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Abstract

A set D of vertices in a graph G = (V,E) is a degree restricted dom-

inating set for G if each vertex vi in D is dominating atmost g(di)
vertices of V −D, where g is a function restricting the degree value di
with respect to the given function value ki for a natural valued function
f from the vertex set of the graph. We define three different types of
Degree Restricted Domination by varying the way how the restricted
function g(vi) is defined. If g(di) =

⌈

di
ki

⌉

, the corresponding domina-
tion is called the ceil degree restricted domination, in short, CDRD,
and the dominating set obtained in this manner is the CDRD-set. If
g(di) =

⌊

di
ki

⌋

or g(di) = di − ki + 1, then the corresponding domina-
tions are respectively called the floor degree restricted domination, in
short FDRD, or the translate degree restricted domination, TDRD.
The dominating sets obtained in this manner are the FDRD-set and
the TDRD-set respectively. In this paper, we introduce these new
generalizations of the domination number in line with the different
DRD-sets and study these types of domination for some classes of
graphs like complete graphs, caterpillar graphs etc. Degree restricted
domination has a vital role in retaining the efficiency of nodes in a
network and has many interesting applications.

Keywords: Graph Domination, Degree Restricted Domination, Ceil
Degree Restricted Domination, Floor Degree Restricted Domination,
Translate Degree Restricted Domination.
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1 Introduction

LetG = (V,E) be a graph with order n and sizem, where V = {v1, v2, . . . , vn}.
The degree of a vertex vi ∈ V is the number of edges incident with it and is
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denoted by dG(vi) or di. A caterpillar graph is a tree which can be obtained
from a path by adding pendant edges with its vertices. The initial path sans
the pendant vertices is called the spine of the caterpillar.
Two vertices vi and vj dominate each other in a graph G = (V,E) if vi and
vj are adjacent in G, i.e., vivj ∈ E. A set D ⊆ V in a graph G is called a
dominating set if every vertex in V −D is dominated by atleast one vertex
in D. Property of domination is superhereditary and so, the minimal domi-
nating sets are of much importance. The minimum cardinality of a minimal
dominating set is called the domination number, denoted as γ(G).
In networks, to retain the efficiency of those nodes which are in contact with
more number of nodes, we may have to restrict the transfer of data only
through a certain pairs of nodes. This restriction can be done in various
forms. If the number of such data transformation is restricted equally at
every node, that is, if every vertex vi can dominate atmost

⌈

di
k

⌉

vertices
adjacent to it, then such a domination is called k-part degree restricted dom-
ination [3, 4]. But practically such restriction need not be uniform. It can
vary depending on the situation on the type of the network and its applica-
tions. In this paper, we model some such restrictions through graphs.
The reader is referred to [5] for the notations and terminologies and [1, 2] for
the domination concepts.

2 Main Results

2.1 Degree Restricted Domination

Definition 2.1. Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn}
and let the degree sequence be (d1, d2, . . . , dn) where di = d(vi). Suppose
f : V → N is a function defined as f(vi) = ki, where 1 ≤ ki ≤ di and
f(vi) = 1 if vi is an isolated vertex. A dominating set D ⊆ V is a degree
restricted dominating set for the graph G if each vertex vi in D is dominating
atmost g(di) vertices of V − D, where g is a function restricting the degree
value di with respect to the given function f .

By varying the way the function g is defined we get different generalizations
for the dominating sets. We define here three types of degree restricted
domination.

2.1.1 Ceil Degree Restricted Domination(CDRD)

If g(di) =
⌈

di
ki

⌉

, the corresponding domination is called the ceil degree re-
stricted domination, in short CDRD, and a dominating set obtained in this
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manner is a CDRD-set. The minimum cardinality of a CDRD-set, the
CDRD number of G is denoted as γf(G) or γf . A CDRD-set with mini-
mum cardinality is a γf -set.

Observation 2.2. 1. If ki = 1, for all vi ∈ V , then the CDRD is same
as the fundamental domination. Thus γf(G) = γ(G) in this case.

2. If ki = k, where k ≤ δ(G) for each vi ∈ V , then the corresponding
domination is the k-part degree restricted domination defined in [4].

v1(2)

v6(1)

v3(1)
v4(3)

v2(2)

v7(1)

v5(2)

Figure 2.1.1: Graph G

For the graph G in Fig.2.1.1 with the given function f(v1) = 2, f(v2) =
2, f(v3) = 1, f(v4) = 3, f(v5) = 2, f(v6) = 1 and f(v7) = 1, indicated in the
parantheses, v1, v2, v5, v7 can dominate atmost one vertex and v3, v4, v6 can
dominate atmost two vertices in accordance with CDRD. Thus {v2, v3, v4}
forms a minimal CDRD set and which is also a minimum CDRD-set. Thus
γf(G) = 3.

