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Abstract. We study the nonstationary Navier-Stokes equations in the entire three-
dimensional space and give some criteria on certain components of gradient of the velocity
which ensure its global-in-time smoothness.
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1. INTRODUCTION

Counsider the three-dimensional Cauchy problem for the Navier-Stokes equations,
i.e. the system of PDE’s (as the numerical values of the constant viscosity and the
constant density do not play any role here, they are assumed to be equal to 1)

3—u+u-Vu—Au+Vp=0
(1.1) ot in (0,7) x R®
divu=20

u(0,x) = up(x) in R3,
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where u: (0,7) x R® — R3 is the velocity field, p: (0,T) x R® = R is the pressure,
0<T < o0, up: R® = R3 with divug = 0 is the initial velocity. For simplicity, the
external force is taken to be zero.

It is well known that for uy € L?(R®) with divuy = 0 there exists at least one
weak solution (see [7] or also [5] for other types of domains). Nevertheless, the
fundamental question of the uniqueness and regularity of such solutions is still open.
On the other hand, there are many criteria which ensure that the weak solution is
a strong one and thus unique in the class of all weak solutions satisfying the energy
inequality. Let us summarize here some of them

o ue LY(I;L%),2/t+3/s<1,2<t < 00,3 < s < 0o (see [16], for the case s = 3

see [14], [4])
e uz € LY(I; L*), 2/t +3/s < %, 4 <t<o00,6<s< 00 (see [9])
o uz € L (L; L®Y), uy,up € Lt2(1; L#2),
2 < 89,10 € 00
2<t; €00,3<81 <00,2/t; +3/51 <1
(2/ta +3/352) + (2/t1 +3/s1) < 2
2/t +2/ts €1,2/s1 +2/s9 < 1
(see [10]; the proofs in [9] and [10] are done for the suitable weak solutions as local
regularity criteria; nevertheless one can easily transform the proofs for the Cauchy
problem to get global regularity criteria)
o wy,wy € LYI; L%), 2/t +3/5<2,1 <t < o0, % < 8 < 0o (see [2])
{(We denote by w; the ith component of the vorticity.)

o Vv,Vug € LY(I; L*), 2/t +3/s < 1,2 <t € 00,3 < s < 0o (see [2])

e pe LY(I;L%), 2/t +3/s<2,1 <t < 00, 2 <5< 00 (see 3])

o Vuz € LY(I; L®), 2/t+3/s < %, g <t < 00,2 < s < oo (see [12], independently

also [18])
e p_bounded from below, see [15]
(By p_ we understand the negative part of the pressure.)

o p_€ LY(I; L' (U)), 2/t1 +3/51 <2, 1 < t; < 00, < 5, <00 and
u€ LR2(I; L°2(V)), 2/ta +3/s2 < 1,3 < t2 € 00, 3 < 52 < 00 with
U={(xt) €Qr; to —1r?/0* <t <ty, 0vlo — t < |x —xo| <7},

V ={(x,t) € Qr; to —1%/0® <t <to, |x — Xo| < 0v/to — } (see [8]) .

V. Scheffer investigated in [13] for the first time partial regularity of weak solutions
and studied the Hausdorff dimension of the set of their possible singularities. His

approach, later on adapted by [1], forms the basic idea of the regularity criteria in [8],
{9] and [10].

! This implies that the point (xg,tg) is a regular point; it is not obvious how to transform
this local regularity criterion into a global one.
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In what follows, we denote by LP(R®) the Lebesgue spaces, 1 < p < 00, by
W*P(R3) the Sobolev spaces for kK € N and 1 € p < 00, both endowed with the
standard norms |- ||, gs and [|-||x,p,r3, respectively. The anisotropic Lebesgue spaces
LY(0,T; L*(R3)) will be denoted, for brevity, by L"*(Qr), 1 < t,s €< 00, Qr =
(0,T) x R3®. If no misunderstanding can occur we will omit writing Q7 and R3,
respectively.

All generic constants will be denoted by C. Their values can vary, even on the
same line or in the same formula.

We will also use the summation convention; unless otherwise stated, the summa-
tion over repeated indices will be used, from 1 to 3.

2. MAIN THEOREMS
The main goal is to prove the following four theorems.

Theorem 1. Let u be a weak solution to the Navier-Stokes equations (1.1) corre-
sponding to the initial condition ug € W2 with divug = 0 such that u satisfies the
energy inequality. Moreover let uz € L%, 2/t;+3/s1 € 1,2 < t; € 00,3 <51 € o
and one of the following conditions holds true

(a) Ouy/0zs3, Buy/dx3 belong to L*2°2 with 2/t + 3/s2 < 2,1 < ta € 00,
§ < 89 £ 00,
(b) Buy/8x3, Oua/Oz; belong to Lt3°3 with 2/t3+3/s3
(c) Bug/Bz3 € L'%4, Juy [0z € L%, 2/t; + 3/s;
5<34<oo,2\t5\oo,2\ <3.
Then (u,p) with p the corresponding pressure is the strong solution to the Navier-

72 t3<00,2<33 3;

<
S;Z:4571<t4<007

Stokes equations which is unique in the class of all weak solutions satisfying the
energy inequality.

