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Abstract. We provide several new q-congruences for truncated basic
hypergeometric series with the base being an even power of q. Our results
mainly concern congruences modulo the square or the cube of a cyclo-
tomic polynomial and complement corresponding ones of an earlier paper
containing q-congruences for truncated basic hypergeometric series with
the base being an odd power of q. We also give a number of related con-
jectures including q-congruences modulo the fifth power of a cyclotomic
polynomial and a congruence for a truncated ordinary hypergeometric
series modulo the seventh power of a prime greater than 3.
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1. Introduction

In his first letter to Hardy from 1913, Ramanujan announced that (cf. [2, p. 25,
Equation (2)])

∞∑

k=0

(8k + 1)
( 14 )4k
k!4

=
2
√

2√
π Γ( 34 )2

, (1.1)
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along with similar hypergeometric identities. Here (a)n = a(a+1) · · · (a+n−1)
denotes the Pochhammer symbol. He did not provide proofs. This identity was
eventually proved by Hardy in [19, p. 495].

In 1997, Van Hamme [32] proposed 13 interesting p-adic analogues of
Ramanujan-type formulas for 1/π [26], such as

(p−1)/4∑

k=0

(8k + 1)
( 14 )4k
k!4

≡ p
Γp( 12 )Γp( 14 )

Γp( 34 )
(mod p3), if p ≡ 1 (mod 4), (1.2)

where p is an odd prime and Γp is the p-adic gamma function [22]. Van Hamme
[32] himself proved three of them. Nowadays all of the 13 supercongruences
have been confirmed by different techniques (see [20,21,23,25,30]). For some
informative background on Ramanujan-type supercongruences, we refer the
reader to Zudilin’s paper [35]. During the past few years, congruences and
supercongruences have been generalized to the q-world by many authors (see,
for example, [6–18,24,27,31]). As explained in [18], q-supercongruences are
closely related to studying the asymptotic behaviour of q-series at roots of
unity.

Recently, the authors [15, Theorems 1 and 2] proved that for odd d � 5,

n−1∑

k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 ≡
{

0 (mod Φn(q)2), if n ≡ −1 (mod d),
0 (mod Φn(q)3), if n ≡ − 1

2 (mod d),
(1.3)

and for odd d � 3 and n > 1,

n−1∑

k=0

[2dk − 1]
(q−1; qd)d

k

(qd; qd)d
k

q
d(d−1)k

2 ≡
{

0 (mod Φn(q)2), if n ≡ 1 (mod d),
0 (mod Φn(q)3), if n ≡ 1

2 (mod d).
(1.4)

Here and throughout the paper, we adopt the standard q-notation: For an
indeterminate q, let

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)

be the q-shifted factorial. For convenience, we compactly write

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n

for a product of q-shifted factorials. Moreover,

[n] = [n]q = 1 + q + · · · + qn−1

denotes the q-integer, which can be defined by [n] = (qn − 1)/(q − 1) to hold
for any integer n, including negative n, which in particular gives [−1] = −1/q
(which is needed in the k = 0 terms of (1.6) and (1.8) and at other places in
this paper). Furthermore, Φn(q) denotes the nth cyclotomic polynomial in q,
which may be defined as
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Φn(q) =
∏

1�k�n
gcd(n,k)=1

(q − ζk),

where ζ is an nth primitive root of unity.
In this paper, we shall prove results similar to (1.3) and (1.4) for even d.

The first result concerns the case d = 2.

Theorem 1. Let n be an odd integer greater than 1. Then
n−1∑

k=0

[4k + 1]
(q; q2)2k
(q2; q2)2k

q−k ≡ q[n]2 (mod [n]2Φn(q)), (1.5)

n−1∑

k=0

[4k − 1]
(q−1; q2)2k
(q2; q2)2k

qk ≡ −[n]2 (mod [n]2Φn(q)). (1.6)

Theorem 2. Let d � 4 be an even integer and let n be a positive integer with
n ≡ −1 (mod d). Then

n−1∑

k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 ≡ 0 (mod Φn(q)2). (1.7)

Theorem 3. Let d � 4 be an even integer and let n > 1 be an integer with
n ≡ 1 (mod d). Then

n−1∑

k=0

[2dk − 1]
(q−1; qd)d

k

(qd; qd)d
k

q
d(d−1)k

2 ≡ 0 (mod Φn(q)2). (1.8)

Although neither (1.7) nor (1.8) holds modulo Φn(q)3 in general, we have
the following common refinement of (1.3) and (1.7).

