponding to each 0 < h < h2 there exists a uI ∈ Sh
satisfying

‖u− uI‖1 ≤ ε.(1.12)

This together with (1.11) implies that ‖u − uh‖1 ≤ c5ε for h < h2(ε, u), which
says that uh converges to u ∈ H1

0 (Ω) in the H1 norm, but the convergence is not
uniform over bounded sets of u in H1

0 (Ω) (see [1]). In contrast to this, the estimate
(1.9) says that uh converges uniformly to u in the L2 norm for sets of u which are
uniformly bounded in the H1 norm. The proof of this result, which is new, will
proceed via a duality argument and is intimately connected with the result of part
(b). The inequality (1.10) says that the convergence of uh to u is uniform in H1 if
we restrict ourselves to the set of solutions u of (1.3) with f ’s which are uniformly
bounded in L2(Ω).

Theorem 1 will follow from the next two lemmas, the first of which is a com-
pactness result which may be of independent interest.

Lemma 1. Let D = {f : f ∈ L2(Ω), ‖f‖0 = 1} be the unit sphere in L2(Ω). Let
W = {u : u = Tf, f ∈ D} where u = Tf ∈ H1

0 (Ω) is the solution of (1.3), i.e.,

B(Tf, v) = (f, v) ∀v ∈ H1
0 (Ω).

Then W is precompact in H1
0 (Ω).

Proof. The set D is precompact in H−1(Ω). By (1.8),

‖u‖1 ≡ ‖Tf‖1 ≤ c4‖f‖−1.

Hence, T is a continuous map of H−1(Ω) into H1
0 (Ω) and therefore W , which is the

image of D under T , is precompact in H1
0 (Ω), which completes the proof.

We shall need the fact that compact subsets of H1
0 (Ω) can be uniformly approx-

imated in H1
0 by elements of Sh.

Lemma 2. Let V be a fixed compact subset of H1
0 (Ω). Then given any ε > 0, there

exists an h3 = h3(ε, V ) > 0 such that for each v ∈ V and each 0 < h < h3 there
exists a χ ∈ Sh satisfying

‖v − χ‖1 ≤ ε.
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Proof. Since V is compact in H1
0 (Ω), then for given ε/2 there exists a finite ε/2

net; i.e., one can find M = M(ε, V ) elements vi ∈ V , i = 1, . . . ,M , such that

V ⊂
⋃M
i=1 ρ(ε/2, vi), where ρ(ε/2, vi) is the ball of radius ε/2 in H1

0 (Ω) centered at
vi. It follows from (1.12) that for each vi there exists a χi ∈ Sh satisfying

‖vi − χi‖1 ≤ ε/2

for all 0 < h < hi = hi(ε/2, vi). Let h3 = mini=1,... ,M hi. If v ∈ V , then there
exists a ball ρ(ε/2, vj) containing v and hence

‖v − χj‖1 ≤ ‖v − vj‖1 + ‖vj − χj‖1 ≤ ε,

which completes the proof.

Proof of Theorem 1. We begin with a proof of (1.10). For f ∈ L2(Ω) set

f̃ =
f

‖f‖0
, ũ =

u

‖f‖0
and ũh =

uh
‖f‖0

.

Now obviously, B(ũ, φ) = (f̃ , φ) for all φ ∈ H1
0 (Ω), and B(ũh, φ) = (f̃ , φ) for all

φ ∈ Sh(Ω), and hence from (1.11)

‖ũ− ũh‖1 ≤ c5 inf
χ∈Sh

‖ũ− χ‖1.

From Lemma 1 it follows that the set W̃ = {ũ : B(ũ, ϕ) = (f̃ , ϕ), ‖f̃‖0 = 1} is a
precompact subset of H1

0 (Ω). By Lemma 2,

inf
χ∈Sh

‖ũ− χ‖1 ≤ ε

for h < h3(ε, W̃ ) and hence

‖ũ− ũh‖1 ≤ ε

or

‖u− uh‖1 ≤ ε‖f‖0,

which completes the proof of (1.10).
In order to prove (1.9), we begin the procedure for the Aubin–Nitsche duality

argument

‖u− uh‖0 = sup
ψ∈L2(Ω)
‖ψ‖0=1

(u− uh, ψ).(1.13)

Let v ∈ H1
0 (Ω) satisfy B(v, η) = (ψ, η) for all η ∈ H1

0 (Ω). Then

|(u− uh, ψ)| = |B(u− uh, v)| = |B(u, v − vh)| ≤ c3‖v − vh‖1‖u‖1.(1.14)

Using (1.10), we have that for all 0 < h < h1

(
ε
c3

)
= h0, c3‖v − vh‖1 ≤ ε‖ψ‖0, and

the inequality (1.9) follows easily from (1.13) and (1.14), which completes the proof
of Theorem 1.