Remark 1. Note that in (b) it might be interesting to replace the conditions
on du; /dz2 and Aus/3x1 by the same condition on wz. Unfortunately, this does not
seem to be possible, at least by the present technique.

Remark 2. In part (a) we can replace the assumptions on du;/dz3, Ouz/dzs3
by analogous assumptions on dug/dz3, dug /02, or Jug/0x3, Juy/dx1, or uy /dx3,
Oug/0xq, or Ou; /0z3, Oui/Oz;. Similarly, instead of (c), we can assume du; /0z3 €
L'%4 Quy [0z € L5

Remark 3. It will be clear from the proof why s3 and ss satisfy more restrictive
conditions than ss and s4. For s3 and s5 > 3 or from (%, 2) we can still obtain some
conditions implying the regularity; however these conditions are more restrictive,
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i.e. they do not lie on the same scale as those in Theorem 1; see the note at the end
of Step 3 (ii) in the proof of Theorem 1 below.

Remark 4. The limit cases, i.e. in (a) ug € L3, in (b) s3 = 3, t, = 0o and
in (c) 84 = %, ty = oo do not imply the regularity. We have to add the assumption
that the above mentioned norms are sufficiently small. The same holds also for the
limit case in Theorem 3 below.

In the following Theorems 2-4 we assume similarly as in Theorem 1 that u is
a weak solution to the Navier-Stokes equations (1.1} corresponding to the initial
condition ug € W2 with div up = 0 such that u satisfies the energy inequality.

Theorem 2. Let Jus/dz3 € L°*°. Then (u,p) with p the corresponding pressure
_ is the strong solution to the Navier-Stokes equations which is unique in the class of
all weak solutions satisfying the energy inequality.

Theorem 3. Let du3/dz3,0us/0xy € L%, 2/t; +3/s1 € 2,1 < 1 £ oo,
% < 81 € 0. Then (u,p) with p the corresponding pressure is the strong solution
to the Navier-Stokes equations which is unique in the class of all weak solutions
satisfying the energy inequality.

Theorem 4. Let one of the following conditions be satisfied
(i) du/Bx3 € L1, 2/t; +3/s1 < %, % <t €00,2< 8 <00, 0r
(ii) Oug/Ox3 € L2, 2/t +3/52 < 1,2 < t2 < o0, 3 € 83 < o0 and du;/dz3 €
L% 2/ts +3/s3<2,1<t3< 00,3 <s3<00,i=1,2.
Then (u,p) with p the corresponding pressure is the strong solution to the Navier-
Stokes equations which is unique in the class of all weak solutions satisfying the

energy inequality.

Remark 5. Note that the regularity assumption in Theorem 2 can be written
as GU3/81:3 € LY with 2/t+ 3/3 =0.

Remark 6. Comparing results from [2] with any of the results from Theo-
rem 3-4, we see that we require here less in the sense that we need only three (or
two) components of the gradient to satisfy less restrictive conditions than in the
above cited paper.

Remark 7. Let us also note that, even though we consider here the right-
hand side of the Navier-Stokes equations to be zero, similar results as presented
in Theorems 1-4 hold also if some f # 0 appears in the right-hand side; only the
smoothness of the solution depends on the smoothness of f.
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3. AUXILIARY RESULTS
For a moment, let (u, p) be a smooth solution to the Navier-Stokes equations such

that u € L2(0,T; W*?), u; € L?(0,T; W*~22), k > 3. Then we have the following
equation for the pressure

(3.1) ' ~Ap=divdiv(u®u) in (0,T) x R®
and thus
Lemma 1. The following estimates for the pressure hold true
lIplly(t) < Cllullgq(t)

<e T %)

” oz;

forl < g< 0.

Proof. Thisis an easy consequence of equation (3.1), standard L? estimates for
the Laplace equation in the entire space (i.e. the Marcinkiewicz multiplier theorem,
see e.g. [17]) and the fact that Vp(t) € L2. O

Next, let us consider our weak solution to the Navier-Stokes equations as given in
Theorems 1-4. As ug € W12, we know (see [6]) that there is ¢, > 0 such that there
exists a smooth solution to the Navier-Stokes equations on (0,t) corresponding to
the initial condition ug. Moreover, since this solution is unique in the class of all
weak solutions satisfying the energy inequality, it coincides with “our” weak solution
on this time interval. Denote by t* the supremum of all £ > 0 such that on (0,%)
there is a smooth solution to the Navier-Stokes equations. Note that £* > 0. Assume
now t* < co. Evidently on any compact subinterval of (0,¢*) “our” weak solution
coincides with this smooth solution (and it is, due to the absence of the right-hand
side, C([8,t* — 8] x R3), 0 <3 < t*).

