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Abstract 

Mersenne primes are a specific type of prime number that can be derived using the 

formula        , where   is a prime number. A perfect number is a positive integer of the 

form  ( )      (    )  where      is a Mersenne prime and can be written as the sum of 

its proper divisor, that is, a number which is half the sum of all of its positive divisor. In this 

paper, some concepts relating to Mersenne primes and perfect numbers were revisited. 

Mersenne primes and perfect numbers were evaluated using triangular numbers. Further, this 

paper discussed how to partition perfect numbers into odd cubes for odd prime    The formula 

that partition perfect numbers in terms of its proper divisors were developed. The results of this 

study are useful to understand the mathematical structures of Mersenne primes and perfect 

numbers. 
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INTRODUCTION 

According to Euclid’s proposition 

(Niven & Zuckerman, 1980), if as many 

numbers as we please beginning from a unit be 

set out continuously in double proportion until 

the sum of all becomes a prime, and if the sum 

multiplied into the last make some numbers, 

the product will be perfect. In this context, 

double proportion means that each number is 

twice the preceding number, as in       

       For example,          is prime; 

therefore,             is a perfect number. 

Put simply, if               ,  

where   is prime, then      is a perfect 

number. We can use the fact that        

               to rewrite Euclid’s 

results in a modern form. A theorem states that 

every perfect number is in the form of  

    (    )   where      is a Mersenne 

prime (Ore, 1948). In order to prove this 

theorem, a helpful function  ( )  where   is a 

positive integer, is used to analyze perfect 

numbers (Erickson & Vazzana, 2008). Let 

 ( ) be the sum of all the positive divisors of 

   Thus,  
|

,
d n

n d  where   is a divisor of    

Furthermore, if   is perfect, then  ( )    . 

If   is prime, say    , then   ( )     . 

If    is a prime power, say     , then 

 (  )              
      

   
. If   

is the product of two distinct primes, say 

     , then  (  )           

(   )(   ). Hence, ( )n is a multiplicative 

function, which is to say,  (  )   ( ) ( ). 

Niven and Zuckerman (1980) stated 

that the sum of proper divisors of a positive 

integer gives various other kinds of numbers. 

Numbers in which the sum is less than the 

number itself are called deficient, and that the 

sum is greater than the number are called 

abundant. A semi-perfect number is a natural 

number that is equal to the sum of all or some 

of its proper divisors. A semi-perfect number 

that is equal to the sum of all its proper 

divisors is a perfect number. Most abundant 

numbers are also semi-perfect; abundant 

numbers which are not semi-perfect are called 

weird numbers (Dickson, 1971). These terms, 

together with perfect itself, come from Greek 

numerology. In solving a perfect number, there 
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is a one-to-one correspondence between 

perfect number and of a prime number of the 

form     . These prime integers are called 

Mersenne primes (Rosen, 1993).  

Generally, numbers of the form 

        without primarily requirement 

conditions are called Mersenne numbers. 

Mersenne numbers are sometimes defined to 

have the additional requirement that   must be 

prime, equivalently that they called pernicious 

Mersenne numbers, namely those numbers 

whose binary representation contains a prime 

number of ones and no zeros. The smallest 

composite pernicious Mersenne number is 

                  Dickson (1971) 

stated that the story of Mersenne numbers 

started in the 16
th
 Century, with the French 

Monk, Father Marin Mersenne (1588 – 1648). 

Mersenne had gained an interest in the 

numbers of the form   – 1 (mainly from 

Fermat’s new tools, like his Little Theorem), 

and in 1644 produced Cogitata Physica-

Mathematica, in which Mersenne stated that  

      is prime for the following values of p:  

2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257  and 

composite for all other values of p < 257. It 

was clear to Mersenne’s peers that he could 

not have possibly tested all these values, and as 

it is, his assertion was incorrect. Not every 

prime value of p in       results in a prime, 

but the chances of        being prime are 

much greater than for a randomly selected 

number. It took some 300 years before the 

details of this assertion could be checked 

completely, with the following outcome:    is 

not a prime for 67p  and 257p  , and     is a 

prime for 61, 89 and 107.p p  Mersenne 

made 5 mistakes. Thus, there are 12 primes 

257p  such that    is a prime. The triangular 

number    is the number of dots in the 

triangular array with   rows that has   dots in 

the  th row (Rosen, 1993). For instance, 

    ,            and        This is 

defined as 
( 1)

, {1,2,3,...}.
2

n

n n
T n


   

Triangular numbers, in fact, is a family of 

numbers (Montalbo et al., 2015). This study 

intended to expose the new structures of 

Mersenne primes, perfect numbers, and 

triangular numbers. Specifically, it aimed to 

develop new claims relating to the said 

numbers. We also partitioned perfect numbers 

into odd cubes and derived a formula for odd 

prime    Further, we construct a formula on 

how to partition perfect numbers in terms of its 

proper divisors and determined the number of 

primes in the partition. 