Let us remark that Theorem 1 may be strengthened in several ways. In fact, a
simple consequence of Theorem 1 is the following:
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Corollary 1. Suppose that Theorem 1 holds.
(a) Let s < 1; then given any ε > 0, there exists an h4 = h4(ε, s) > 0 such that

for 0 < h < h4

‖u− uh‖s ≤ ε‖u‖1.(1.15)

(b) Let 1 < p < 2N
N−2 ; then given any ε > 0, there exists an h5 = h5(ε, p) such

that for 0 < h < h5

‖u− uh‖Lp ≤ ε‖u‖1.(1.16)

(c) Suppose that s < 1 and f ∈ H−s(Ω). Then given any ε > 0, there exists an
h6 = h6(ε, s) > 0 such that

‖u− uh‖1 ≤ ε‖f‖−s.(1.17)

Proof. Without loss of generality we may assume 0 < s < 1. By interpolating
the inequality (1.9) with the obvious inequality ‖u− uh‖1 ≤ c5‖u‖1, we obtain for
0 < h < h0(ε1)

‖u− uh‖s ≤ (c5)s(ε1)1−s‖u‖1.
The inequality (1.15) now follows with the choice

ε1 =
( ε
cs5

) 1
1−s

and h4(ε, s) = h0(ε1).
The inequality (1.16) follows easily from (1.15) and a standard Sobolev inequal-

ity. In order to prove (1.17), we may again assume without loss of generality that
0 < s < 1. The inequality (1.17) follows by interpolating between the two inequal-
ities

‖u− uh‖1 ≤ ε‖f‖0
and the inequality

‖u− uh‖1 ≤ c5‖u‖1 ≤ c4c5‖f‖−1.

We leave the details to the reader.

1B. B(·, ·) is nonsymmetric. Let us now consider the general case of (1.3) where
B(·, ·) is nonsymmetric and satisfies (1.4) and (1.5). If we assume that (1.3) has
a unique solution u ∈ H1

0 (Ω) for each f ∈ H−1(Ω), then it is well known that for
some constant c6 the analogue of (1.8) holds, i.e.,

‖u‖1 ≤ c6‖f‖−1.(1.18)

We would now like to consider the question of existence, uniqueness and error
estimates for the finite element solution of (1.7). This question was considered
for example in Schatz [6], where both a simple general theory and an application
to a problem of the type (1.3) was presented. Existence and uniqueness, but not
uniform error estimates, were previously given in [5]. We shall follow the method of
proof given in [6] because, together with the duality argument given here, it yields
additional uniform error estimates, which are useful in applications to multigrid
and domain decomposition methods. We shall first restate the results given there
in an equivalent form useful for our application here. The more general version will
be presented in the next section.
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Lemma 3 (see [6]). (i) Let B(·, ·) satisfy (1.4) and (1.5).
(ii) Suppose further that given ε > 0, there exists an h5 = h5(ε) such that for

any u ∈ H1
0 (Ω) and uh ∈ Sh satisfying (1.7)

‖u− uh‖0 ≤ ε‖u− uh‖1(1.19)

for 0 < h < h5(ε). Then
(a) There exists an h6 = h6(ε) such that for each 0 < h < h6(ε) the equation

(1.6) has a unique solution uh for each u ∈ H1
0 (Ω). For all u ∈ H1

0 (Ω)

(c1 − εc2)‖u− uh‖21 ≤ B(u− uh, u− uh).