If we show that some norm of u (or Vu), sufficient to ensure the smoothness of
the Navier-Stokes equations, remains bounded independently of t as t — t*, we can
extend our solution (due to the result from [6]) after the time instant £* which would
contradict the definition of t* and thus t* = co. In the following sections we will
show such estimates. We will always work on some subintervals of (0,¢*) and thus
all equations will be satisfied pointwise. Before starting with these estimates let us
recall some useful inequalities. We have (for the proof see [11])
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Lemma 2. Let h be a function such that h € L? and Vh € L*, s € [1,00], T > ¢
andr oo ifs> 3,7 <ooifs=3 andr < 3s(3 - s)"! if s < 3. Then there exists
a constant C' such that

Ikl < CIVAISHAIG™,  a€[0,1],

where 1/r = a(1/s — 1) + (1 — a)1/q.

Recall also that if diva = 0 then
(3.2) Cillcurlufly < |Vully < C2(g)|lcurl ufly,

1 < ¢ < 00 (and Cy remains bounded if ¢ — 1 or ¢ — oo while C5(q) — oo in this
case).

4. PROOF OF THEOREM 1

We will proceed in several steps:
Step 1: Estimates of the vorticity
Let us recall that w = curl u satisfies the following system

g—ut)—AwnLu-Vw—w-Vu:O in (0,7) x R?

w(0,x) = curlug(x) in R®.

Multiply the equation by w and integrate over R®. Then

1d du
B+ 1Vl = [ w5,

/ duz dws
Wi —wg = — Ugw; —
R3 ' aflfi R3 3.@2

and recalling that w; = £;;x0ur/0x; (€% is the Levi-Civitd skew-symmetric tensor)

If j = 3 then

we get

ii/ Oui [ Owdwdu [ 0w up O
=1 j=1 R3 wi 8231 7 R3 8173 8.123 6:1)1 R3 81121 8333 8273

8U1 6u1 8“2 6u1 aUQ Bul

R3 8.’1)3 8.’173 (91:2 R3 6.’122 81‘3 8163

+ Bui 82uk
CijkimU3 o —
R " Oz 0T10Tm
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with ¢;jkim & constant matrix. Thus

: duy I
'(%"UJ”% + ”Vw”% = au2 au2 aul _ / Uy OU2 a’U,l
R

ro 073 03 01 Jpa Oy Owa Oxy
du1 Ouy Juy _/ u1 Ouz duy
R3 a’I}3 81'3 (91‘2 R3 61'2 31‘3 8:1:3

+ / c u 6’(1.,' 32uk
ijkl 3 A .
R3 tyim 6(1,']' 3.’13[327,”

N

Step 2: Estimates of ug
Now

Bu,- 82uk
us _—
R3 oz i 61‘1 Bmm

< NIV2ullzllusllsliVullgs(s—2)-1  (by means of (3.2))

s s—1 8§ s_l
< OIS wlS™2 T us]ls
1 s(s— -1
< GIVwIE + Cllwlfus2e=9,

ie. if ug € L*®, 2/t 4+ 3/s < 1, s > 3, we can estimate this term by putting the first
term to the left-hand side and applying the Gronwall inequality to the other one; if
s = 3 we need that the L>® norm of u3 is sufficiently small.
Step 8: Estimates of Vu;, i = 1,2
(i) Bu1/0x3, Ous/dzs
Evidently, using Lemma 2 the last remaining terms can be estimated as follows
(,7,k,1=1,2)

6u,~ % auk

R3 8.113 31133 8117[

9ui
61'}3 s

<l

s s—3)g—1
IVl s < IVl ol

Ou; 112 2s(2s—-3)"!

< GIVolR + CllolB] 5o

and if Qu;/dz3 € L**, 2/t + 3/s < 2 we put the first term to the left-hand
side and estimate the other term by means of the Gronwall inequality. Thus
part (a) with du; /0z3, Bus/Ox3 of Theorem 1 is shown. Similarly, using also
the continuity equation, we can show the first part of Remark 2.

(11) Bul/axz, 8u2/6x1
Here we have to integrate by parts in two terms. We get

311,2 BUQ Bul / 6u1 6u1 6’lL2
R3 6:133 832'3 62[:1 R3 a:l)3 8x3 Bzg
62u2 8u2 6211.1 8u1

A A W~ AR A U2
R3 893161‘3 6.’[:3 R3 8112'26533 6333
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6u2 6’[1.2 8u1 2 (9?1,1 6u1 6u2

r3 Oz Oz3 Ox3 g3 Org dz3 013
+2 8%uq %u d%uy Ouy "
s 022 8r; | Jyo Oa Ozg

The first two terms can be estimated as above. For the other two we get
(1,1 =1,2,i #j)

62ui Bu,
2
r3 O0x3 &z]

au,

<2,

Oz

Uuj ““J ”2s(s 2)-1.