 

METHOD 

 This study is exploratory in nature. 

The formula that generates Mersenne primes 

and perfect numbers were presented using the 

concept of Euclid’s proposition. Furthermore, 

different useful functions related to perfect 

numbers in proving theorems were considered 

for the analysis in partitioning these numbers. 

Mersenne primes and perfect numbers were 

evaluated according to its structures, existence, 

and characteristics. Also, those numbers were 

evaluated by a triangular number. Calculations 

of perfect numbers were then developed, after 

which partitioning these numbers to its proper 

divisors were done, and then it leads to the 

partitioning formula. Figure 1 presents the 

schematic diagram of the flow of the study. 

 

Figure 1. Schematic Diagram of the Research 

Flow 

http://www-history.mcs.st-and.ac.uk/Mathematicians/Mersenne.html
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RESULTS AND DISCUSSION 

From the definition of Mersenne prime 

above, the following Remark is immediate. 

Remark 1. If      is prime, then it is a 

Mersenne prime. 

 

The next Theorem determines all even 

perfect numbers stated by Euclid and later 

developed by Euler into modern form (Ore, 

1948; Rosen, 1993). 

 

Theorem 2. (Euclid-Euler) The positive 

integer   is an even perfect number if and only 

if        (    ) where   is an integer 

such that     and      is Mersenne prime. 

 

            Proof. (     ) Let   be even perfect number. 

Write      , where   and   are positive 

integers and    is odd. Since (    )     then 

we have  ( )   (   )   (  ) ( )  

(      ) ( ) (eq’n 1). Since   is perfect, 

then we have  ( )             (eq’n 2). 

Combining eq’n     and   shows that (     

 ) ( )         (eq’n 3). Since (          

 )     then       ( )  Hence, there is an 

integer   such that  ( )         Inserting 

this expression for  ( ) into eq’n 3 tells us that   

(      )             and therefore   

(      )    (eq’n 4). So,     and      

Replacing   by the expression on the left-hand 

side of eq’n 4, we find that     

(      )           ( ) (eq’n 5). 

Next, we will show that      Note that if 

     then there are at least three distinct 

positive divisors of    namely      and    This 

implies that  ( )         which 

contradicts eq’n 5. Hence,     and from 

eq’n 4, we conclude that           Also, 

from eq’n 5, we see that   ( )     , so that 

  must be prime since its only positive divisors 

are 1 and    Thus,     (      )  where 

       is prime. 

(      ) We show that if       (    ) 

where      is Mersenne prime, then   is 

perfect. Note that since      is odd, we have 

(         )     Since   is a multiplicative 

function, it follows that 

 ( )   (    ) (    )  Note that 

 (    )       and  (    )      since 

we are assuming that      is prime. Thus, 

 ( )  (    )       demonstrating that 

  is a perfect number.  

 

Suppose we have a sequence that 

satisfies a certain recurrence relation and initial 

conditions. It is often helpful to know an 

explicit formula for the sequence, especially if 

we need to compute terms with very large 

subscripts or if we need to examine general 

properties for the sequence. The explicit 

formula is called a solution to the recurrence 

relation. The following result for Mersenne 

primes and perfect numbers involving the 

concepts of recurrence relation stated as 

Theorem 3, is presented as follows. 

 

Theorem 3. Let     . If             is 

a prime for some positive integer      then 

i.)    is a Mersenne prime; and  

ii.)            is an even 

perfect number.    

Proof (i).  Suppose that            is 

prime for some positive integer    .  

      Then, we have       

                                                 

               (       )     

              

     (       )      

                        . 

Continuing the process, we obtain 

                         

                (   ) 

                                       

                                      .  

 Since     , it follows that,       

                                     

                                                

                      
1

0

2
n

i

i





 .                               

