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Abstract. In this paper, we establish some new inequalities of Simpson’s type based on s-convexity via
fractional integrals. Our results generalize the results obtained by Sarikaya et al. [1].

1. Introduction and Preliminaries

It is well known that the following inequality, named Simpson’s inequality, is one of the best known
results in the literature.
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In [2], the class of functions which are s-convex in the second sense has been introduced by Breckner as
the following.

Definition 1.1. Let s be a real number s € (0,1]. A function f : [0,00) — R, is said to be s-convex (in the second
sense), or f belongs to the class K2, if

fAx+ 1= Ny) <Af(0)+ A=Ay f(y)
holds for all x, y € [0, 00) and A € [0, 1].

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of functions defined on
[0, e0).

In [3], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard’s inequality which holds for
s-convex functions in the second sense. In [13], the authors proved some new integral inequalities of these
classes of functions via (h — (a, m))-logarithmically convexity.
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Theorem 1.2. Suppose that f : [0, 00) — [0, 00) is an s-convex function in the second sense, where s € (0, 1), and let
a,b €[0,00),a <b. If f € Li([a, b]), then the following inequalities hold:

b
2571 f(%) < blj f F)dx < w (1)

The following Lemma is proved by Sarikaya et al.(see [1]).

Lemma 1.3. Let f : I — R be an absolutely continuous mapping on I° such that f € Ly([a, b]), where a, b € I° with
a < b. Then the following equality holds:

a+b

1 1 b
g[f(a) 4f(—) f(b)]——f F(x)dx
:b;ajo‘[(é_%)f(lwb _t)+(%_§)f(¥ +1_b)]dt‘

Using Lemma 1.3, Sarikaya et al. in [1] established the following results which hold for s-convex
functions in the second sense.

Theorem 1.4. Let f : I C [0,00) — ‘R be a differentiable mapping on I° such that f’ € Li([a, b]), where a,b € I°
witha < b. If |f’| is s-convex on [a, b], for some fixed s € (0, 1], then the following inequality holds:
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Theorem 1.5. Let f : [ C [0,00) — R bea differentiable mapping on I° such that f’ € Li([a, b]), where a,b € I
with a < b. If |f'|7 is s-convex on [a, b], for some fixed s € (0, 1] and q > 1, then the following inequality holds:
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Theorem 1.6. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Li([a,]), where a,b € I°
witha < b. If |f'|1 is s-convex on [a, b], for some fixed s € (0,1] and q > 1, then the following inequality holds:

a+b
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Theorem 1.7. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Li([a,b]), where a,b € I°
witha < b. If |f'|7 is s-convex on [a, b], for some fixed s € (0,1] and q > 1, then the following inequality holds:
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1,1
where -~ + + = 1.
P

In the following, we will give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used further in this paper. For more details, one can consult [4-5].

Definition 1.8. Let f € Li([a,b]). The Riemann-Liouville integrals Jg, f and J; f of order a > 0 with a > 0 are
defined by

1 X
anf(xX) = m j; (x— t)“ilf(t)dt, x>a

and

b
Jo_f(x) = ﬁ f (t—x)"f(tdt, x<b

respectively, where T'(at) = fom e”'u*du is Euler gamma function. Here ]9, f(x) = J}_f(x) = f(x).

In the case of a = 1, the fractional integral reduces to the classical integral. For some recent results
connected with fractional integral inequalities, see [6-12]. For more fractional integral applications, please
see [14-21]

The aim of this paper is to establish some new inequalities for s-convex functions in the second sense
via Riemann-Liouville fractional integral. Our results generalize the results obtained by Sarikaya [1] and
provide new estimates on these types of inequalities for fractional integrals.

2. Main Results

In this section, we introduce some inequalities via fractional integrals. First, a new identity is presented
as follows:

Lemma 2.1. Let f : I — R be an absolutely continuous mapping on I° such that f’ € Ly([a, b]), where a, b € I° with
a < b. Then the following equality holds:

[f( 't 4f( ) f(b)]_Z“ 1T a)+1)[]b f(a+b f(a+b ] ”
N NI
Proof. It suffices to note that
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Integrating by parts
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and similarly we have,
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From (8), (9) and (10), we have conclusion (7). This completes the proof. O
Remark 2.2. [n Lemma 2.1, if & = 1, then we obtain Lemma 1.3.

Using this lemma, we can obtain the following fractional integral inequalities which a new result of
Simpson’s inequality for s-convex functions.

Theorem 2.3. Let f : I C [0,00) — ‘R be a differentiable mapping on I° such that f’ € Li([a,b]), where a,b € I°
witha < b. If |f’| is s-convex on [a, b], for some fixed s € (0, 1], then the following inequality holds:

a-1
‘[ﬂ)+4ﬂ Y+ 0] - T A G .
_2Mﬂfwuvbﬂhm@+me,
where
(%)% 1 1
I3(a,s) = (= - —)[(1 +1)° + (1 - t)°]dt,
’ Ll 3 (12)

li(a,s) = J%—ﬂm+w (-t
(3)=
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Proof. From Lemma 2.1 and since |f’| is s-convex on [a, b], we get

‘ [f( )+4f(—)+f(b]—2a 1F(0;; 1)[1“ f(“b ]Mf(ﬁb ”
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where I3(«, s) and I4(, s) are defined in (12). This completes the proof. O

Corollary 2.4. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Ly([a, b]), where a,b € I°
witha < b. If |f'| is convex on [a, b], then the following inequality holds:

1 b 24711 1 b
slr@+ 47D+ 0] - T

a+b ”
< %['Jﬂ(ﬂ)' +1f )l 1) + Lua, 1)).

arf(——
(13)

Proof. Setting s = 1 in (11), we get the required result. O
Remark 2.5. In Theorem 2.3, if @ = 1, then we obtain Theorem 1.4.