Theorem 4. Let d � 4 be an integer and let n be a positive integer with n ≡ −1
(mod d). Then

n−1∑

k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 ≡ 0 (mod Φn(q)2Φdn−n(q)). (1.9)

Let n = p be an odd prime and d = p + 1 in (1.9). Then letting q → 1,
we are led to

p−1∑

k=0

(2p + 2k + 1)
( 1

p+1 )p+1
k

k!p+1
≡ 0 (mod p3). (1.10)

Note that Sun [28, Theorem 1.2] proved that for any prime p > 3
p−1∑

k=0

( 1
p+1 )p+1

k

k!p+1
≡ 0 (mod p5), (1.11)

which also holds modulo p3 for p = 3. Substituting (1.11) into (1.10), we arrive
at the following conclusion.
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Corollary 5. Let p be an odd prime. Then
p−1∑

k=0

k
( 1

p+1 )p+1
k

k!p+1
≡ 0 (mod p3).

This result is actually a special case of
p−1∑

k=0

k
( 1

p+1 )p+1
k

k!p+1
≡ p3

4
− p4

8
(mod p5), (1.12)

that was conjectured by Sun and was subsequently proved by Gao [5] in her
master thesis. See the discussion around Equation (1.3) in Wang’s paper [33]
where (1.12) is further generalized to a congruence modolo p6 for p > 5 that
involves Bernoulli numbers. In Sect. 5 we propose an extension of Corollary 5
which contains additional factors in the summand (see Conjecture 1).

The paper is organized as follows. We shall prove Theorem 1 in Sect. 2
based on two q-series identities. Theorems 2 and 3 will be proved by giving a
common generalization of them in Sect. 3. To accomplish this we shall make a
careful use of Andrews’ multiseries generalization of the Watson transforma-
tion [1, Theorem 4] (which was already used in [12] to prove some q-analogues
of Calkin’s congruence [3], and which was also applied in [15] for proving some
analogous results involving the base being odd powers of q). We shall prove
Theorem 4 by using a certain anti-symmetry of the k-th summand on the
left-hand side of (1.9) in Sect. 4. Finally, in Sect. 5 we give some conclud-
ing remarks and state some open problems. These include some conjectural
q-congruences modulo the fifth power of a cyclotomic polynomial and con-
gruences for truncated ordinary hypergeometric series, one of them, see (5.7),
modulo the seventh power of a prime greater than 3.

We would like to thank the two anonymous referees for their comments.
We especially thank the second referee for her or his detailed list of constructive
suggestions for improvement of the paper.

2. Proof of Theorem 1

It is easy to prove by induction on n that
n−1∑

k=0

[4k + 1]
(q; q2)2k
(q2; q2)2k

q−k = [n]2(1 + qn)2
(q; q2)2n
(q2; q2)2n

q1−n

= [n]2
[
2n − 1
n − 1

]2
q1−n

(−q; q)4n−1

.

Since qn ≡ 1 (mod Φn(q)), the proof of (1.5) then follows from the fact
[
2n − 1
n − 1

]
=

n−1∏

k=1

1 − q2n−k

1 − qk
≡ q−(n2)(−1)n−1 ≡ 1 (mod Φn(q))
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for odd n and (−q; q)n−1 ≡ 1 (mod Φn(q)) (see, for example, [8, Equa-
tion (2.3)]).

Similarly, we can prove by induction that

n−1∑

k=0

[4k − 1]
(q−1; q2)2k
(q2; q2)2k

qk = −[n]2(1 + qn)2
(q−1; q2)2n
(q2; q2)2n

qn.

The proof of (1.6) then follows from that of (1.5) and the following relation

(q−1; q2)n = (q; q2)n
1 − q−1

1 − q2n−1
.