(Consider this as equation 1)            

Multiplying equation 1 with   , we have 

                
1

1

0

2 2 .
n

i
n

i

a






    

(Consider this as equation 2) 
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Combining equation 1 and equation 2, it 

follows that  

1 1 1
1 1

0 0 0

2 2 2 (2 2 ).
n n n

i i i i
n n

i i i

a a
  

 

  

      
 

Thus,   
1

1

0

(2 2 )
n

i i
n

i

a






   

       (    )  (     )   

                       (     )    (       ). 

By telescoping we obtain, 

          

Since         is prime, it follows that 

        is a Mersenne prime by Remark 

1.  

Proof (ii). Suppose that    is prime for some 

positive integer    . Then,    is a Mersenne 

prime and it follows that   is a prime number 

by definition. Thus, by Theorem 2,    

       is an even perfect number.    

 

Lemma 4. (Leithold, 1996) Let         and 

  is a function. Then, 

( ) ( ).
b b c

i a i a c

F i F i c


  

    

The next result on Mersenne primes 

and perfect numbers involves sigma notation 

that concern with the sums of many terms and 

it is a direct consequence of Lemma 4 above. 

This sigma notation is to facilitate writing 

these sums and use of the symbol ∑  

Theorem 5. If 1

1

(2 2 )
n

i i
n

i

S 



   is a prime 

for some positive integer      then 

i.)     is a Mersenne prime; and  

ii.)            is an even perfect    

number.   

Proof (i). Suppose that 1

1

(2 2 )
n

i i
n

i

S 



   is a 

prime for some positive integer    .  Then, 

by Lemma 4, we have  

1 1
1 ( 1) 1

1 1 1 1

1 1

1 0

1 1
0

1 1

1 1

1 1

(2 2 ) 2 2 ) 2

2 2 2

2 2 2 2

2 2 2 1

2 1.

n n n
i i i n i

n

i i i

n n
i n i

i i

n n
i n i

i i

n n
i n i

i i

n
n

S

S

 
  

   

 

 

 

 

 

 

   
       

   

  

 
    

 

   

 

  

 

 

 

 

Since         is a prime, then by Remark 

1,      is a Mersenne prime.  

 Proof (ii). Since    is a Mersenne prime for 

some positive integer    , then it follows 

that   is a prime number by definition. Thus, 

         is an even perfect number by 

Theorem 2.  

 

Theorem 6. (Dickson, 1971) If   is prime and 

  is a positive integer with    (   )   , then 

      (     )  

For our next result involving Mersenne 

prime, this is obtained using the Fermat’s last 

theorem above. This Theorem shows that if a 

Mersenne prime is subtracted by 1, then it is 

divisible by    whenever   is a prime number. 

 

Theorem 7. Let   be an odd prime and    be 

a Mersenne prime. Then,         less by 

one is divisible by     

Proof. Since   is an odd prime, then 

   (   )     Then, it follows that      

 (     )by Theorem 6. This implies that 

        (     ) and hence   (     

 )  Then, we have   (
    

 
) and it implies that 

   (    )  Thus,  (    )    is divisible 

by      

 

Theorem 8. (Muche et. al., 2017) Let  ( )  

    (    ) be a perfect number. Then,  ( ) 

is a triangular number. 
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Proof. Consider that  ( )      (    ) is 

a perfect number. Then,  

              ( )      (    )   

                       
  

 
(    )     

                       
(      )(    )

 
. 

Let        be a Mersenne prime. Then, 

 ( )  
 (   )

 
  and by definition of 

triangular number,  ( ) is a triangular 

number.  

 

Since a perfect number is a triangular 

number by Theorem 8, then a perfect number 

can be partitioned as the sum of natural 

numbers from 1 to      where   is prime. 

This is shown in Remark 9 below.  

 

Remark 9. If      is a Mersenne prime, 

then
2 1

1

( )

p

i

P p i




  is a perfect number. 

The following results below are the 

direct consequences of the definition of a 

triangular number and Theorem 8. The 

function  ( ) in Theorem 10 and 11 is several 

ways of putting a dominating set in path graph 

when the order of graph is   

 (     ) (Casinillo, 2018). 

 

Theorem 10. If    (     ) and  ( )  
 

  
(        )  then  ( ) is a triangular 

number. 