In the following theorem, we shall propose a new upper bound for the right-hand side of Simpsons
inequality for s-convex mapping with fractional integral type.

Theorem 2.6. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Li([a,b]), where a,b € I°
witha < b. If |f'|1 is s-convex on [a, b], for some fixed s € (0,1] and q > 1, then the following inequality holds:

a—1
‘1 ]_ 2 (bF_(o;; 1)[]b f(a+b f(a+b ] »
(b a) t" % LG+ 1/ (D7 (1f (ﬂ)|q+|f('”b)|" g
f' |pd s+1 - ) +( s+1 - )}'

1,1
where -~ + 2 = 1.
P g
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Proof. From Lemma 2.1 and Holder’s inequality, we get

b 24711 1 b b
‘%[f()+4f(a+ )+ )] - 2 )[Ib f(“ )+ 1D
1 1 +t 1+t
=2 0[2 3 _)‘ (2”Tb)udt
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Since | f'|'7 is s-convex on [a, b], by using in (1), we get
1 +t )|th [f/ B + 1 (501
s+1
and
Yoot 1=t g |/’ (ﬂ)l"+|f(“+b)|‘7
fo fla+ —ldt < ——3
Hence
a+b 27T (@ + 1) a+b a+b
Sl + 4150+ o) - Z [Ib (LA ]
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This completes the proof. O

Corollary 2.7. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Li([a, b]), where a,b € I°
witha < b. If |f'|7 is convex on [a,b] and q > 1, then the following inequality holds:

‘1[f(a)+4f(ﬂ) 0] - o D (T v g g0

B T AU e N AR IO

(15)

where * i 5 =1
Proof. Setting s = 1 in (14), we get the required result. O
Remark 2.8. In Theorem 2.6, if & = 1, then we obtain Theorem 1.5.

Next, we shall give another versions of Simpson’s type inequality for s-convex functions with fractional
integral type as follows:

Theorem 2.9. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Li([a,b]), where a,b € I°
with a < b. If |f'|7 is s-convex on [a, b], for some fixed s € (0, 1] and q > 1, then the following inequality holds:

a+b

HICRR f(b]—Z“;;F“;)Z sty 3D

(b—a) t“ % @ =D O +|f @)\ 25“ DIf @) + £ )
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Proof. From Lemma 2.1 and Holder’s inequality, we get

2a-1T 1 b b
sl a5 10 )]- ‘“;; [ D5 )
b a 1 +t 1+t
7 [ 2 o)+ |‘ - g s oo
: 1 +t t i (17)
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(f |_ - _lpdt % f (uﬂ Tb)rdt) }
Since |f’|7 is s-convex on [g, b], we know that for ¢ € [0,1] and s € (0, 1]
(ﬁb +— )|q < ( )Slf o +( )Slf( a)l. (18)

From (17) and (18), we have
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This completes the proof. O

Corollary 2.10. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Li([a, b]), where a,b € I°
witha < b. If |f'|7 is convex on [a,b] and q > 1, then the following inequality holds:

@+ 47 - E D A )

L —ﬂ) f |t“ |pdt % 3|f (b)l”’ +1f’ (a)l") N (3|f (ﬂ)l”; If (b)|¢7)2},

(19)

1.1
where 5 + ¢ = 1.
Proof. Setting s = 1 in (16), we get the required result. O

Remark 2.11. In Theorem 2.9, if a = 1, then we obtain Theorem 1.6.
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Theorem 2.12. Let f : I C [0,00) — R be a differentiable mapping on I° such that f’ € Li([a,b]), where a,b € I°
witha < b. If |f'|7 is s-convex on [a, b], for some fixed s € (0,1] and q > 1, then the following inequality holds:

)] - Er D D s |

[f( )+ 4f(—) + f(b)

< TI5(0(,S) X Ié(a,s)fl +17(0(,s)

(20)

where l + 1 =1and

s, s) = f 15— San' = f 15 - Slan',

e, s) = f 15— (e + i@, @1)
b(as) = f 5- 51 1+t)slf()I"+(—)5If(b)lq)dt

Proof. Using Lemma 2.1 , the power mean inequality and Holder’s inequality, we have

[l w45+ 0] - ZE SR e /D A0

:b;af[(___ e _)‘ 2 -l e —b)”dt

(f 12— St 4f|———||f<ﬂb+—>|th)]
+<f0 ) “(f|———||f(ﬁb —a)lth)l}

Since |f’|7 is s-convex on [g, b], we know that for € [0,1] and s € (0, 1]

(b o < (CHYIF O + (I @ =

From (22) and (23), we have

L [f( iy

(22)

a+b

a-1 1 b
)+ 0) ] 2 7 e IS (CDR f(

i) f 15 = 5[ FOr + (1 @ )W]dt)

f |—--|dt“ f e G AL “’W]‘”)}

= Tk(a s) X {Ig(ax, s)q + I;(ar, s)%

a+b”

where I5(a, s), Is(a, s) and I7(a, 5) are defined in (21). This completes the proof. O

Corollary 2.13. Let f : I € [0,00) — R be a differentiable mapping on I° such that f’ € Li([a, b]), where a,b € I°
witha < b. If |f'|7 is convex on [a,b] and q > 1, then the following inequality holds:

L@+ 410+ f] - 2 1r‘“)”)[fb CUR)|

b-
< TI{,(O{, 1) X 16((X, 1)‘7 +I7(6¥, 1)

a+b

(24)

1,1_
where st = 1.
Proof. Setting s = 1 in (20), we get the required result. O
Remark 2.14. In Theorem 2.12, if a = 1, then we obtain Theorem 1.7.
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