We point out that, using the congruence (−q; q)2(n−1)/2 ≡ q(n
2−1)/8

(mod Φn(q)) for odd n (see, for example, [8, Lemma 2.1]), we can prove the
following similar congruences: for any odd positive integer n > 1,

(n−1)/2∑

k=0

[4k + 1]
(q; q2)2k
(q2; q2)2k

q−k ≡ q[n]2 (mod [n]2Φn(q)), (2.1)

(n+1)/2∑

k=0

[4k − 1]
(q−1; q2)2k
(q2; q2)2k

qk ≡ −[n]2 (mod [n]2Φn(q)). (2.2)

The details of the proof are left to the interested reader.

3. Proof of Theorems 2 and 3

We shall first prove the following unified generalization of Theorems 2 and 3
for d = 4.

Theorem 6. Let r be an odd integer. Let n > 1 be an odd integer with n ≡ −r
(mod 4) and n � max{r, 4 − r}. Then

n−1∑

k=0

[8k + r]
(qr; q4)4k
(q4; q4)4k

q(4−2r)k ≡ 0 (mod Φn(q)2). (3.1)

Proof. Let α, j and r be integers. It is easy to see that

(1 − qαn−dj+d−r)(1 − qαn+dj−d+r) + (1 − qdj−d+r)2qαn−dj+d−r = (1 − qαn)2

and 1 − qαn ≡ 0 (mod Φn(q)), and so

(1−qαn−dj+d−r)(1−qαn+dj−d+r) ≡ −(1−qdj−d+r)2qαn−dj+d−r (mod Φn(q)2).

It follows that

(qr−αn, qr+αn; qd)k ≡ (qr; qd)2k (mod Φn(q)2). (3.2)
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It is clear that 3n ≡ r (mod 4). Therefore, by (3.2) and the q �→ q4, a �→ qr,
b �→ qr, c �→ qr+3n, n �→ (3n−r)/4 instance of the terminating 6φ5 summation
(see [4, Appendix (II.21)]):

6φ5

[
a, qa

1
2 , −qa

1
2 , b, c, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aqn+1 ; q,

aqn+1

bc

]
=

(aq, aq/bc; q)n

(aq/b, aq/c; q)n
,

where the basic hypergeometric series r+1φr (see [4]) is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)kzk

(q, b1, . . . , br; q)k
,

modulo Φn(q)2, the left-hand side of (3.1) is congruent to

(3n−r)/4∑

k=0

[8k + r]
(qr, qr, qr+3n, qr−3n; q4)k

(q4, q4, q4−3n, q4+3n; q4)k
q(4−2r)k

= [r]
(qr+4, q4−3n−r; q4)(3n−r)/4

(q4, q4−3n; q4)(3n−r)/4
. (3.3)

Note that (3n − r)/4 � n − 1 by the condition n � 4 − r. It is clear that
(qr+4; q4)(3n−r)/4 has the factor 1 − q3n, and (q4−r−3n; q4)(3n−r)/4 has the
factor (1−q−2n) since (3n−r)/4 � (n+r)/4 by the condition n � r. Therefore
the numerator on the right-hand side of (3.3) is divisible by Φn(q)2, while the
denominator is relatively prime to Φn(q). This completes the proof. �

We need the following lemma in our proof of Theorems 2 and 3 for d � 6.

Lemma 1. Let d � 5 be an integer and let r be an integer with gcd(d, r) = 1.
Let n = ad − r � r with a � 1. Suppose that 2r + kd ≡ 0 (mod n) for some
k > 0. Then k � a(d − 4)/2.

Proof. Since gcd(d, r) = 1, we have gcd(n, d) = 1 for n = ad − r. Noticing
that

2r + kd = (k + 2a)d − 2(ad − r) = (k + 2a)d − 2n,

we conclude that (k + 2a)d ≡ 0 (mod n). It follows that k + 2a is a multiple
of n and so k + 2a � n, i.e.,

k + 2a � ad − r.

By the condition ad − r � r in the lemma, we get r � ad/2. Substituting this
into the above inequality, we obtain the desired result. �

We now give a common generalization of Theorems 2 and 3.