Proof. Suppose that    (     ). Then, 

       for all positive integer  . So, we 

have, 

 (    )  
 

  
((    )   (    )

   ) 

  
 

  
(                 ) 

  
 

  
(          ) 

  
 

 
(       ) 

  
 

 
(   )(   ) 

  (    )  
 (   )

 
 ,    where        

Thus, by definition of a triangular number, 

then it follows that   ( ) is a triangular 

number.  

 

Theorem 11. Let    (    )    and 

 ( )  
 

  
(        ). If      is 

Mersenne prime, then  ( ) is a perfect 

number. 

Proof. Suppose that    (    )    and 

     is Mersenne prime. Then, we obtained, 

 ( (    )   ) 

 
 

  
(( (    )   )  

       ( (    )   )    ) 

 
 

  
  (    )    (    )    

       (    )        

 
 

 
 (    )  (    ) 

 
 

 
(     (  )        ) 

   
  

 
(    ) 

 ( (    )   )      (    ).  

Thus, by Theorem 2,  ( ) is a perfect number.  

 

Lemma 12. (Santos, 1977) The sum of the 

first   terms of an arithmetic progression 

whose general term       (   )   is 

   
 

 
(     ), where   is a common 

difference.  

We need the Lemma above to prove 

the next Theorem. This Theorem involves a 

recurrence relation as a function of  , where   

is a Mersenne prime. 

 

Theorem 13. Let          , where 

     . If   is a Mersenne prime  then    is a 

triangular number. 

Proof.  Let           where       and 

  is a Mersenne prime. Then, we have  

          

      (     (   ))    

      (     (   ))  (   )   . 
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Continuing the process, we end up with, 

              (   )  

          (   )  (   )    

           (   )  (   )  

(   )    ,   since       

Now, let        be a Mersenne prime, 

then we obtained 

            ((    )   ) 

 ((    )   )  ((    )   )

 (    )  

By Lemma 12, it follows that 

      
    

 
  ( )  ((    )   )] 

     (    )  

By Theorem 2,           (    ) is a 

perfect number. Clearly, we have 

            (    )  

is a triangular number by Theorem 8. This 

completes the proof showing that    is a 

triangular number.  

 

  The following Remark is a direct 

consequence of Theorem 8 and Theorem 13. 

 

Remark 14. Let   is an odd prime. Then, 

 ( )      
(
    

 
)
 is a perfect number. 

Lemma 15. (Gallian, 2010) Let      and   be 

an integer. If      and   is relatively prime to 

 , then       

 

The next result for a perfect number is 

obtained using the concepts of congruencies 

and the generalized Euclid’s lemma above. 

 

Theorem 16. Let  ( )      (    ) be a 

perfect number. Then, one of the following 

two conditions hold: 

 i.)  ( )   (     )   or 

 ii.)  ( )   (     )  

 

Proof. Let         Then,  ( )  
 (   )

 
  is 

a triangular number by Theorem 8. 

 Then, consider the following cases: 

Case 1. Let    (     ). Then,  (   )  

 (     ) and so we obtained 

 ( )   (     ) by Lemma 15. 

Case 2. Let    (     )  Then,       

 (     )  Then, it follows that  

 (   )   (     ) and hence, we have 

 ( )   (     )  

Case 3. Let    (     )  Then, there exists 

a positive integer   such that   

         So, we have  

  (   )  (    )(    ) 

                      

                   

   (   )    

 (   )

 
 

  (   )

 
   

Obviously, it follows that  

 ( )   
 (   )

 
    ( )  Thus, we 

obtained  ( )   (     )   

 

Lemma 17. (Santos, 1977) Let   be a natural 

number. Then, ).12()12( 223

1




nni

n

i

 

For the next result that involves how to 

partition an even perfect number into odd 

cubes, we need the following Lemma below to 

prove this result. 

 

Theorem 18. Let  ( ) be a perfect number 

where   is an odd prime. Then,  








2/)1(2

1

3.)12()(

p

r

rpP  

Proof. Suppose   is an odd prime. Then, it 

must be shown that 






 

2/)1(2

1

13 ).12(2)12(

p

r

ppr  So, by Lemma 

17, we obtain                          




















































2/)1(2

1

2

2

1
2

2

1

3 1222)12(

p

r

pp

r

]1)2(2[2 11   pp
 

).12(2 1   pp
 

This completes the proof showing that each 

even perfect number  ( )      (    ), 

where   is an odd prime can be written as the 

sum of odd cubes.  
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As a direct consequence of Theorem 

18, Remark 19 is obtained and presented 

below. 

