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Abstract

In this paper, the (k, s)-fractional integral operator is used to generate new classes of integral inequalities
using a family of n positive functions, (n ∈ N). Two classes of integral inequalities involving the (k, s)-
fractional integral operator are derived here and these results allow us in particular to generalize some
classical inequalities. Certain interesting consequent results of the main theorems are also pointed out.
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1. Introduction and preliminaries

Fractional calculus and its wide application have recently been paid to an ever increasing extent atten-
tions. In mathematical analysis, the fractional calculus is a very helpful tool to perform differentiation and
integration with the real number or complex number powers of the differential or integral operators. A
detailed account of fractional calculus operators along with their properties and applications can be found
in the research monographs by Miller and Ross [18] and Kiryakova [15]. It is fairly well-known that there
are a number of different definitions of fractional integrals and their applications. Each definition has its
own advantages and suitable for applications to different type of problems. Recently, Atangana and Baleanu

∗Corresponding author
Email addresses: m.aldhaifallah@psau.edu.sa (M. Aldhaifallah), muharremtomar@gmail.com (M. Tomar),

ksnisar1@gmail.com (K. S. Nisar), sunil_a_purohit@yahoo.com (S. D. Purohit)

Received 2016-07-18



M. Aldhaifallah, et al., J. Nonlinear Sci. Appl. 9 (2016), 5374–5381 5375

[1] added one more dimension to this study by proposing a derivative that is based upon the generalized
Mittag-Leffler function, since the Mittag-Leffler function is more suitable in expressing nature than power
function. For the more recent development of fractional calculus, we refer the reader to the recent papers
[2, 3, 10, 14, 22, 23, 30].

Integral inequalities are taken up to be important as these are useful in the study of different classes of
differential and integral equations (see [19]). During the past several years, many researchers have obtained
various fractional integral inequalities comprising the different fractional differential and integral operators.
This subject has earned the attention of many researchers and mathematicians during the last few decades.
There is a large number of the fractional integral operators discussed in the literature, but because of their
applications in many fields of sciences, the Riemann-Liouville and Hadamard fractional integral operators
have been studied extensively [7, 8, 11, 15, 16, 21, 29, 31]. Further, for inequalities involving generalized
fractional operators one can see [4–6, 24–28].

Recently, fractional k-fractional integral operators have been investigated in the literature by some
authors. For this, we begin with the following properties in the literature. The Pochhammer k-symbol
(x)n,k and the k-gamma function Γk are defined as follows (see [9]):

(x)n,k := x(x+ k)(x+ 2k) · · · (x+ (n− 1)k) , (n ∈ N, k > 0) , (1.1)

and

Γk(x) := lim
n→∞

n! kn (nk)
x
k
−1

(x)n,k
,
(
k > 0, x ∈ C \ kZ−0

)
, (1.2)

where kZ−0 :=
{
kn : n ∈ Z−0

}
. It is noted that the case k = 1 of (1.1) and (1.2) reduces to the familiar

Pochhammer symbol (x)n and the gamma function Γ. The function Γk is given by the following integral:

Γk(x) =

∫ ∞
0

tx−1 e−
tk

k dt, (<(x) > 0).

The function Γk defined on R+ is characterized by the following three properties:

(i) Γk(x+ k) = xΓk(x);

(ii) Γk(k) = 1;

(iii) Γk(x) is logarithmically convex.

It is easy to see that

Γk(x) = k
x
k
−1 Γ

(x
k

)
, (<(x) > 0, k > 0) .

We want to recall the preliminaries and notations of some well-known fractional integral operators that
will be used to obtain some remarks and corollaries.

The (k, s)-Riemann-Liouville fractional integral operator skJ αa of order α > 0 for a real-valued continuous
function f(t) is defined as (see [28, p. 79, Definition 2.1.]):

s
kJ αa f(t) =

(s+ 1)1−α
k

kΓk(α)

∫ x

a
(xs+1 − ts+1)

α
k
−1tsf(t)dt, (1.3)

where k > 0, β > 0 and s ∈ R \ {−1}.