Theorem 7. Let d � 4 be an even integer and let r be an integer with
gcd(d, r) = 1. Let n > 1 be an integer with n ≡ −r (mod d) and n �
max{r, d − r}. Then
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n−1∑

k=0

[2dk + r]
(qr; qd)d

k

(qd; qd)d
k

q
d(d−r−2)k

2 ≡ 0 (mod Φn(q)2). (3.4)

Proof. The d = 4 case is just Theorem 6. We now suppose that d � 6. The
proof of this case is intrinsically the same as that of Theorem 6. Here we need
to use a complicated transformation formula due to Andrews [1, Theorem 4]:

∑

k�0

(a, q
√

a,−q
√

a, b1, c1, . . . , bm, cm, q−N ; q)k

(q,
√

a,−√
a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

×
(

amqm+N

b1c1 · · · bmcm

)k

=
(aq, aq/bmcm; q)N

(aq/bm, aq/cm; q)N

∑

l1,...,lm−1�0

(aq/b1c1; q)l1 · · · (aq/bm−1cm−1; q)lm−1

(q; q)l1 · · · (q; q)lm−1

× (b2, c2; q)l1 . . . (bm, cm; q)l1+···+lm−1

(aq/b1, aq/c1; q)l1 . . . (aq/bm−1, aq/cm−1; q)l1+···+lm−1

× (q−N ; q)l1+···+lm−1

(bmcmq−N/a; q)l1+···+lm−1

(aq)lm−2+···+(m−2)l1ql1+···+lm−1

(b2c2)l1 · · · (bm−1cm−1)l1+···+lm−2
, (3.5)

which is a multiseries generalization of Watson’s 8φ7 transformation formula
(see [4, Appendix (III.18)]):

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1 ; q,

a2qn+2

bcde

]

=
(aq, aq/de; q)n

(aq/d, aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
. (3.6)

It is easy to see that (d − 1)n ≡ r (mod d). Hence, by (3.2), modulo
Φn(q)2, the left-hand side of (3.4) is congruent to

(dn−n−r)/d∑

k=0

[r]
(qr, qd√qr,−qd√qr,

(d−3)’sqr

︷ ︸︸ ︷
qr, . . . , qr; qd)k

(qd,
√

qr,−√
qr, qd, . . . , qd; qd)k

× (qr+(d−1)n, qr−(d−1)n; qd)k

(qd−(d−1)n, qd+(d−1)n; qd)k
q

d(d−r−2)k
2 ,

where we have used the fact (dn−n−r)/d � n−1 by the condition n � d−r.
Furthermore, by the q �→ qd, a �→ qr, bi �→ qr, ci �→ qr, for 1 � i � m−1, bm �→
qr, cm �→ qr+(d−1)n, N �→ ((d − 1)n − r)/d case of Andrews’ transformation
(3.5), the above summation can be written as
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[r]
(qd+r, qd+n−dn−r; qd)(dn−n−r)/d

(qd, qd+n−dn; qd)(dn−n−r)/d

∑

l1,...,lm−1�0

(qd−r; qd)l1 · · · (qd−r; qd)lm−1

(qd; qd)l1 · · · (qd; qd)lm−1

× (qr, qr; qd)l1 . . . (qr, qr+(d−1)n; qd)l1+···+lm−1

(qd, qd; qd)l1 . . . (qd, qd; qd)l1+···+lm−1

× (qr−(d−1)n; qd)l1+···+lm−1

(q2r; qd)l1+···+lm−1

q(d+r)(lm−2+···+(m−2)l1)qd(l1+···+lm−1)

q2rl1 · · · q2r(l1+···+lm−2)
,

(3.7)

where m = (d − 2)/2.
It is easy to see that (qd+r; qd)(dn−n−r)/d contains the factor 1 − q(d−1)n.

Similarly, (qd+n−dn−r; qd)(dn−n−r)/d contains the factor 1−q(2−d)n since (dn−
n − r)/d � (n + r)/d by the conditions d � 6 and n � r. Thus, the expression
(qd+r, qd+n−dn−r; qd)(dn−n−r)/d in the fraction before the multiple summation
is divisible by Φn(q)2.

