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Abstract

We consider coherent systems with independent and identically distributed components.

While it is clear that the system’s life will be stochastically larger when the components

are replaced with stochastically better components, we show that, in general, similar results

may not hold for hazard rate, reverse hazard rate and likelihood ratio orderings. We find

sufficient conditions on the signature vector for these results to hold. These results are

combined with the other well known results in the literature to get more general results

for comparing two systems of the same size with different signature vectors and possibly

with different independent and identically distributed component lifetimes. Some numerical

examples are also provided to illustrate the theoretical results.

Key words: Likelihood ratio order; Hazard rate order; Reversed hazard rate order; Coherent

system.
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1 Introduction

Consider a coherent system consisting of n components with lifetimes X1, . . . ,Xn, which are

assumed to be independent and identically distributed (i.i.d.) continuous random variables. It

follows from the coherent property of the system that the lifetime of the system TX corresponds

to exactly one of the order statistics, Xi:n, i = 1, . . . , n. [Samaniego (1985)] introduced the

concept of “signature” of a system which depends on the design of the system. Let

pi = P [TX = Xi:n], i = 1, . . . , n and
∑n

i=1 pi = 1,

be the probability that the system fails upon the occurrence of the ith component failure. The

vector p = (p1, . . . , pn) is called the signature of the system. The survival function of the lifetime

of the underlying coherent system can be expressed as

P (TX(p) > t) =
n∑

i=1

piP (Xi:n > t). (1.1)

Because of the fundamental property of a systems signature p, namely, that the distribution

of the system lifetime T, given i.i.d. components lifetimes with c.d.f. F, can be expressed as a

function of p and F alone, we use the notation TX(p to denote the life time of the system.

This representation was used by to stochastically compare two systems with each with same

i.i.d.components. These ordering properties are distribution-free in the sense that they do not

depend on the common distribution of the components. As mentioned in Kochar et al. (1999)

and also explained in Navarro et al. (2008), the above results continue to hold when the vector

(X1, . . . ,Xn) has an exchangeable distribution. Moreover, they obtain distribution-free ordering

properties used to compare systems having different numbers of exchangeable components. For

further references on this topic, see Samaniego (2007) and Navarro et al. (2010)

First we review some notions of stochastic orderings. Throughout this paper increasing and

decreasing stand for non-decreasing and non-increasing, respectively.

Let X and Y be two non-negative continuous random variables with density functions f and

g, distribution functions F and G, survival functions F = 1 − F and G, hazard rate functions

hX = f/F and hY , and reversed hazard rate functions h̃X = f/F and h̃Y , respectively.

(a) X is said to be larger than Y in the llikelihood ratio order (denoted by X ≥lr Y ) if f(t)
g(t) is

increasing in t.

(b) X is said to be larger than Y in the hazard rate order (denoted by X ≥hr Y ) if F (t)

G(t)
is

increasing in t, or, equivalently, hX(t) ≤ hY (t) for all t.

(c) X is said to be larger than Y in the reversed hazard rate order (denoted by X ≥rh Y ) if
F (t)
G(t) is increasing in t, or, equivalently, h̃X(t) ≥ h̃Y (t) for all t.
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(d) X is said to be larger than Y in the usual stochastic order (denoted by X ≥st Y ) if

F (t) ≥ G(t) for all t.

The above stochastic orders can be defined on the same lines to compare two discrete random

variables with sample space {1, . . . , n}. For an n-dimensional probability vector p = (p1, . . . , pn),

we denote by hp(j) =
pj∑n
i=j pi

, the hazard rate of p and h̃(j) =
pj

∑j
i=1 pi

, as the reverse hazard rate

of p. For two discrete distributions p and q on the integers {1, . . . , n}, we write

(a) p ≥st q if and only if
∑n

i=j pi ≥
∑n

i=j qi for j = 1, . . . , n− 1.

(b) p ≥hr q if and only if hp(i) ≤ hq(i) for i = 1, . . . , n.

(c) p ≥rhr q if and only if h̃p(i) ≥ h̃q(i) for i = 1, . . . , n.

(d) p ≥lr q if and only if pi
qi

is increasing in i for i = 1, . . . , n.

It is well known that

X ≥lr Y =⇒ X ≥hr[rh] Y =⇒ X ≥st Y, (1.2)

but neither the reversed hazard rate nor hazard rate orders imply each other. one may refer to

Shaked (2007) and Muller and Stoyan (2002) for more details.

