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Let O be a <r-finite measure space. Let K be a (nonlinear) montone 
operator and let (Fu)(x)=f(x, u{x)) be a Niemytski operator. We consider 
the Hammer stein type equation 

(1) u + KFu = g. 

A detailed discussion and a complete bibliography about equation (1) 
can be found in [3]. The new feature about the results we present here is 
the fact that we do not assume any coercivity for F. When Fis monotone 
and K maps LX(Q) into Z,°°(£i), there is no growth restriction on F either 
(cf. Theorem 1). The monotonicity of F can be weakened when Kis com
pact (cf. Theorem 4). Also some of these results are valid for systems in 
the case where F is the gradient of a convex function (cf. Theorem 5). 

Assume 
(2) Kis a monotone hemicontinuous mapping from //(fi) into L°°(Q) 

which maps bounded sets into bounded sets, 
(3) f(x, r):CixR-^R is continuous and nondecreasing in r for a.e. 

x eQ, and is integrable in x for all r e R. 

THEOREM 1. Under the assumptions (2) and (3), equation (1) has 
one and only one solution u G L°°(Q) for every g e L°°(£î). 

Uniqueness. Let ux and u2 be two solutions of (1). By the monotonicity 
of K we get 

(u^x) - u2(x)) • ( ƒ (x, Mi(x)) - ƒ (Xi, w2(x))) dx <; 0 

which implies that f(x, u1(x))=f(x, u2(x)) a.e. on CI and therefore by 
(1), W!=w2. 

In proving existence of u we shall use the following 

LEMMA 1. Let X be a Banach space and let K:X-^X* and F:X*-+X 
be two monotone hemicontinuous operators. Let { w j c j * , {vn}<^X and 
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{wn}<^X* be three sequences such that 
(4) un converges to u in X*for the weak* topology, 
(5) F(un) converges to v in Xfor the weak topology, 
(6) vn converges to v in Xfor the weak topology, 
(7) Kvn converges to g—u in X* for the weak* topology, 
(8) (wn,F(un))-(Kvn,vn)-+0, 
(9) (gn> F(un))-*(g, v) where gn=un+wn. 
Then u+KFu=g. 

PROOF OF LEMMA 1. We have 

(un - u, F{un)) = (gn -wn-u, F(uJ). 

By the monotonicity of K we get 

(Kvn, vn) ^ (Kvn, v) + (Kv, vn - v) 
and thus 

lim M{Kvn, vn) ^{g-u, v). 
By (8) we have 

lim M(wn, Fun) s> <g - a, v). 

Consequently, lim sup(wn—u, F(un))^0. Since F is pseudomonotone 
(cf. [1]), we conclude that v—Fu and (un, F(un))-^(u, v). Also (Kvn, vn)-> 
(g-u, v) since (wn, F(un))=(gn-un, F(un))->(g, v)-(u, v). Thus 

\im(Kvn, vn - v) = 0, 

and again, since K is pseudomonotone, we conclude that g—u=Kv=KFu. 
PROOF OF THEOREM 1. By a shift we can always assume that f(x, 0)=0 

and that K0=0 (note that (1) can be written as u+KFu=g, where 
Fv=Fv-F0, Kv=K(v+F(0))-KF0 and g=g-KF0). Let Q,n be an 
increasing sequence of finite measure subsets of Q, such that \Jn Q n = Q . 
Let Xn be the characteristic function of £ln. Let Fn be F truncated by n, 
i.e., 

fn(*> r) = f(x, r) whenever \f(x, r)\ < n, 

= nf(x, r)l\f(x, r)\ whenever \f(x, r)\ ^ n. 

The equation 

(10) un + %nK%nFn{Ur) = Xng 

has a solution. 
Indeed the mapping Kn\v\-*%nK%nv is monotone hemicontinuous from 

L2(Q) into itself. 
On the other hand, the (multivalued) operator A defined on L2(Q) by 

Av = {we L2(&); v(x) = %n(x)fn(x, w(x)) a.e. on £}} 
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is maximal monotone in L2(Q) and D(A) is bounded in L\Q) (\v\L*<i 
«(meas ÜJ1/2, v e D(A)). Consequently, R(A+Kn)=L2(£ï) (cf. [2]) and 
(10) has a solution. 

Multiplying (10) through by Fn(un) and using the monotonicity of K 
we get 

(11) wn • Fn(un) dx <; XngFn(Mn) dx. 
Ja Jo. 

Let C=2||gi|i00; we have 

unFn(un) dx = unFn(un) dx + unFn(un) dx 
JCI J\un\^C J\un\<C 

^c! \Fn{un)\dx-c\ \Fn(un)\dx 
J\un\^C J\un\<C 

^ C f \Fn(un)\ dx - 2C ! \Fn(un)\ dx. 

Using (11) we obtain 

f \Fn(un)\ dx <: 4 f \Fn(un)\ dx ^ 4 f |/(x, iin(x))| dx <: C 

by assumption (3). 
Going back to (10), we conclude that {un} remains bounded in L°°(Q). 

Therefore, by assumption (3), there is some function h E /^(Q) such that 

(12) |Fw(un)(x)| ^ |/(x, un(x))\ <: h(x) a.e. on O. 