Throughout this paper, we will obtain our main results by assuming s ∈ R+\{−1} instead of s ∈ R\{−1}.

2. Main results

In this section, we prove two classes of integral inequalities involving (k, s)-fractional integral operator.
These results allow us in particular to generalize some classical inequalities.
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Theorem 2.1. Let (f i)i=1,...,n be n positive continuous and decreasing functions on [a, b] and a < t ≤ b, α >
0, k > 0, s ∈ R+ \ {−1}, δ > 0, ζ ≥ γp > 0. Then, the following inequality holds true

s
kJ αa

[∏n
i 6=p f

γi
i f

ζ
p (t)

]
s
kJ αa [

∏n
i=1 f

γi
i (t)]

≥
s
kJ αa

[
(t− a)δ

∏n
i 6=p f

γi
i f

ζ
p (t)

]
s
kJ αa [(t− a)δ

∏n
i=1 f

γ
i (t)]

, (2.1)

where p is any fixed integer in {1, 2, ..., n}.

Proof. Since (f i)i=1,...,n are n positive continuous and decreasing functions on [a , b], then we have(
(ρ− a)δ − (τ − a)δ

)(
f
ζ−γp
p (τ)− f ζ−γpp (ρ)

)
≥ 0

for any fixed p ∈ {1, . . . , n} and ζ ≥ γp > 0, δ > 0, τ, ρ ∈ [a, t] ; a < t ≤ b.
Let us consider the following functional,

Fαs (t, τ) =
(s+ 1)1−α

k
(
ts+1 − τ s+1

)α
k
−1
τ s

kΓk(α)

×
n∏
i=1

fγii (τ)
(

(ρ− a)δ − (τ − a)δ
)(

f
ζ−γp
p (τ)− f ζ−γpp (ρ)

)
,

where α, k > 0, t > a and s ∈ R+ \ {−1}
We observe that each factor of the above functional is positive in view of the conditions stated with

Theorem 2.1, and hence, the function Fαs (t, τ) remains positive for all τ ∈ (a, t) (t > a).
Since Fαs (t, τ) ≥ 0 and by using the definition of (k, s)-fractional integral, then we have

0 ≤
∫ t

a
Fαs (t, τ)dτ = (ρ− a)δskJ αa

 n∏
i 6=p

fγii f
ζ
p (t)

+ f
ζ−γp
p (ρ)skJ αa

[
(t− a)δ

n∏
i=1

fγii (t)

]

− (ρ− a)δf
ζ−γp
p (ρ) skJ αa

[
n∏
i=1

fγii (t)

]
− s
kJ αa

(t− a)δ
n∏
i 6=p

fγii f
ζ
p (t)

 . (2.2)

By multiplying both sides of (2.2) by (s+1)1−
α
k (ts+1−ρs+1)

α
k
−1ρs

kΓk(α) and integrating with respect to ρ from a

to t, and by using the definition of (k, s)-fractional integral, we get

s
kJ αa

 n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ αa

[
(t− a)δ

n∏
i=1

fγii (t)

]
≥ s

kJ αa

(t− a)δ
n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ αa

[
n∏
i=1

fγii (t)

]
,

which arrives the result (2.1).

Remark 2.2. The inequality (2.1) is reversed, if the functions (f i)i=1,...,n are increasing on [a, b]. Further,
on setting s = 0, α = k = n = 1 and t = b, Theorem 2.1 leads to the known Theorem 3 due to [17, p. 205].