2.1.2 Floor Degree Restricted Domination(FDRD)

If g(di) =
⌊

di
ki

⌋

, the corresponding domination is the floor degree restricted
domination, in short FDRD, and a dominating set obtained in this manner
is a FDRD-set. The minimum cardinality of a FDRD-set, FDRD number
is denoted as γf(G) or γf . A FDRD-set with minimum cardinality is a
γf -set.

Observation 2.3. When each di is divisible by the corresponding ki, for
i = 1, 2, . . . , n then

⌈

di
ki

⌉

=
⌊

di
ki

⌋

and hence the CDRD-set and FDRD-set
will be same.

In Fig.2.1.1 v1, v2, v4, v5, v7 can dominate atmost one vertex and v3, v6 can
dominate atmost two vertices in accordance with FDRD. Thus {v2, v3, v4}
forms a minimal FDRD set and which is also a minimum FDRD-set. Thus
γf(G) = 3.
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2.1.3 Translate Degree Restricted Domination(TDRD)

If g(di) = di−ki+1, then such a domination is the translate degree restricted
domination, in short TDRD, and such dominating set is called a TDRD-
set. The minimum cardinality of a TDRD-set, TDRD number is denoted
as γft(G) or γft . A TDRD-set with minimum cardinality is a γft-set.
In Fig.2.1.1 v1, v2, v5, v7 can dominate atmost one vertex, v3, v6 can dominate
atmost two vertices and v4 can dominate atmost 3 vertices in accordance
with TDRD. Thus {v2, v3, v7} forms a minimal TDRD set; but is not a
minimum TDRD-set. Here {v3, v4} forms a minimum TDRD-set and thus
γft(G) = 2.

Observation 2.4. The newly defined domination varies for the same graph
with different function values. Consider the graph G in Fig.2.1.1 with dif-
ferent function value as f(v1) = 2, f(v2) = 2, f(v3) = 1, f(v4) = 2, f(v5) =
2, f(v6) = 1 and f(v7) = 1, then v4 can dominate atmost three vertices with
respect to CDRD and thus γf(G) = 2 with the γf -set {v3, v4}.

2.2 DRD Number

In a graph G with the vertex set {v1, v2, . . . , vn}, a vertex can dominate
maximum number of vertices if ki = 1 for every i. Then as observed above
γf(G) = γ(G). A vertex vi can dominate only one of its neighbours when
ki = di, and thus the CDRD number will be maximum if all the vertices
have ki = di. In a star graph K1,n−1, if ki = di for each vertex, then the
central vertex will dominate one of its neighbours and all other vertices must
be in the CDRD set. Thus γf(K1,n−1) = n− 1. Hence γ ≤ γf ≤ n− 1.

Theorem 2.5. For any graph G, γ(G) ≤ γf(G) ≤ γf(G).

Proof. Any CDRD-set or FDRD-set is also a dominating set for any graph
G. Thus γ(G) ≤ γf(G) and γ(G) ≤ γf(G). Also, for any vertex vi (with the

function value ki and the degree di),
⌊

di
ki

⌋

≤
⌈

di
ki

⌉

and hence γf(G) ≤ γf(G).
Thus γ(G) ≤ γf(G) ≤ γf(G).

Corollary 2.5.1. If G is a graph for which degree di of each vertex is divisible
by the corresponding function value ki, then γf(G) = γf(G).

Proof. Since every ki divides di, we have
⌈

di
ki

⌉

=
⌊

di
ki

⌋

. So, every CDRD-set
must be a FDRD-set and hence the result.

Corollary 2.5.2. If G is a graph for which degree di of each vertex in a γf or
γf -set is divisible by the corresponding function value ki, then γf(G) = γf(G).
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Corollary 2.5.3. If G is a graph for which each vertex has the function value
ki = 1, then γ(G) = γf(G) = γf(G).

The corollaries to Theorem 2.5 are only the sufficient conditions. Figure 2.2.2
is a counter example for the converse of above stated corollaries where the
function values for the vertices are indicated in the parantheses.

v1(1)

v3(2) v4(2)

v2(2)

v5(1)

Figure 2.2.2: Counter example for the converse of Corollaries to Theorem 2.5

Theorem 2.6. For any graph G,

⌈

n

1+
⌈

∆

k

⌉

⌉

≤ γf ≤ n − max
i∈[n]

⌈

di
ki

⌉

where

k = min
i∈[n]

ki.

Proof. For any vertex vi in a γf -set, it can dominate atmost 1+
⌈

di
ki

⌉

vertices.