Note that the non-zero terms in the multiple summation of (3.7) are
just those indexed by (l1, . . . , lm−1) with l1 + · · · + lm−1 � (dn − n − r)/d �
n − 1 because of the factor (qr−(d−1)n; qd)l1+···+lm−1 in the numerator. This
immediately implies that all the other q-factorials in the denominator of the
multiple summation of (3.7) do not contain factors of the form 1 − qαn (and
are therefore relatively prime to Φn(q)), except for (q2r; qd)l1+···+lm−1 . If n =
d − r, then it is clear that at least one (qd−r; qd)li contains the factor 1 − qn

l1 + · · · + lm−1 > 0. We now assume that n � 2d − r and so n > max{d, r} in
this case. Thus, if (q2r; qd)l1+···+ldm−1 has a factor 1 − qkn, then the number k
is unique since l1 + · · · + lm−1 � n − 1 and gcd(n, d) = 1. Moreover, if such a
k exists, then we must have k � a(d − 4)/2 by Lemma 1, where n = ad − r. It
follows that l1 + · · · + lm−1 � k and at least one li is greater than or equal to
k/(m−1) = 2k/(d−4) � a and so (qd−r; qd)li contains the factor 1−qn in this
case. This proves that the denominator of the reduced form of the multiple
summation of (3.7) is always relatively prime to Φn(q), which completes the
proof of (3.4). �

4. Proof of Theorem 4

We shall prove
n−1∑

k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 ≡ 0 (mod Φdn−n(q)),

which is equivalent to

(dn−n−1)/d∑

k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 ≡ 0 (mod Φdn−n(q)), (4.1)
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because (q; qd)k has the factor 1−qdn−n and is therefore divisible by Φdn−n(q)
for (dn − n − 1)/d < k � n − 1, while (qd; qd)k is coprime with Φdn−n(q) for
these k.

Since qdn−n ≡ 1 (mod Φdn−n(q)), we have

(q; qd)(dn−n−1)/d

(qd; qd)(dn−n−1)/d
=

(1 − q)(1 − qd+1) · · · (1 − qdn−n−d)
(1 − qd)(1 − q2d) · · · (1 − qdn−n−1)

≡ (1 − q)(1 − qd+1) · · · (1 − qdn−n−d)
(1 − q−(dn−n−d))(1 − q−(dn−n−2d)) · · · (1 − q−1)

= (−1)
dn−n−1

d q
(d−1)(n−1)(dn−n−1)

2d (mod Φdn−n(q)). (4.2)

Furthermore, for 0 � k � (dn − n − 1)/d, we have

(q; qd)(dn−n−1)/d−k

(qd; qd)(dn−n−1)/d−k

=
(q; qd)(dn−n−1)/d

(qd; qd)(dn−n−1)/d

× (1 − qdn−n−1−(k−1)d)(1 − qdn−n−1−(k−2)d) · · · (1 − qdn−n−1)
(1 − qdn−n−kd)(1 − qdn−n−(k−1)d) · · · (1 − qdn−n−d)

≡ (−1)
dn−n−1

d q
(d−1)(n−1)(dn−n−1)

2d

× (1 − q−1−(k−1)d)(1 − q−1−(k−2)d) · · · (1 − q−1)
(1 − q−kd)(1 − q−(k−1)d) · · · (1 − q−d)

= (−1)
dn−n−1

d q
(d−1)(n−1)(dn−n−1)

2d +(d−1)k (q; qd)k

(qd; qd)k
(mod Φdn−n(q)).

Taking the most left- and right-hand sides of this congruence to the power d,
it follows, using qdn−n ≡ 1 (mod Φdn−n(q)), that for 0 � k � (dn − n − 1)/d
there holds

[2d((dn − n − 1)/d − k) + 1]
(q; qd)d

(dn−n−1)/d−k

(qd; qd)d
(dn−n−1)/d−k

q
d(d−3)((dn−n−1)/d−k)

2

≡ (−1)dn−nq
(dn−n)(dn−n−3)

2 [2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 (mod Φdn−n(q)).

It is easy to check that (−1)dn−nq
(dn−n)(dn−n−3)

2 ≡ −1 (mod Φdn−n(q)) when-
ever dn−n is odd or even. This proves that the k-th and ((dn−n−1)/d−k)-th
terms of the left-hand side of (4.1) cancel each other modulo Φdn−n(q) and
therefore (4.1) holds. Equivalently, (1.9) holds modulo Φdn−n(q). Moreover,
by (1.3) and (1.7), one sees that (1.9) also holds modulo Φn(q)2 for d � 4.
The proof then follows from the fact Φn(q)2 and Φdn−n(q) are relatively prime
polynomials.
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5. Concluding Remarks and Open Problems

Having establishing (q-)congruences for truncated (basic) hypergeometric
series, one can wonder what their ‘archimedian’ analogues are, i.e. whether
the infinite sums from k = 0 to ∞ have known evaluations, just as (1.1) is
such an archimedian analogue for (1.2).