Theorem 2.3. Let (f i)i=1,...,n be n positive continuous and decreasing functions on [a, b] and a < t ≤ b,

α, β > 0, k > 0, s ∈ R+ \ {−1}, ζ ≥ γp > 0, where p is a fixed integer in {1, 2, . . . , n}. Then, the following
inequality holds true

s
kJ

α
a

[∏n
i6=p f

γi
i fζp (t)

]
s
kJ

β
a [(t−a)δ

∏n
i=1 f

γi
i (t)]+skJ

β
a

[∏n
i6=p f

γi
i fζp (t)

]
s
kJ

α
a [(t−a)δ

∏n
i=1 f

γi
i (t)]

s
kJ αa

[
(t−a)δ

∏n
i6=p f

γi
i fζp (t)

]
s
kJ

β
a [

∏n
i=1 f

γi
i (t)]+skJ

β
a

[
(t−a)δ

∏n
i6=p f

γi
i fζp (t)

]
s
kJ αa [

∏n
i=1 f

γi
i (t)]

≥ 1.
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Proof. By multiplying both side of (2.2) by (s+1)1−
β
k (ts+1−ρs+1)

α
k
−1ρs

kΓk(β)

∏n
i=1 f

γi
i (ρ), then integrating the re-

sulting inequality with respect to ρ over (a, t), a < t ≤ b and by using Fubini’s theorem, we get

0 ≤
∫ t

a

∫ t

a

(s+ 1)1−β
k

(
ts+1 − ρs+1

)β
k
−1
ρs

kΓk(β)

n∏
i=1

fγii (ρ)Fαs (t, τ)dτdρ

=s
kJ αa

 n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ βa

[
(t− a)δ

n∏
i=1

fγii (t)

]

+ s
kJ βa

 n∏
i 6=p

fγii f
ζ
p (t)

s
kJ αa

[
(t− a)δ

n∏
i=1

fγii (t)

]

−skJ αa

(t− a)δ
n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ βa

[
n∏
i=1

fγii (t)

]

− s
kJ βa

(t− a)δ
n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ αa

[
n∏
i=1

fγii (t)

]
.

This completes the proof of Theorem 2.3.

Remark 2.4. It may be noted that for α = β, Theorem 2.3 immediately reduces to Theorem 2.1. Again, for
s = 0, α = β = k = n = 1 and t = b, Theorem 2.3 reduces to Theorem 3 of [17, p. 205].

Now, we consider another class of fractional integral inequalities which generalizes the above theorems,
in the following manner.

Theorem 2.5. Let (f i)i=1,...,n and g be continuous functions on [a, b] such that g is increasing and (f i)i=1,...,n

are decreasing on [a, b] and α > 0, k > 0, s ∈ R+ \ {−1}, a < t ≤ b, ζ ≥ γp > 0 where p is a fixed integer in
{1, 2, . . . , n}. Then, the following inequality holds true

s
kJ αa

[∏n
i 6=p f

γi
i f

ζ
p (t)

]
s
kJ αa

[
gδ(t)

∏n
i=1 f

γi
i (t)

]
s
kJ αa

[
gδ(t)

∏n
i 6=p f

γi
i f

ζ
p (t)

]
s
kJ αa [

∏n
i=1 f

γi
i (t)]

≥ 1.

Proof. Under the valid condition of Theorem 2.5, we can write(
gδ(ρ)− gδ(τ)

)(
f
ζ−γp
p (τ)− f ζ−γpp (ρ)

)
≥ 0

for all p = 1, . . . , n, a < t ≤ b, α > 0, k > 0, s ∈ R+ \ {−1}, δ > 0, ζ ≥ γp > 0, τ, ρ ∈ [a , b].
Now, let us consider the quantity

Lk,s (t; τ, ρ) =
(s+ 1)1−α

k
(
ts+1 − τ s+1

)α
k
−1
τ s

kΓk(α)

×
n∏
i=1

fγii (τ)
((
gδ(ρ)− gδ(τ)

))(
f
ζ−γp
p (τ)− f ζ−γpp (ρ)

)
.