Maximum possible value for
⌈

di
ki

⌉

is when di = ∆ and ki = k, where k =

min
i∈[n]

ki. Thus
⌈

n

1+
⌈

∆

k

⌉

⌉

≤ γf .

Let vi be the vertex where
⌈

di
ki

⌉

is maximum. Then all but those
⌈

di
ki

⌉

vertices

dominated by vi will form a CDRD-set for G. Hence γf ≤ n−max
i∈[n]

⌈

di
ki

⌉

.

The upperbound is attained for the star graph and the lower bound is
attained for the complete graph K3p if ki ≥ ⌈3p−1

2
⌉ for all vi or the cycle C3p

if ki = 1 for all i ≡ 0 (mod 3).

Theorem 2.7. For any isolate free graph G, γf ≤ β ′, the edge covering
number of G.

Proof. Let {e1, e2, . . . , eβ′} be a maximum edge covering for the graph G. If
ei has the end vertices vi1 and vi2 , then the collection of all vi1 ’s forms a
CDRD-set for the graph G. Thus γf ≤ β ′.

If all the vertices in the graph has the function value ki = di, then the
bound mentioned above will be attained by the CDRD number γf .

5



Corollary 2.7.1. For any isolate free bipartite graph G, γf ≤ α, the inde-
pendence number of G.

2.2.1 Complete graph Kn

CDRD number for a complete graph with some particular functions can be
determined.

Theorem 2.8. For a complete graph Kn if there are atmost
⌊

2n
3

⌋

vertices
with ki = di, then γf(Kn) ≤

⌈

n
3

⌉

.

Proof. Since Kn is an n − 1 regular graph of order n, the function value ki
can vary from 1 to n−1. Unless ki = di, vi can dominate atleast two vertices.
Thus a set of atmost

⌈

n
3

⌉

vertices with ki < di will form a CDRD-set for
Kn. Hence γf(Kn) ≤

⌈

n
3

⌉

.

This is only a necessary condition for the CDRD number to be bounded for
Kn, but not sufficient since the presence of a vertex vi with ki = 1 and all
other vertices with ki = di will give γf(Kn) ≤

⌈

n
3

⌉

.
Similar result can be obtained for the FDRD number as below.

Theorem 2.9. For a complete graph Kn if there are atmost
⌊

2n
3

⌋

vertices
with ki >

⌈

n−1
2

⌉

, then γf(Kn) ≤
⌈

n
3

⌉

.

Here also it is not a sufficient condition since a vertex with ki = 1 will give
γf(Kn) = 1, without considering the kj values for other vertices. Similar
result can be obtained for the TDRD number as below.

Theorem 2.10. For a complete graph Kn if there are atmost
⌊

2n
3

⌋

vertices
with ki = di, then γft(Kn) ≤

⌈

n
3

⌉

.

Here also it is not a sufficient condition since a vertex with ki = 1 will give
γft(Kn) = 1, without considering the kj values for other vertices.

2.2.2 Caterpillar graph

If G is a caterpillar graph whose spine is the path Pn = v1v2 . . . vn, where
each vertex vi in the spine has degree di and is attached to li leaves, then di =
{

li + 1 if i = 1 or n
li + 2 if i = 2, 3, . . . , n− 1

, assuming that li ≥ 1, for all i = 1, 2, . . . , n.

Let f : V → N is defined as f(vi) = ki and f(vij) = 1, where vij is the leaf
attached to the vertex vi, 1 ≤ j ≤ li, and 1 ≤ i ≤ n.
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Theorem 2.11. If G is the caterpillar graph defined as above then γf(G) =
∑

i=1,n

(li −
⌈

li+1
ki

⌉

) +
n−1
∑

i=2

(li −
⌈

li+2
ki

⌉

) + n, provided li > 0, ki > 1 and if li = 1

then ki = 3.

Proof. Since li > 0 for all the vertices in the spine v1v2 . . . vn, each vi must
be a member in every CDRD-set. Thus all the n vertices in the spine are
necessary in the γf -set. In the spine, all but v1 and vn can dominate

⌈

li+2
ki

⌉

vertices and at the same time v1 and vn can dominate
⌈

li+1
ki

⌉

vertices. Let
the number of pendant vertices adjacent to vi but not dominated by it, be

ri. Then ri =

{

li −
⌈

li+1
ki

⌉

if i = 1 or n

li −
⌈

li+2
ki

⌉

if i = 2, 3, . . . , n− 1
.

Any of the ri leaves adjacent to vi must be in every CDRD-set. So, γf(G) =
∑

i=1,n

(li −
⌈

li+1
ki

⌉

) +
n−1
∑

i=2

(li −
⌈

li+2
ki

⌉

) + n.