In many cases of our results, especially when dealing with arbitrary expo-
nents d, we are not aware of explicit evaluations in the archimedian case. How-
ever for small d we can easily find corresponding evaluations by suitably spe-
cializing known summations for (basic) hypergeometric series, such as Rogers’
nonterminating 6φ5 summation (cf. [4, Appendix (II.20)]),

6φ5

[
a, qa

1
2 , −qa

1
2 , b, c, d

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d

; q,
aq

bcd

]

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

, (5.1)

where |aq/bcd| < 1 for convergence.
Indeed, by replacing q by q4, and letting a = b = c = d = qr, we obtain

from (5.1), after multiplying both sides by [r], the following identity:

∑

k≥0

[8k + r]
(qr; q4)4k
(q4; q4)4k

q(4−2r)k = [r]
(q4+r, q4−r, q4−r, q4−r; q4)∞

(q4, q4, q4, q4−2r; q4)∞

=
[r] Γq4(1 − r

2 )
Γq4(1 + r

4 )Γq4(1 − r
4 )3

, (5.2)

valid for r < 2. In the last equation we have rewritten the product using the
q-Gamma function

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x,

defined for 0 < q < 1 (cf. [4, Section 1.10]). For r ≤ 1 being an odd integer,
we have thus just established an archimedian analogue of Theorem 6.

Now, since limq→1− Γq(x) = Γ(x), we obtain that in the q → 1− limit
(5.2) becomes

∑

k≥0

(8k + r)
( r
4 )4k
k!4

=
r Γ(1 − r

2 )
Γ(1 + r

4 )Γ(1 − r
4 )3

=
4 sin( rπ

4 ) Γ(1 − r
2 )

πΓ(1 − r
4 )2

, (5.3)

where we have used the well-known reflection formula for the Gamma function.
It is now immediate that for r = 1 we get (1.1) while for r = −1 we get the
similarly attractive evaluation

∞∑

k=0

(8k − 1)
(−1

4 )4k
k!4

=
−16

√
2√

π Γ( 14 )2
. (5.4)
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Many other identities involving π can similarly be obtained. At this place,
in passing, we would like to point out that by replacing q by q2 in (5.1) and
putting a = q2, b = c = d = q one readily obtains

∑

k≥0

1 + q2k+1

1 + q

(1 − q)2

(1 − q2k+1)2
qk =

(q4, q2, q2, q2; q2)∞
(q3, q3, q3, q; q2)∞

, (5.5)

which, as recently noted by Sun [29, Equation (1.3)] (who derived this identity
by completely different means) is easily seen to be a q-analogue of Euler’s
identity

∑

k≥0

1
(2k + 1)2

=
π2

8
,

used to prove his famous evaluation ζ(2) = π2/6. See [34] for recent new
samples of expansions involving π, obtained by suitably specializing q-series
identities.

We turn to discussing whether some of the results obtained in the paper
can be further strengthened. We have proved Theorems 2 and 3 by establish-
ing a common generalization of them, namely Theorem 7. However, we are
unable to prove a similar common generalization of (1.3) and (1.4). Numerical
calculation for q = 1 suggests that there are no congruences for the left-hand
side of (3.4) with odd d � 5 that would hold in general (in particular, the case
d = 5 and r = 3 appears to be such a counterexample).

Nevertheless, we would like to give the following result being similar to
Theorem 7.