It is clear that
Lk,s (t; τ, ρ) ≥ 0,
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therefore,

0 ≤
∫ t

0
Lk,s (t; τ, ρ) dτ =gδ (ρ) skJ αa

 n∏
i 6=p

fγii f
ζ
p (t)

+ f
ζ−γp
p (ρ) skJ αa

[
gδ (t)

n∏
i=1

fγii (t)

]
(2.3)

− s
kJ αa

gδ (t)
n∏
i 6=p

fγii f
ζ
p (t)

− gδ (ρ)f
ζ−γp
p (ρ) skJ αa

[
n∏
i=1

fγii (t)

]
.

Consequently,

s
kJ αa

 n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ αa

[
gδ (t)

n∏
i=1

fγii (t)

]
≥ s

kJ αa

gδ(t) n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ αa

[
n∏
i=1

fγii (t)

]
.

Theorem 2.5 is thus proved.

Another generalization of Theorem 2.5 is as below.

Theorem 2.6. Let (f i)i=1,...,n and g be positive continuous functions on [a, b], such that g is increasing and
(f i)i=1,...,n are decreasing on [a, b]. Then for any fixed p ∈ {1, 2, . . . , n} and for all a < t ≤ b, α, β > 0,

k > 0, s ∈ R+ \ {−1}, δ > 0, ζ ≥ γp > 0 we have

s
kJ

α
a

[∏n
i6=p f

γi
i fζp (t)

]
s
kJ

β
a [gδ(t)

∏n
i=1 f

γi
i (t)]+skJ

β
a

[∏n
i6=p f

γi
i fζp (t)

]
s
kJ

α
a [gδ(t)

∏n
i=1 f

γi
i (t)]

s
kJ αa

[
g(t)

∏n
i6=p f

γi
i fζp (t)

]
s
kJ

β
a [

∏n
i=1 f

γi
i (t)]+skJ

β
a

[
g(t)

∏n
i 6=p f

γi
i fζp (t)

]
s
kJ αa [

∏n
i=1 f

γi
i (t)]

≥ 1.

Proof. By using (2.3) we can write

0 ≤
∫ t

a

∫ t

a

(s+ 1)1−β
k
(
ts+1 − ρs+1

)β
k
−1
ρs

kΓk(β)

n∏
i=1

fγii (ρ)Lk,s (t; τ, ρ) dτdρ

= s
kJ αa

 n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ βa

[
gδ (t)

n∏
i=1

fγii (t)

]

+ s
kJ βa

 n∏
i 6=p

fγii f
ζ
p (t)

s
kJ αa

[
gδ (t)

n∏
i=1

fγii (t)

]

−skJ αa

g (t)

n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ βa

[
n∏
i=1

fγii (t)

]

−skJ βa

g (t)

n∏
i 6=p

fγii f
ζ
p (t)

 s
kJ αa

[
n∏
i=1

fγii (t)

]
.

On some simplification, this completes the proof of Theorem 2.6.

Remark 2.7. For α = β, Theorem 2.6 immediately reduces to Theorem 2.5. Further, by applying Theorem
2.5 for s = 0, α = β = k = n = 1 and t = b, we obtain Theorem 4 of [17, p. 206].

Theorem 2.8. Let (f i)i=1,...,n and g be continuous functions on [a, b]. Suppose that for any fixed p ∈

{1, 2, ..., n} ,
(
f δp (τ) gδ (ρ)− f δp (ρ)gδ (τ)

) (
f
ζ−γp
p (τ)− f ζ−γpp (ρ)

)
≥ 0, δ > 0, α > 0, k > 0, s ∈ R+{−1} \

{−1}, ζ ≥ γp > 0, τ, ρ ∈ [a, t] , t ∈ (a, b], then we have

s
kJ αa

[∏n
i 6=p f

γi
i f

ζ+δ
p (t)

]
s
kJ αa

[
gδ (t)

∏n
i=1 f

γi
i (t)

]
s
kJ αa

[
gδ (t)

∏n
i 6=p f

γi
i f

ζ
p (t)

]
s
kJ αa

[
f δp
∏n
i=1 f

γi
i (t)

] ≥ 1.
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Proof. The proof is quite similar to Theorem 2.5, provided if we replace the quantity(
gδ (ρ)− gδ (τ)

)
by
(
f δp (τ) gδ (ρ)− f δp (ρ)gδ (τ)

)
.