Remark 19. There are  (   )  ⁄  distinct odd 

cube summands in a perfect number of the 

form  ( )      (    ), where   is an odd 

prime. 

 From the definition of perfect numbers 

above, Remark 20 and Theorem 21 are 

obtained. The following result shows that 

perfect numbers are half the sum of all of its 

positive divisors. 

Remark 20. Let   be a perfect number. If 

     then 
|

2 .
d P

P
P

d

 
 

 
  

Theorem 21. If    is a perfect number and 

     is a positive integer, then  

|

1 2 1
.

d P

P

d P

 
 

 
  

Proof. Suppose that   is a perfect number and 

    is a positive integer. If     , then it 

implies that   is a proper divisor of    Note 

that if      then by definition, 

| |

( )
d P d P

P
P d

d


 
   

 
   

By Remark 20, we obtained, 

| |

1
2 .

d P d P

P
P P

d d

   
    

   
   It follows that 

|

1
2.

d P d

 
 

 
  But      so 

|

1 1
2 .

d P d P

 
  

 


Thus, 
|

1 2 1
.

d P

P

d P

 
 

 
  

Lemma 22. (Leithold, 1996) If 

              is a geometric sequence with 

common ratio  , and                

then    
  (    )

   
        

It is worth noting that in partitioning a 

perfect number  ,   is written as a sum of its 

proper divisors. Hence, Lemma 22 below, 

Theorem 23 is obtained that presents the 

formula that partitions a perfect number   into 

its proper divisors.  

Theorem 23. Let  ( )      (    ) be a 

perfect number. Then, the formula for 

partitioning an even perfect number in terms of 

proper divisors is given by 

1
1 1

1 1

( ) 2 2 (2 1)
p p

i i p

i i

P p


 

 

    . 

Proof. Suppose that  ( )      (    ) is a 

perfect number. Then, we have 

    ( )      (    ) 

                  (    )] 

      (    )      (    ) 

      (    )      (    )   

                      (    ) 

Continuing the process, we obtained 

 ( )   (    )   (    )   

          (    )        (    ) 

 (    )  (    )   (    ) 

       (    )         (    ) 

Applying Lemma 22, we have 

 ( )             (    )   

                   (    )    (    )     

                       (    ). 

Clearly, we end up with, 










 

1

1

1

1

1 )12(22)(

p

i

pi
p

i

ipP . 

Definition 24. (Voight, 1998) The number of 

proper divisors of a perfect number   is the 

number of terms in the partitioned perfect 

number and it is denoted by  ( )  

The next Theorem is immediate from 

Theorem 23 and Definition 24. 

Theorem 25. The number of proper divisors of 

a perfect number of the form  ( )  

    (    ) is given by  ( ( ))        

Proof. Let  ( )      (    ) be a perfect 

number. Then, we have










 
1

1

1

1

1 )12(22)(
p

i

pi
p

i

ipP  by Theorem 

23.  

 

 
 

 

http://en.wikipedia.org/wiki/Sum
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By Definition 24, it follows that, 

 







 










1

1

1

1

1 )12(22))((
p

i

pi
p

i

iDpPD .  

Clearly, we have  ( ( ))         

Hence,  ( ( ))          

    

The following Remarks are direct 

consequences of Theorem 23 and 25. These 

determine the number of composite and prime 

numbers in the summands of a partitioned 

perfect number. 

 

Remark 26. Let  ( )      (    ) be a 

perfect number. Then,  ( ) has      

composite proper divisors. 

 

Remark 27. Let  ( )      (    ) be a 

perfect number. Then,   and      are the 

only primes among its proper divisors.  

 

CONCLUSION 

New claims on Mersenne primes, even 

perfect numbers and triangular were obtained 

relating to recurrence relation and summation 

notations. The result shows that a Mersenne 

prime of the form         less by one is 

divisible by     The study also shows that all 

even perfect numbers are triangular numbers, 

thus, the form  ( )      (    ) can be 

partitioned as the sum of the integers from 1 to 

Mersenne prime of the form        . 

Further, the study shows that a perfect number 

can be written as the sum of  (   )  ⁄  odd 

cubes and  ( )   (     ) or  ( )  

 (     ). Also, perfect numbers can be 

partitioned as a sum of      proper divisors 

with      composite proper divisors and two 

prime divisors namely: even prime number 2 

and Mersenne prime       where   is a 

prime number. 
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