Theorem 8. Let d � 5 be an odd integer and let r be an even integer with
gcd(d, r) = 1. Let n > 1 be an odd integer with n ≡ −r (mod d) and n �
max{r, d − r}. Then

n−1∑

k=0

[2dk + r]q2
(q2r; q2d)d

k

(q2d; q2d)d
k

qd(d−r−2)k ≡ 0 (mod Φn(q)2). (5.6)

The proof of Theorem 8 is similar to that of Theorem 7. In this case we
need to apply Andrews’ transformation (3.5) with m = (d−1)/2, q → q2d, a =
q2r, b1 = qd+r, b2 = · · · = bm = q2r, c1 = · · · = cm−1 = q2r, cm = q2r+2(d−1)n

and N = ((d − 1)n − r)/d. The details of the proof are omitted here.
We can also prove the following refinement of (1.4) and (1.8). However,

we are unable to deduce any interesting conclusion similar to (1.10) from this
result by letting q → 1.

Theorem 9. Let d � 3 be an integer and let n > 1 be an integer with n ≡ 1
(mod d). Then

n−1∑

k=0

[2dk − 1]
(q−1; qd)d

k

(qd; qd)d
k

q
d(d−1)k

2 ≡ 0 (mod Φn(q)2Φdn−n(q)).
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We would like to propose the following three conjectures which are similar
to Corollary 5.

Conjecture 1. Let r be a positive integer and let p be a prime with p > 2r + 1.
Then

p−1∑

k=0

kr

(
k +

1
p + 1

)r ( 1
p+1 )p+1

k

k!p+1
≡ 0 (mod p4).

Conjecture 2. Let p > 3 be a prime. Then
p−1∑

k=0

(2pk + 2k + 1)
( 1

p+1 )2p+2
k

k!2p+2
≡ 0 (mod p7). (5.7)

More generally, if p > 3 is a prime and r a positive integer, then

pr−1∑

k=0

(
2k

pr+1 − 1
pr − 1

+ 1
)(

pr−1
pr+1−1

)2 pr+1−1
p−1

k

k!2
pr+1−1

p−1

≡ 0 (mod p2r+5). (5.8)

Conjecture 3. Let p > 3 be a prime. Then
p−1∑

k=0

(2pk − 2k − 1)
( −1

p−1 )2p−2
k

k!2p−2
≡ 0 (mod p5). (5.9)

More generally, if p > 3 is a prime and r a positive integer, then

pr−1∑

k=0

(2kpr − 2k − 1)
( −1

pr−1 )2pr−2
k

k!2pr−2
≡ 0 (mod p2r+3). (5.10)

Conjectures 2 and 3 are quite remarkable as they concern supercongru-
ences modulo high prime powers. We now give two partial q-analogues of (5.7)
as follows.

Conjecture 4. Let n be an integer greater than 1. Then
n−1∑

k=0

[2nk +2k +1]
(q; qn+1)2n+2

k

(qn+1; qn+1)2n+2
k

q(n+1)(n−1)k ≡ 0 (mod [n]2Φn(q)2Φn2(q)).

Conjecture 5. Let p be a prime. Then
p−1∑

k=0

[2pk + 2k + 1]
(q; qp+1)2p+2

k

(qp+1; qp+1)2p+2
k

q(p+1)(p−1)k

≡ − (2p + 1)(p + 1)2p(p − 1)
72

q(1 − q)2[p]4Φp2(q) (mod [p]5Φp2(q)).

(5.11)
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It is clear that the q → 1 case of (5.11) reduces to (5.7) modulo p6.
We would like to emphasize that (5.11), while still conjectural, appears to be
the first example of a basic hypergeometric supercongruence in the existing
literature, that in the limit q → 1 reduces to a supercongruence (for a hyper-
geometric series being truncated after a number of terms that is linear in p)
modulo p6.

Finally, we give a partial and a complete q-analogue of (5.9) as follows.

Conjecture 6. Let n be an integer greater than 1. Then
n−1∑

k=0

[2nk − 2k − 1]
(q−1; qn−1)2n−2

k

(qn−1; qn−1)2n−2
k

q(n−1)2k ≡ 0 (mod [n]2Φn(q)2).

Conjecture 7. Let p be a prime. Then
p−1∑

k=0

[2pk − 2k − 1]
(q−1; qp−1)2p−2

k

(qp−1; qp−1)2p−2
k

q(p−1)2k

≡ (2p − 3)(p − 1)(p − 2)2(p − 3)
6

(1 − q)2[p]4 (mod [p]5). (5.12)

It is clear that the q → 1 case of (5.12) reduces to the modulo p5 congru-
ence in (5.9).
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