Now for 2 < s < 3 (i.e. 6 < 2s(s — 2)7! < 00) we can apply Lemma 2 to get

25(25—3) !

Ou; s s-3)s~t _ 1
VWl Jwll " < FIVwll + C||ous/ox;|| ol

I< C’“

and we estimate this term as above. For s > 3 we proceed as in [12], but
the result is more restrictive (Ju;/dz; € L6Gs=807 s 5 5 3y or for s < 2
we can estimate the term by {|0u;/0z;]|2||V?ull2|lulle and interpolate the L2-
norm between L* and L®; we get again a more restrictive condition (Ou;/dz; €

L8s(115~18)_113’ 1-?- < 8 S 2).

(iii) Proof of (c)
We can combine parts (i) and (ii) to show (c) as well as the second part of
Remark 2. Theorem 1 is proved. O

5. PROOFS OF THEOREMS 24

Proof of Theorem 2.
It is enough to show (see [9] or [10]) that ug € L* for 2/t +3/s < }, s > 6. To
this aim let us multiply the equation for uz by |us|*us and integrate over R3. Then

5
sl + 219 = = [ 2 fuaftuy = b

Now, integrating by parts in the term on the right-hand side we obtain
BU3
G <C [ ol| G2 fual® < s 52 |l

If g—:l is bounded in L™, we get that
3
flusllpoe.e + [|V]ug|?lf122 < C.
But |jus]|zs.1s < C||V]us3|?|| 2.2 and thus Theorem 2 is shown. O
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Proof of Theorem 3.

The idea is more or less the same as previously. It is enough to show that u is
bounded in L%° for 2/t + 3/s < 1, s > 3. To this aim, let us multiply the ith
component of the Navier-Stokes equations by |u;ju; and integrate over R3. We get

3

L8+ Bl E) = - 3 [ 2 s =
> (3l + gVttt 8) == 3 [ 2 s = B

We integrate by parts on the right-hand side and use the continuity equation. Then

3 ou;
|12|<czj/ 1| o s
=1 R3

<Ci(l|a“2 Ha”‘* (I r—c
X v 6232 ili3s(s—1)~ 3s(s—1)~1

3
“E(H?;i i Eo B

3 . -1
4 3 8u2 25(25-3) a’LL3
<> (GIvmitiz+e(|z2].

=1

) )

3.’1,‘3 s

After employing the Gronwall inequality, under the assumption that dus/0z2 and
dus/dz3 are bounded in L, 2/t +3/s < 2, 5> 2, we get

3
3
lullzes + Y IVIuilEll 22 < C

=1

and thus u is bounded in L°3 which gives the global-in-time regularity of the so-
lution. For s = % we have to assume that the corresponding norms are sufficiently
small. O

Proof of Theorem 4.

We will now use Theorem 1 part (a). Since we know that in both cases du;/dz3,
i = 1,2, satisfy the assumptions of Theorem 1, it is enough to verify that u; € Lb*
for 2/t +3/s <1, s > 3. To this aim we multiply the equation for us by |us|us and
integrate over R3. Then

1d 3 8 3.2 8p _
il + gVl = - [ Pualual =14
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Now

Ou Ju
mi<c [ w3 3[|u31 o e R

o
6:03 s
and using the Gronwall inequality we finish the proof of the case (ii) as uz is bounded
in L39,

To prove (i) we will use Lemma 1. We proceed as above but we do not integrate
by parts on the right-hand side and get

(a) s>6

—3)s~1
)l ol

op Ou;
11 < || ]| sl < cZH Tullssgosy- s
luflg™ /@ ujj= 7@

du;
cZn Y e W
45(3s—6)"1 .
+ fhul?)

s—6)/(25) (]| OU;
cznwngn 1570 (|52,

and if Qu;/0z3 € L, 2/t+3/s < 3, s > 6, we can estimate this term by means
of the Gronwall inequality.

(b) 2<s<6
If 2 < s < 6 then

1< [ 2] st < CZN o | sy sl sl

H Ou; 1|4s(3s— 6)~!