Let TY(q) be the lifetime of another coherent system with signature vector q = (q1, . . . , qn)

and with component lifetimes Y1, . . . , Yn. It is of interest to compare two systems TX(p) and

TY(q) according to various stochastic orders. Kochar et al. (1999) proved that if random

lifetimes X1, . . . ,Xn are i.i.d., then

p ≥∗ q =⇒ TX(p) ≥∗ TX(q), (1.3)

where ∗ order stands for lr, hr, rh and st orders. In fact, they pointed out that the above results

hold when X1, . . . ,Xn are exchangeable random variables and the corresponding consecutive or-

der statistics are ordered according to ∗ ordering, that is if Xi+1:n ≥∗ Xi:n i = 1, 2, . . . , n −
1. This problem has been pursued further by many other researchers. For instance, the

reader may refer to [Belzunce et al.(2001a)], [Khaledi and Shaked (2007)], [Nanda et al. (1998)],

[Navarro et al. (2008)], [Zhang (2010)] and [Zhang and Meeker (2013)], among others.

A k-out-of-n system consisting of n components with lifetimes X1, . . . ,Xn, functions if and

only if at least k out of the n components function. That is, the lifetime of the system corresponds

to the (n− k + 1)th order statistic, X(n−k+1:n). Therefore, stochastically comparing two k-out-

of-n systems is equivalent to comparing the corresponding order statistics. Let X1, . . . ,Xn and

Y1, . . . , Yn be two sets of i.i.d. random variables. Then, it is known that

X1 ≥∗ Y1 =⇒ Xi:n ≥∗ Yi:n, (1.4)

where ∗ order stands for lr, hr, rh and st orders. Note that Xi:n and Yi:n are the lifetimes of

two coherent systems with common signature vector p = q = (0, 0, . . . , 0, 1, 0, . . . , 0) ( 1 being
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at the ith position), but with different lifetime distributions. It is of interest to generalize the

results of (1.4) to compare coherent systems with more general signature vectors.

It follows from the fact that

X1 ≥st Y1 =⇒ Xi:n ≥st Yi:n, for i = 1, . . . , n (1.5)

and the equation (1.1) that when X1, . . . ,Xn (Y1, . . . , Yn) are independent and identically dis-

tributed, then

X1 ≥st Y1 ⇒ TX(p) ≥st TY(p) (1.6)

However, such a result may not hold for other stochastic orders like likelihood ratio, hazard rate

and reverse hazard rate orders as shown in the following counter example.

TX�p�

TY�p�

5.5 6.0 6.5 7.0 7.5 8.0

0.01

0.02

0.03

0.04

Figure 1: Plot of the hazard rate functions.

Example 1.1. Consider a coherent system of order 4 with lifetime

TX(p) = max(X1,min(X2,X3,X4))

with signature vector p = (0, 12 ,
1
4 ,

1
4 ), where Xi, i = 1, . . . , 4 are independent exponential random

variables with common hazard rate 0.7. Let Yi, i = 1, . . . , 4 be another set of independent

exponential random variables with common hazard rate 1. In Figure 1 we plot the hazard rate

functions of TX(p) and TY (p) and it can be seen that the hazard rate functions cross at t = 5.5

even though X1 ≥hr Y1. Therefore, a result similar to (1.6) does not hold, in general, for hazard

rate ordering.

In the second section, we find sufficient conditions on the signature vector p under which

X1 ≥∗ Y1 ⇒ TX(p) ≥∗ TY(p) (1.7)

holds for hazard rate, reverse hazard and likelihood ratio orderings. This problem has also been

studied by Navarro et al. (2013), but as will be seen later in the paper, their results seem to be
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different from ours. The rest of the paper is organized as follows. The main results of the paper

are given in the next section. These new results are combined with the other well known results

in the literature to get more general results when two systems of the same size with different

signature vectors have differently distributed sets of component lifetimes. In Section 3, we will

illustrate our results with some numerical examples and list all coherent systems of size 3, 4 and

5 in Table 1 and 2 for which the conditions of Theorem 2.3 are satisfied. Results of the paper

are summarized in the last Section.