Theorem 2.12. For the star graph K1,n, γf ≥
⌊

n
2

⌋

+ 1 unless the central
vertex has the function value 1.

Proof. Let v1 be the central vertex in the star graph K1,n. If f(v1) = 1, then
γf = γ = 1.

If f(v1) = k1, where 1 < k1 ≤ n. Since
⌈

n
k1

⌉

≤
⌈

n
2

⌉

, v1 can dominate atmost
⌈

n
2

⌉

remaining vertices of the graph. Thus any CDRD-set will contain atleast
n −

⌈

n
2

⌉

vertices of the graph other than v1. Hence γf ≥
⌊

n
2

⌋

+ 1 for any
function f : V → N.

Let C2 denotes the collection of caterpillars whose leaves are attached only
with the vertices vi, where i ≡ 2(mod 3) on the spine Pn = v1v2 . . . vn. Fig.
2.2.3 is an example for a caterpillar in the class C2.

v2 v3(r−1) v3r−2 v3r−1v1 v3rv3 vi v3(r−1)−1

Figure 2.2.3: Graph G ∈ C2

Theorem 2.13. If G ∈ C2 with d(vi) = ni and f(vi) = ki, then γf(G) ∈ {k :

k =
n
∑

i=1
i≡2(mod 3)

ni −
⌈

ni

ki

⌉

+ 1}.
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Proof. Each vi, where i ≡ 2(mod 3) together with the leaves attached to it
forms a star graph K1,ni

. So in Theorem 2.12, ni −
⌈

ni

ki

⌉

+ 1 vertices are
required to dominate that star. Hence to dominate the entire graph we have
to consider CDRD-set of each star centered at vi, where i ≡ 2(mod 3).

2.2.3 Path and Cycle

Theorem 2.14. If Pn is a path of order n,
⌈

n
3

⌉

≤ γf(Pn) ≤
⌈

n
2

⌉

.

Proof. In a path Pn = v1v2 . . . vn, degree of the vertex vi be di and

di =

{

1 if i = 1 or n
2 if i = 2, 3, . . . , n− 1

.

Thus ki =

{

1 if i = 1 or n
1 or 2 if i = 2, 3, . . . , n− 1

. Hence v1 and vn can dominate

exactly one vertex and all other vertices will dominate 1 or 2 vertices with
respect to the ki values 2 or 1 respectively. If each vertex vi has ki = di, then
each vertex can dominate exactly one other vertex and in such case, those
vertices with odd index will form a CDRD-set. So, γf(Pn) ≤

⌈

n
2

⌉

. Also

γ(Pn) =
⌈

n
3

⌉

and γ(G) ≤ γf(G) for any graph G. Thus
⌈

n
3

⌉

≤ γf(Pn) ≤
⌈

n
2

⌉

.

Theorem 2.15. If Cn is a cycle of order n,
⌈

n
3

⌉

≤ γf(Cn) ≤
⌈

n
2

⌉

.

Definition 2.16 (Restricted radius). Let G = (V,E) be any graph and
S ⊆ V . We can define the radius of G restricted to S as radS(G) =
min
u,v∈S

{dG(u, v)}.

Clearly, if S1 ⊆ S2, then radS1
(G) ≥ radS2

(G).

Theorem 2.17. For a cycle Cn of order n with the given function f, if
radS1

(G) ≥ 3 where S1 is the collection of vertices mapping to 1 by the
function f, then γf(Cn) ≤ n− 2|S1|.

Proof. For any vi ∈ V (Cn), di = 2 and so ki = 1 or 2. Let S1 = {vi ∈
V (Cn) : f(vi) = 1}. If radS1

(G) ≥ 3, there exist vertices in V with both
the function values 1 and 2. All the vertices in S1 can dominate both of its
neighbours and thus, the remaining vertices which are not being dominated
are only those with ki = 2, that is, n − 3|S1| in number. All these vertices
together with those in S1 will form a CDRD-set. Hence γf(Cn) ≤ n− 2|S1|.
If radS1

(G) < 3, then can form a new set S from S1 by deleting necessary
vertices so that radS(G) ≥ 3. Then γf(Cn) ≤ n− 2|S|.
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3 Conclusion

In this paper, some new generalized forms of domination were introduced
by restricting the number of vertices a vertex can dominate. The newly de-
fined variations of dominations are Ceil Degree Restricted Domination, Floor
Degree Restricted Domination and Translate Degree Restricted Domination.
As the name indicates, in each type of domination a vertex dominates a par-
ticular number of vertices as the given function indicates. Some bounds for
the Degree Restricted Domination number have been discussed in this paper
and also Degree Restricted Domination is studied for some particular classes
of graphs like the complete graph Kn, paths, cycles and the caterpillars.
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