< 3 IVius]? ||2+czuu3||3nun goo(

+ lull?),

i.e. again after employihg the Gronwall inequality we get that us is bounded
in L%° and thus the solution is smooth. Similarly we proceed for s = 2. Theo-
rem 4 is proved. O

Remark 8 Note that in part (ii) we could replace the assumption on du, /9z3
and Juy/dz3 by any assumption from Theorem 1(a), (b), (c) or from Remark 2.
But these results seem to be less interesting. Namely, we interpret the results of
Theorem 4 as follows. If we control the flow in the “additional” third dimension,
we get the regularity; this is in accordance with the expectation since in two space
dimensions any weak solution is a strong one provided the data are smooth enough.
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1. INTRODUCTION

Consider the three-dimensional Cauchy problem for the Navier-Stokes equations,
i.e. the system of PDE’s (as the numerical values of the constant viscosity and the
constant density do not play any role here, they are assumed to be equal to 1)

@+U~Vquu+Vp:0
(1.1) ot in (0,7) x R3
divu=0

u(0,x) = up(x) in R3,
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where u: (0,7) x R3 — R3 is the velocity field, p: (0,7) x R®> — R is the pressure,
0<T <00, up: R? — R® with divug = 0 is the initial velocity. For simplicity, the
external force is taken to be zero.

It is well known that for ug € L?(R3) with divug = 0 there exists at least one
weak solution (see [7] or also [5] for other types of domains). Nevertheless, the
fundamental question of the uniqueness and regularity of such solutions is still open.
On the other hand, there are many criteria which ensure that the weak solution is
a strong one and thus unique in the class of all weak solutions satisfying the energy
inequality. Let us summarize here some of them

eucL'(I;L%),2/t+3/s<1,2<t<00,3<s< oo (see [16], for the case s = 3

see [14], [4])
e uz € L'(I;L%),2/t+3/s < 3,4 <t < 00,6 <5< 0o (see [9])
o uz € LU (I; L%, uy,up € Lt2(I; LS2),
2 < sg,te <00
2<t; <00,3<51<00,2/t1+3/51<1
(2/ta +3/s2) + (2/t1 +3/s1) < 2
2/t1+2/ta <1,2/81+2/s2 < 1
(see [10]; the proofs in [9] and [10] are done for the suitable weak solutions as local
regularity criteria; nevertheless one can easily transform the proofs for the Cauchy
problem to get global regularity criteria)
e wi,wy € LYI;L%), 2/t +3/s<2,1<t< o0, 3 <s<o0 (see[2])
(We denote by w; the ith component of the vorticity.)
e Vuy,Vuy € LY(I; L®), 2/t+3/s< 2<t< 00,3 <s< oo (see [2])

e pe LY(I;L%), 2/t +3/s<2,1<t < 00, 3 <s< oo (see [3))
o Vusz € Li(I; L?), 2/t+3/s 3,3 <t< 00,2 < s < oo (see [12], independently
also [18])

e p_bounded from below, see [15]
(By p_ we understand the negative part of the pressure.)

o p_c LU (I; L5v(U)), 2/t1 +3/51 < 2,1 < t1 < o0, % < 51 < o0 and
ue L2(I;L52(V)), 2/ta+3/s2 < 1,3 < t2 < 00, 3 < s9 < 0o with
U={(x,t) € Qr; to —1?/0> < t < to, Q\/to——< |x — xo| <1},

V ={(x,t) € Qr; to —1?/0*> < t < to, |x —x0| < 0v/To — t} (see [8])!.

V. Scheffer investigated in [13] for the first time partial regularity of weak solutions
and studied the Hausdorff dimension of the set of their possible singularities. His
approach, later on adapted by [1], forms the basic idea of the regularity criteria in [8],
[9] and [10].

! This implies that the point (xg, tg) is a regular point; it is not obvious how to transform
this local regularity criterion into a global one.
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In what follows, we denote by LP(R®) the Lebesgue spaces, 1 < p < oo, by
WkP(R3) the Sobolev spaces for k € N and 1 < p < oo, both endowed with the
standard norms || - ||, gs and || - || r3, respectively. The anisotropic Lebesgue spaces
LY(0,T; L*(R3)) will be denoted, for brevity, by L»*(Q7), 1 < t,s < 00, Qr =
(0,T) x R®. If no misunderstanding can occur we will omit writing Q7 and R3,
respectively.

All generic constants will be denoted by C. Their values can vary, even on the
same line or in the same formula.

We will also use the summation convention; unless otherwise stated, the summa-
tion over repeated indices will be used, from 1 to 3.

2. MAIN THEOREMS
The main goal is to prove the following four theorems.

Theorem 1. Let u be a weak solution to the Navier-Stokes equations (1.1) corre-
sponding to the initial condition ug € W2 with divuy = 0 such that u satisfies the
energy inequality. Moreover let ug € L5 ,2/t143/51<1,2<t €00,3< 81 <0
and one of the following conditions holds true

(a) Ouy/0x3, Ous/dx3 belong to L12:°2 with 2/ts + 3/s2 < 2, 1 < ta < 00,
% < 83 £ 0,
(b) Ouy/dwza, Oua/Ox1 belong to L% with 2/t3+3/s3
(c) Ous/dx3 € Lt+%1 Quy/0zs € Lt5’55, 2/t; +3/s;
—<34<oo2 ts <00, 2< 85 < 3.
Then (u,p) with p the correspondmg pressure is the strong solution to the Navier-

2,2<t3 <00,2<83<3,

<
<2,i=45 1<t < oo,

Stokes equations which is unique in the class of all weak solutions satisfying the

energy inequality.