(b) Furthermore, there exists a constant c, independent of u, h and uh, such that

‖u− uh‖1 ≤ c inf
χ∈Sh

‖u− χ‖1(1.20)

and obviously

‖u− uh‖0 ≤ εc inf
χ∈Sh

‖u− χ‖1.(1.21)

In order to apply Lemma 3, we must obtain the estimate (1.19). This was done
in [6] in an application by a duality argument for u− uh satisfying (1.7) under the
added condition that the coefficients aij(x), bi(x) and c(x) are smooth functions.
In this case solutions of (1.3) with f ∈ L2(Ω) have the added regularity that
u ∈ H1+γ(Ω) for some 0 < γ ≤ 1 and

‖u‖1+γ ≤ c‖f‖0.(1.22)

A standard duality argument then yields the estimate

‖u− uh‖0 ≤ chγ‖u− uh‖1,
and obviously (1.19) holds for h sufficiently small. Therefore, Lemma 3 applies and
for h sufficiently small (1.6) has a unique solution uh satisfying the estimates (1.20)
and (1.21). Of course, in this case the further estimate

‖u− uh‖1 ≤ chγ‖f‖0
follows easily from (1.21), (1.22) and the approximation properties of Sh.

Our aim now is to show that Lemma 3 holds when only the “minimal” regularity
(1.18) is assumed. We shall again use a duality argument which is similar to that
used in proving (1.9).

Theorem 2. Assume that (1.3) has a unique solution u ∈ H1
0 (Ω) for each f ∈

H−1(Ω) and that (1.4), (1.5) and (1.18) hold. Then
(a) Given any ε > 0 there exists an h7 = h7(ε) such that if u ∈ H1

0 (Ω) and
uh ∈ Sh satisfy (1.7) where 0 < h < h7, then (1.19) holds, i.e.,

‖u− uh‖0 ≤ ε‖u− uh‖1.(1.23)

(b) Lemma 3 holds, and we have the additional estimate that if f ∈ L2(Ω), then
given any ε > 0, there exists an h8 = h8(ε) such that

‖u− uh‖1 ≤ ε‖f‖0.(1.24)

Proof. As in the proof of Theorem 1 we begin the procedure for a standard duality
argument. Let B∗(·, ·) be the adjoint bilinear form to B defined by

B∗(u, v) = B(v, u) ∀u, v ∈ H1
0 (Ω).
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It is well known that if (1.3) has a unique solution in H1
0 (Ω) for every f ∈ H−1(Ω),

then the equation

B∗(w∗, v) = (g, v) ∀v ∈ H1
0 (Ω)(1.25)

has a unique solution for each g ∈ H−1(Ω) and

‖w∗‖1 ≤ c‖g‖−1.(1.26)

Note that B∗ satisfies the conditions of Lemma 1, i.e., the set

W ∗ = {w∗ : B∗(w∗, v) = (g, v), ‖g‖0 = 1}
is a precompact subset of H1

0 (Ω). Now

‖u− uh‖0 = sup
g∈L2(Ω)
‖g‖0=1

(u− uh, g).(1.27)

Furthermore, for any χ ∈ Sh,

(u− uh, g) = B∗(w∗, u− uh) = B(u− uh, w∗ − χ) ≤ c3‖u− uh‖1‖w∗ − χ‖1.
The proof of (1.23) now follows by applying Lemma 2 to the precompact set W ∗.
The proof of (1.24) follows in the same manner as the proof of (1.10) except here
we use (1.20) of Lemma 3. This completes the proof.

The analogue of Corollary 1 also holds in this case.

Corollary 2. Suppose that Theorem 2 holds. Then the results of Corollary 1 hold.
The proof is the same as that of Corollary 1.

2. Generalizations

Our aim in this section is to generalize the results of Theorem 2 to Ritz–Galerkin
methods in an abstract Hilbert space setting.

Let H1 ⊂ H0 ⊂⊂ H−1 be Hilbert spaces where ⊂ means continuous inclusion
and ⊂⊂ means compact inclusion. We shall assume that H−1 is the dual space of
H1 with respect to the pivot space H0, i.e.,

‖f‖H−1 = sup
ϕ∈H1

‖ϕ‖H1=1

(f, ϕ)H0 .(2.1)

Let B(·, ·) be a bilinear form on H1 ×H1 which satisfies a Garding-type inequality
and is bounded, i.e., there exist constants c7 > 0, c8 and c9 such that

c7‖u‖2H1
− c8‖u‖2H0

≤ B(u, u) ∀u ∈ H1(2.2)

and

|B(u, v)| ≤ c9‖u‖H1‖v‖H1 ∀u, v ∈ H1.(2.3)