Theorem 2.9. Let (f i)i=1,...,n and g be positive continuous functions on [a, b]. Suppose that for any fixed

p ∈ {1, 2, ..., n} ,
(
f δp (τ) gδ (ρ)− f δp (ρ)gδ (τ)

) (
f
ζ−γp
p (τ)− f ζ−γpp (ρ)

)
≥ 0, δ > 0, α > 0, ζ ≥ γp > 0, τ, ρ,∈

[a, t] , t ∈ (a, b], then the inequality

s
kJ αa

[∏n
i 6=p f

γi
i f

ζ+δ
p (t)

]
s
kJ

β
a

[
gδ (t)

∏n
i=1 f

γi
i (t)

]
+ s
kJ

β
a

[∏n
i 6=p f

γi
i f

ζ+δ
p (t)

]
s
kJ αa

[
gδ (t)

∏n
i=1 f

γi
i (t)

]
s
kJ αa

[
gδ (t)

∏n
i 6=p f

γi
i f

ζ+δ
p (t)

]
s
kJ

β
a

[
f δp
∏n
i=1 f

γi
i (t)

]
+ s
kJ

β
a

[
gδ (t)

∏n
i 6=p f

γi
i f

ζ
p (t)

]
s
kJ αa [

∏n
i=1 f

γi
i (t)]

≥ 1

holds true.

Proof. The proof is quite similar to Theorem 2.6, provided if we replace the quantity(
gδ (ρ)− gδ (τ)

)
by
(
f δp (τ) gδ (ρ)− f δp (ρ)gδ (τ)

)
.

Remark 2.10. Again it is interesting to observe that, for α = β Theorem 2.9 immediately reduces to Theorem
2.5. Also, by applying Theorem 2.9 for s = 0, α = β = k = n = 1 and t = b, we obtain the known results
[17, Theorem 5, p. 207].

3. Special cases

The most important feature of (k, s)-fractional integrals is that they generalize some types of fractional
integrals (Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, generalized frac-
tional integral and Hadamard fractional integral). These important special cases of the integral operator
s
kJ αa are mentioned below:

1. For k = 1, the operator in (1.3) yields the following generalized fractional integrals defined by Katu-
gompola in [12]:

r
aIαt f(t) =

(r + 1)1−α

Γ(α)

∫ x

a
(xr+1 − tr+1)α−1trf(t)dt.

2. Firstly by taking k = 1, after that by taking limit r → −1+ and by using L’hospital’s rule, the operator
in (1.3) leads to Hadamard fractional integral operator [11]. That is,

lim
r→−1+

r
aIαt f(t) = lim

r→−1+

(r + 1)1−α

Γ(α)

∫ x

a

f(t)tr

(xr+1 − tr+1)1−αdt

=
1

Γ(α)

∫ x

a
lim

r→−1+
f(t)tr

(
r + 1

xr+1 − tr+1

)1−α
dt

=
1

Γ(α)

∫ x

a
f(t) lim

r→−1+

(
r + 1

xr+1 − tr+1

)1−α dt

t

=
1

Γ(α)

∫ x

a
f(t)

(
lim

r→−1+

r + 1

xr+1 − tr+1

)1−α dt

t

=
1

Γ(α)

∫ x

a

(
log

x

t

)
f(t)

dt

t
= HJ α[f(t)],

(see [13, p. 569, eqn. (3.13)]).