Remark 1. Note that in (b) it might be interesting to replace the conditions
on Juy/0xo and Qug/dx;1 by the same condition on ws. Unfortunately, this does not
seem to be possible, at least by the present technique.

Remark 2. In part (a) we can replace the assumptions on du;/0x3, dua/dxs
by analogous assumptions on Qug/dx3, Qus/0xs, or Qus/dxs, Ouy/Oxy, or Ouy/Oxs,
Oua/0xa, or Quy/0xs, Ouy/Oxy. Similarly, instead of (c), we can assume Quq/Ox3 €
L'%54 Quy/Oxq € L%,

Remark 3. It will be clear from the proof why s3 and s5 satisfy more restrictive

12 2) we can still obtain some

conditions implying the regularity; however these conditions are more restrictive,

conditions than so and s4. For s3 and s5 > 3 or from (
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i.e. they do not lie on the same scale as those in Theorem 1; see the note at the end
of Step 3 (ii) in the proof of Theorem 1 below.

Remark 4. The limit cases, i.e. in (a) ug € L>?, in (b) so = 3, t, = oo and
in (c) 84 = %, ty = oo do not imply the regularity. We have to add the assumption
that the above mentioned norms are sufficiently small. The same holds also for the
limit case in Theorem 3 below.

In the following Theorems 2-4 we assume similarly as in Theorem 1 that u is
a weak solution to the Navier-Stokes equations (1.1) corresponding to the initial
condition ug € W2 with divug = 0 such that u satisfies the energy inequality.

Theorem 2. Let ug/0x3 € L. Then (u,p) with p the corresponding pressure
is the strong solution to the Navier-Stokes equations which is unique in the class of
all weak solutions satisfying the energy inequality.

Theorem 3. Let dus/0x3,0uz/0xs € L1051, 2/t; +3/s1 < 2, 1 < t1 < oo,
% < 81 < 00. Then (u,p) with p the corresponding pressure is the strong solution
to the Navier-Stokes equations which is unique in the class of all weak solutions
satisfying the energy inequality.

Theorem 4. Let one of the following conditions be satisfied
(i) Ou/Oxs € L', 2/t; +3/s1 < 3, 3 <11 < 00,2< 51 <00, or
(ii) Qus/Ows3 € L'2°2, 2/to +3/sa < 1, 2 < tg < 00, 3 < 853 < 00 and Ju;/dx3 €
L+ 2/t3 +3/s5 <2, 1< t3< 00, 2 <s3<00,i=1,2.
Then (u,p) with p the corresponding pressure is the strong solution to the Navier-
Stokes equations which is unique in the class of all weak solutions satisfying the
energy inequality.

Remark 5. Note that the regularity assumption in Theorem 2 can be written
as Qus/0xs € LY with 2/t +3/s = 0.

Remark 6. Comparing results from [2] with any of the results from Theo-
rem 3-4, we see that we require here less in the sense that we need only three (or
two) components of the gradient to satisfy less restrictive conditions than in the
above cited paper.

Remark 7. Let us also note that, even though we consider here the right-
hand side of the Navier-Stokes equations to be zero, similar results as presented
in Theorems 1-4 hold also if some f # 0 appears in the right-hand side; only the
smoothness of the solution depends on the smoothness of f.
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3. AUXILIARY RESULTS
For a moment, let (u,p) be a smooth solution to the Navier-Stokes equations such
that u € L2(0,T; W*2), u; € L?(0,T;W*=22) k > 3. Then we have the following
equation for the pressure
(3.1) —Ap =divdiv(u®u) in (0,7) x R?

and thus

Lemma 1. The following estimates for the pressure hold true
Ipllq(t) < Cllullgq(t)

CZH el

H 0x; llg

for 1 < g < oo.

Proof. Thisis an easy consequence of equation (3.1), standard L? estimates for
the Laplace equation in the entire space (i.e. the Marcinkiewicz multiplier theorem,
see e.g. [17]) and the fact that Vp(t) € L?. O

Next, let us consider our weak solution to the Navier-Stokes equations as given in
Theorems 1-4. As ug € W2, we know (see [6]) that there is ¢y > 0 such that there
exists a smooth solution to the Navier-Stokes equations on (0,%p) corresponding to
the initial condition ug. Moreover, since this solution is unique in the class of all
weak solutions satisfying the energy inequality, it coincides with “our” weak solution
on this time interval. Denote by ¢* the supremum of all # > 0 such that on (0,?)
there is a smooth solution to the Navier-Stokes equations. Note that ¢t* > 0. Assume
now t* < oo. Evidently on any compact subinterval of (0,¢*) “our” weak solution
coincides with this smooth solution (and it is, due to the absence of the right-hand
side, C([5,t* — 6] x R?), 0 < 4§ < t).