Consider the problem: For given f ∈ H−1 find u ∈ H1 satisfying

B(u, v) = (f, v)H0 ∀v ∈ H1.(2.4)

We wish to approximate the solution of (2.4) by a Ritz–Galerkin method. To
this end, for each h ∈ (0, 1), let Sh denote a family of finite-dimensional subspaces
of H1. The approximate method is: For given f ∈ H−1 find uh ∈ Sh satisfying

B(uh, ϕ) = (f, ϕ)H0 ∀ϕ ∈ Sh.(2.5)
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Note that if u satisfies (2.4) and uh satisfies (2.5), then

B(u− uh, ϕ) = 0 ∀ϕ ∈ Sh.(2.6)

Concerning existence and uniqueness of a solution of (2.5), the following gener-
alization of Lemma 3 was proved in [6].

Lemma 4 (see [6]). Suppose that B(·, ·) satisfies (2.2) and (2.3). Furthermore
suppose that given any ε > 0, there exists an h8 = h8(ε) such that for any h ∈ (0, h8)
and for any u ∈ H1 and uh ∈ Sh satisfying (2.6) the inequality

‖u− uh‖H0 ≤ ε‖u− uh‖H1(2.7)

is satisfied. Then there exists an h9 > 0 such that for all h ∈ (0, h9), equation (2.6)
has a unique solution uh ∈ Sh for each u ∈ H1. For all u ∈ H1

(c7 − εc8)‖u− uh‖2H1
≤ B(u− uh, u− uh).

Furthermore,

‖u− uh‖H1 ≤ c inf
χ∈Sh

‖u− χ‖H1 ,

‖u− uh‖H0 ≤ cε inf
χ∈Sh

‖u− χ‖H1 ,
(2.8)

where c is independent of h, u and ε.

We shall now impose mild conditions on B and Sh under which the estimate
(2.7) holds. To this end, define B∗ the adjoint of B by

B∗(u, v) = B(v, u) ∀u, v ∈ H1.(2.9)

We will need the following assumptions.

A1. Assume that for each f ∈ H−1 there exist unique solutions u and u∗ in H1

of

B(u, φ) = f(φ) ∀φ ∈ H1(2.10)

and the adjoint equation

B∗(u∗, φ) = f(φ) ∀φ ∈ H1,(2.11)

which satisfy the inequalities

‖u‖H1 ≤ c10‖f‖H−1, ‖u∗‖H1 ≤ c11‖f‖H−1.(2.12)

A2. (Density) Assume that the one-parameter family of finite-dimensional sub-
spaces Sh ofH1 have the following property: For each fixed v ∈ H1 and real number
ε > 0 there exists an h10 = h10(ε, v) > 0 such that for each 0 < h < h10 there exists
a χ ∈ Sh such that

‖v − χ‖H1 ≤ ε.
As a consequence of A2, we have the following generalizations of Lemmas 1 and 2.

Lemma 5. Let W be a compact subset of H1. Then given any ε > 0 (arbitrary but
fixed), there exists an h11 = h11(ε,W ) > 0 such that for each w ∈ W and h < h11

there exists a χ ∈ Sh satisfying ‖w − χ‖H1 ≤ ε.

The proof is exactly the same as for Lemma 2.
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Lemma 6. Let D = {f ∈ H0, ‖f‖H0 = 1} be the unit sphere of H0. Let

W = {w; w = Tf, f ∈ D},
where w = Tf is the unique solution in H1 of

B∗(w, v) = (f, v)H0 ∀v ∈ H1.

Then W is precompact in H1.

The proof is exactly the same as that of Lemma 1.
The generalization of Theorem 2 is as follows:

Theorem 3. Assume that B(·, ·) satisfies (2.2) and (2.3) and in addition A1
and A2 hold. Then

(a) Given any ε > 0, there exists an h7 = h7(ε) such that for 0 < h < h7 and
for any u ∈ H1 and uh ∈ Sh satisfying (2.6) the estimate

‖u− uh‖H0 ≤ ε‖u− uh‖H1

holds. Hence, the results of Lemma 4 hold.
(b) Furthermore, given any ε > 0, there exists an h8 = h8(ε) such that if f ∈ H0

then

‖u− uh‖H1 ≤ ε‖f‖H0.

The proof of this theorem closely follows the proof of Theorem 2 and will be left
to the reader.
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