We apply now Lemma 1 with vn=xnFn(un), wn=xnKvn, gn=Xng- By 
extracting a subsequence, we can always assume that 

un converges to u weak* in L°°(Q), 
F(un) converges to v weakly in LKl), 
vn converges to v weakly in L^Q), 
gn converges to g weak* in L°°(Q). 

Hence 
wn converges to g—u weak* in L°°(Q), 
Kvn converges to g—u weak* in L°°(Q). 
It remains to verify (8) and (9). We have 

<wn, F(un)) = %nKvn • F(un) dx = KvnxnF(un) dx 
«Zn Jft 

= \Kvn'vndx + \ %nKvn(F(un) - Fn(un)) dx. 
Jft Jn 
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The last term can be bounded by 

C f \Fun\ dx ^ C f |*(x)| dx 
J\F(un)\>n J\h\>n 

which tends to zero as «->+ oo and (8) follows. 
Finally (9) holds since 

<gn> ^(W«)) = XngHUn) àx = gF(ün) dx + \ (%n ~ l)gF(un) dx, 
Jci Jn Ja. 

and the last term goes to zero by Lebesgue's theorem. 

THEOREM 2 (CONTINUOUS DEPENDENCE). Under the assumptions (2) 
and (3), F^+KF)*1 is strongly continuous from Z,°°(Q) into LX(Q) and 
(I+KFY1 is demicontinuous (from L°°(Q) strong into L°°(Q) weak*). 
If in addition K is strongly continuous from L1 (Q) into U° (Q), then (1+ KF)"1 

is strongly continuous from L°°(Q) into L°°(Q). 

PROOF. We shall prove a slightly stronger result. Let gn be a bounded 
sequence in Z°°(£i) such that gn-+g a.e. on fi. Let un=(I+KF)-1gn and 
let u=(I+KF)-1g. We are going to show that F(un)->F(u) in z/(fi). 

We know, from the proof of Theorem 1, that {un} is bounded in L°°(fi) 
and there is some h e £}(&) such that \F(un)\^h a.e. on O. Since 

f (un - u)(F(un) - F(u)) dx ^Ugn- g)(F(un) - F(u)) dx 
J CI JQ 

and the right hand side goes to zero by Lebesgue's theorem, we can 
extract a subsequence such that 

(Unk-u)(F(Unk)~-Hu))-+0 a.e. on a 

Consequently, F(un)-+F(u) a.e. on Q and hence F(unj)-+F(u) in L^tl) . 
By the uniqueness of the limit we conclude that F(un)-*F(u) in LHQ). 

Using similar arguments, we can prove some variants of Theorem 1. 

THEOREM 3. Assume K is monotone, hemicontinuous and bounded 
from l / ( Q ) into LP(Q). Assume f(x,r):£lxR-^R is continuous and 
nonincreasing in r for a.e. xeQ. and is measurable in x for all x eR9 

and satisfies 

\f(x, r)\ ^ c(x) + cQ M»-1 a.e. x e £l,for allreR 

where c e l / ( Q ) . 
Then (1) has a unique solution u e Lp(Q)for every g e LP(Q). 

THEOREM 4. Assume K is monotone, hemicontinuous from LX(Q) 
into U°(Q) and maps bounded sets of L^Ci) into compact sets of £°°(Q). 
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Assume f {x, r) is continuous in rfor a.e. x G Ü and there exists M such that 

{f{x, r) -f(x, 0))r ^ 0 for a.e. xeQ, and for all \r\ ^ M. 

Suppose f{x, r) is measurable in xfor all r E R and for every constant C, 

\f(x> r)\ is integrable. 

Then (1) has a solution u G Z,°°(Q) for every g e U°{Çl). 

The case of systems. Assume 
(13) K is monotone hemicontinuous and bounded from Z/^Q; Rn) 

intoL°°(Q;i?n). 
(14) f{x, r):ÛX Rn->Rn is continuous in r for a.e. x G fî and trimonotone 

in r, i.e., for a.e. x E Q and for any sequence r0, rl9 r2, r 3=r 0 we have 

Z (ƒ(x, r,), r, - r w ) ^ 0 

(for example, the gradient of a convex function is trimonotone, see [4]). 
(15) f{x, r) is measurable in x for all r G R and for every constant C 

I ƒ(*> 01 is integrable. 

THEOREM 5. Under the assumptions (13), (14), (15), equation (1) has 
a unique solution u G L°°(Q; Rn)for every g G Z,°°(Q; Rn). 

In order to bound Fu in L1, we use the following 

LEMMA 2. Assume (14) and (15) /zoW. Then for any constant p > 0 , 
-//zere ex^te hp E L1(£i) 5wc/z */*#/ 

p \f{x, r)\ <; (ƒ(*, r) -f{x, 0), r) + hp{x) for a.e. xEÜ,allrE Rn. 

Uniqueness follows from the following 

LEMMA 3. Assume B is continuous and trimonotone from a Hilbert 
space H into itself. Let u,v G H be such that 

{Bu — Bv, u — v) = 0. 
Then Bu=Bv. 

Along the same lines one can prove the following lemma which leads 
to stability results. 

LEMMA 4. Assume B is trimonotone and Holder continuous with 
exponent a ^ l {i.e., \Bu—Bv\^L\u—v\a for all u, v G H). 
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Then there exists a constant k>0 such that 

(Bu -Bv,u-v)^k \Bu - Bv\1+1/" for all u,veH. 
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