If we show that some norm of u (or Vu), sufficient to ensure the smoothness of
the Navier-Stokes equations, remains bounded independently of ¢ as t — t*, we can
extend our solution (due to the result from [6]) after the time instant ¢* which would
contradict the definition of ¢* and thus t* = oco. In the following sections we will
show such estimates. We will always work on some subintervals of (0,¢*) and thus
all equations will be satisfied pointwise. Before starting with these estimates let us
recall some useful inequalities. We have (for the proof see [11])
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Lemma 2. Let h be a function such that h € L? and Vh € L*, s € [1,00], 7 > q
andr < oo ifs > 3,7 < oo if s =3 and r < 3s(3 —s)~! if s < 3. Then there exists
a constant C such that

k]l < CIVRIEIRIG™,  a€0,1],

where 1/r =a(1/s — %) + (1 —a)l/q.

Recall also that if divu = 0 then
(3.2) Cil[curlullq < [[Vullg < C2(g)|[curlully,

1 < ¢ < oo (and C; remains bounded if ¢ — 1 or ¢ — oo while C3(g) — oo in this
case).

4. PROOF OF THEOREM 1

We will proceed in several steps:
Step 1: Estimates of the vorticity
Let us recall that w = curlu satisfies the following system

g_‘:_Aw+u.vW_w-vu:0 in (0,T) x R?

w(0,x) = curlug(x) in R®.

Multiply the equation by w and integrate over R3. Then

1d O
FallE+ 1Vl = [ i G,

8U3 8w3
W; — w3 = — Ugw; ——
R3 8:51 R3 8:51

and recalling that w; = €;;,0ui/0z; (€45 is the Levi-Civita skew-symmetric tensor)

If j = 3 then

we get
ii/ o QU [ QuaDuzdw [ Ous Qup Oy
=1 =1 R3 ! (3':171 I R3 6563 6563 (3'171 R3 6561 6563 (3':173
Ou Ous Quz [ Our Ous Ouy
R3 6563 (3':173 (3':172 R3 6562 (3':173 (3':173

+ 5‘u1 82uk
CijklmU3 75—
Ra JEm O0x; 0x0z,
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with ¢ijkim a constant matrix. Thus

6’11,2 (’)ug 6’[1,1 / 6’11,2 (’)ug 8u1
R

2dtH Wiz + Vel = /a—%a—* T T

/ 6’&1 6’&1 8U2 / 6’(1,1 6’(1,2 (3'11,1
R R

3 afL’Q 81'3 6$3

3 81'3 81'3 6$2

i Ou;  0%uy
CiiklmU3s~— .
R3 ramm 8SCJ' 8x18xm

Step 2: Estimates of ug
Now

6’&1' 6211,
et G| < IVl Ve (b means of (3.2)

+3)s~ 1 _3)s~ !
< CIVWIIST ol Yluslls

1 s(s_g)-1
< GlIVell3 + Cllwl3llusllZC=,

ie. if ug € L 2/t +3/s < 1, s > 3, we can estimate this term by putting the first
term to the left-hand side and applying the Gronwall inequality to the other one; if
s = 3 we need that the L>3 norm of w3 is sufficiently small.
Step 8: Estimates of Vu;, i = 1,2
(i) Ouy/0xs, Ous/Ox3
Evidently, using Lemma 2 the last remaining terms can be estimated as follows
(i,4,k,1=1,2)

Ou; Ou;j Quy Ju; 9 3/s 1 (25—3)s~ ]| Owi
9uy ey H
/IRs O3 Oxs Ox; H8w3 Valass Vel el
Ou; |25(25—-3) "
< FIVwIB + Ol ]| 5

and if Qu;/0xs € LY, 2/t + 3/s < 2 we put the first term to the left-hand
side and estimate the other term by means of the Gronwall inequality. Thus
part (a) with duy/Oxs, Oua/Oxs of Theorem 1 is shown. Similarly, using also
the continuity equation, we can show the first part of Remark 2.

(i) Quy/0xa, Oua/0x1

Here we have to integrate by parts in two terms. We get

/ %%%+/ Jur Ouy Ouy
R R

3 81'3 6$3 6$1 3 81'3 6$3 6$2
0%us  Ousy O%u; Ouy

Uy — Uz
R3 (9171(9:173 6563 R3 65628:173 6563
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3 8951 6$3 6$3
82uz 6’&2 6211,1 6’(1,1

2 — 2 —Ug.