M. Aldhaifallah, et al., J. Nonlinear Sci. Appl. 9 (2016), 5374–5381 5380

3. If we take s = 0 in (1.3), the operator (1.3), reduces to the k-Riemann-Liouville fractional integral
operator, which firstly defined by Mubeen and Habibullah in [20], this relation is as follows:

Iαa,kf(t) =
1

kΓk(α)

∫ x

a
(x− t)

α
k
−1f(t)dt.

4. Again, by taking s = 0 and k = 1, the operator (1.3) gives us the Riemann-Liouville fractional
integration operator:

Rα(f(t)) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt.

Now, by suitably choosing the values of parameters k and s the results presented in this paper may
generate some more known and possibly new inequalities involving the various type of integral operator.

4. Conclusion

In this paper, we introduced new classes of integral inequalities involving the (k, s)-fractional integral
operators. It is interesting to mention here that, whenever the (k, s)-fractional integral operators reduces
to the other-related operators (by suitably choosing the values of parameters k and s), the results become
relatively more important from the application viewpoint. We conclude this paper with the remark that
the fractional integral inequalities derived in Section 2 can fruitfully be used in establishing uniqueness of
solutions in fractional boundary value problems.

Acknowledgment

The authors would like to express their appreciation to the referees for their valuable suggestions which
helped to achieve better presentation of this paper. Further, this project was supported by the Deanship of
Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No. 2016/01/6637.

References

[1] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application
to heat transfer model, Thermal Sci., 20 (2016), 763–769. 1

[2] D. Baleanu, P. Agarwal, S. D. Purohit, Certain fractional integral formulas involving the product of generalized
Bessel functions, Sci. World J., 2013 (2013), 9 pages. 1

[3] D. Baleanu, D. Kumar, S. D. Purohit, Generalized fractional integrals of product of two H-functions and a general
class of polynomials, Int. J. Comput. Math., 93 (2016), 1320–1329. 1

[4] D. Baleanu, S. D. Purohit, Chebyshev type integral inequalities involving the fractional hypergeometric operators,
Abstr. Appl. Anal., 2014 (2014), 10 pages. 1

[5] D. Baleanu, S. D. Purohit, P. Agarwal, On fractional integral inequalities involving hypergeometric operators,
Chin. J. Math. (N.Y.), 2014 (2014), 5 pages.

[6] J. S. Choi, S. D. Purohit, A Grüss type integral inequality associated with gauss hypergeometric function fractional
integral operator, Commun. Korean Math. Soc., 30 (2015), 81–92. 1

[7] Z. Dahmani, New classes of integral inequalities of fractional order, Matematiche (Catania), 69 (2014), 237–247.
1

[8] Z. Dahmani, L. Tabharit, S. Taf, New generalisations of Grüss inequality using Riemann-Liouville fractional
integrals, Bull. Math. Anal. Appl., 2 (2010), 93–99. 1

[9] R. Dı́az, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192.
1

[10] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Fractals
and fractional calculus in continuum mechanics, Udine, (1996), 223–276, CISM Courses and Lectures, Springer,
Vienna, (1997). 1

[11] J. Hadamard, Essai sur l’etude des fonctions, donnees par leur developpement de Taylor, J. Mat. Pure Appl. Ser.
4, 8 (1892), 101–186. 1, 2

[12] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–
865. 1



M. Aldhaifallah, et al., J. Nonlinear Sci. Appl. 9 (2016), 5374–5381 5381

[13] U. N. Katugampola, Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput.,
257 (2015), 566–580. 2

[14] A. A. Kilbas, M. Saigo, R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus
operators, Integral Transforms Spec. Funct., 15 (2004), 31–49. 1

[15] V. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series,
Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New
York, (1994). 1

[16] M. A. Latif, S. Hussain, New inequalities of Ostrowski type for co-ordinated convex functions via fractional
integrals, J. Fract. Calc. Appl., 2 (2012), 1–15. 1
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