+ /[Rs % axlulJr /Rs % 8x2u2

The first two terms can be estimated as above. For the other two we get

(1,7 =1,2,i #j)
gs 02 0z; 7|~ 10z,

3 afL’Q 6$3 81'3

_ 2/ 6’&2 8U2 (3'U1 + 2/ 6’(1,1 (3'11,1 6’(1,2
R R

62Ui

I =

sllosgazyr.

Now for 2 < s < 3 (i.e. 6 < 2s(s — 2) 7! < o0) we can apply Lemma 2 to get

s(2s—=3)7"

3/s 25—3)s71
IVl Rl < 2Vl + Ofowom | el

1<z

and we estimate this term as above. For s > 3 we proceed as in [12], but
the result is more restrictive (Ju;/0x; € LSGs=6)"" ¢ > 3) or for s < 2
we can estimate the term by ||0u;/0z;||2||V2u||2[ul|cc and interpolate the L>-
norm between L* and L% we get again a more restrictive condition (du;/dx; €
L85(115718)’1,57 % <s< 2)'
(iii) Proof of (c)

We can combine parts (i) and (ii) to show (c) as well as the second part of
Remark 2. Theorem 1 is proved. O

5. PROOFS OF THEOREMS 2—4

Proof of Theorem 2.
It is enough to show (see [9] or [10]) that uz € L"* for 2/t +3/s < 3, s > 6. To
this aim let us multiply the equation for u3 by |ug|*u3 and integrate over R*. Then

5l + 2191l 8 = = [ 22 fualtus = 1.

Now, integrating by parts in the term on the right-hand side we obtain
Ous Ous
Rl <C [ 1pl| 52 sl < sl g |l

If 8“3 is bounded in L°*° we get that
[usllpoec + | Vug? [l 22 < C.
But ||us| ps.1s < C||V|uz|?| p2.2 and thus Theorem 2 is shown. O
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Proof of Theorem 3.

The idea is more or less the same as previously. It is enough to show that u is
bounded in L®* for 2/t + 3/s < 1, s > 3. To this aim, let us multiply the ith
component of the Navier-Stokes equations by |u;|u; and integrate over R3. We get

= 1.

Z@ng 3 9l 213) Z/

We integrate by parts on the right-hand side and use the continuity equation. Then

|

mmoi/»ﬁ?
i=1 /R? i
<O (15l + Gl ety
<Oy (|5, + 2] Yy
=1

4 319 (3'11,2 25(25—3)" 8U3
i=1

wﬂ

2s(2s—3)~
Vil

After employing the Gronwall inequality, under the assumption that dus/0xs and
dus/dx;3 are bounded in L, 2/t +3/s < 2, s > 2, we get

3
[l pes + 3 IV]uil 222 < C

i=1

and thus u is bounded in L°? which gives the global-in-time regularity of the so-
lution. For s = % we have to assume that the corresponding norms are sufficiently

small. O

Proof of Theorem 4.

We will now use Theorem 1 part (a). Since we know that in both cases du;/0x3,
i = 1,2, satisfy the assumptions of Theorem 1, it is enough to verify that us € L»*
for 2/t +3/s <1, s > 3. To this aim we multiply the equation for us by |ug|us and

integrate over R?. Then

1d 3
3apluald+ g1l = = [ uafual = 1o
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Now

8’11,3 8’11,3
Ll <C R3||| ]|u3| o e N B e
8U3 s—3)s71
<O S )l sl

and using the Gronwall inequality we finish the proof of the case (ii) as u3 is bounded
in 139,
To prove (i) we will use Lemma 1. We proceed as above but we do not integrate
by parts on the right-hand side and get
(a) s =6

[allas(s—3)-1 llusll3

il <[| 22, 3||3\CZH3“Z

8”1 s s Ss— s
<C Z s3] g | Il /2

s—6)/(2s 6“1
<3 fuslBlals" (|55
=1

45(3s—6)"! 9
+ luli?)

and if Qu;/Oxs € LV*, 2/t+3/s < %, s > 6, we can estimate this term by means
of the Gronwall inequality.

(b) 2<s<6
If 2 < s < 6 then

3
Ju;
sl < cgi P

3 (35—6)s™ !
< 2 IVl \\2+02||u3||3uu||2 "

3
2
9

1
Nullasezs—s)-1llusll3 us]

45(35—6)""
S +Iluf?),

[I3] < Haa—p

|

i.e. again after employing the Gronwall inequality we get that us is bounded
in L3 and thus the solution is smooth. Similarly we proceed for s = 2. Theo-

rem 4 is proved. O

Remark 8. Note that in part (ii) we could replace the assumption on du;/0rs
and Ous/0x3 by any assumption from Theorem 1 (a), (b), (c) or from Remark 2.
But these results seem to be less interesting. Namely, we interpret the results of
Theorem 4 as follows. If we control the flow in the “additional” third dimension,
we get the regularity; this is in accordance with the expectation since in two space
dimensions any weak solution is a strong one provided the data are smooth enough.
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