2 Main Results

From (1.1) the survival function of TX(p) can be written as

F TX(p)(t) =

n∑
i=1

pi

i−1∑
j=0

(
n

j

)
F j(t)F

n−j
(t)

=

n−1∑
j=0

⎛
⎝ n∑

i=j+1

pi

⎞
⎠(n

j

)
F j(t)F

n−j
(t), (2.1)

by changing the order of summation.

From this we find that the density function of TX(p) as

fTX(p)(t) =

n∑
i=1

ipi

(
n

i

)
F i−1(t)F

n−i
(t)f(t). (2.2)

and the hazard rate function of TX(p) is

hTX(p)(t) =

∑n
i=1 ipi

(n
i

)
F i−1(t)F

n−i+1
(t)∑n

i=1 pi
∑i−1

j=1

(n
j

)
F j(t)F

n−j
(t)

hX(t)

=

∑n−1
i=0 (n− i)pi+1

(
n
i

)
F i(t)F

n−i
(t)∑n−1

i=0

(∑n
j=i+1 pj

) (n
i

)
F i(t)F

n−i
(t)

hX(t)

= Ψ1

(
F (t)

F (t)

)
hX(t) (2.3)

where

Ψ1(x) =

∑n−1
i=0 (n− i)

(n
i

)
pi+1x

i∑n−1
i=0

(∑n
j=i+1 pj

) (n
i

)
xi

(2.4)

The reverse hazard rate function of TX(p) is

h̃TX(p)(t) =

∑n
i=1 ipi

(n
i

)
F i(t)F

n−i
(t)∑n

i=1

(∑i
j=1 pj

) (
n
i

)
F i(t)F

n−i
(t)

h̃X(t)

= Ψ2(x)

(
F (t)

F (t)

)
h̃X(t), (2.5)

5



where

Ψ2(x) =

∑n
i=1 ipi

(n
i

)
x1∑n

i=1

(∑i
j=1 pj

) (n
i

)
xi(t)

(2.6)

First we prove the following lemma which gives simple sufficient conditions for the functions

Ψ1 and Ψ2 to be monotone.

Lemma 2.1. For i = n1 . . . , n2, let ci and di be nonnegative constants. If �i =
ci
di

is increasing

(decreasing) in i, then so is

φ(x) =

∑n2
i=ni

cix
i∑n2

i=n1
dixi

on the set of positive numbers x.

Proof. We only give the proof when �i is increasing in i.

Differentiating φ(x) with respect to x, we obtain a fraction with positive denominator and

numerator equal to

φ′(x) sgn
=

(
n2∑

i=n1

icix
i−1

)⎛⎝ n2∑
j=n1

djx
j

⎞
⎠−

(
n2∑

i=n1

idix
i−1

)⎛⎝ n2∑
j=n1

cjx
j

⎞
⎠

=

n2∑
i=n1

n2∑
j=n1

[icidj − idicj ] x
i−1xj

=
∑
k

⎡
⎣ ∑
(i,j)∈{n1,...,n2}:i+j−1=k

(icidj − idicj)

⎤
⎦xk

Decomposing the inner sum according to i < j andi > j and after renaming the indices, we get

∑
k

⎡
⎣ ∑
(i,j)∈{n1,...,n2}:i+j−1=k

(i− j)(icidj − idicj)

⎤
⎦ xk, (2.7)

If � is increasing, then all the coefficients of xk are nonnegative, thus proving our lemma.

Using the above lemma, we prove the following result.

Lemma 2.2. Let p = (p1, . . . , pn) be a probability vector.

(a) If (n− i)hp(i+ 1) is increasing in i for i ∈ {0, . . . , n− 1}, then

Ψ1(x) =

∑n−1
i=0 (n− i)pi+1

(n
i

)
xi∑n−1

i=0

(n
i

)∑n
j=i+1 pjx

i
,

is increasing in x ≥ 0.
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(b) If ih̃p(i) is decreasing in i for i ∈ {1, . . . , n}, then

Ψ2(x) =

∑n
i=1 i

(n
i

)
pix

i∑n
i=1

(n
i

)∑i
j=1 pjx

i

is decreasing in x ≥ 0.

Proof

(a) Letting ci = (n− i)
(
n
i

)
pi+1 and di =

(
n
i

)∑n
j=i+1 pj, we find that �i =

ci
di

= (n− i)hp(i+ 1)

is increasing in i under the given condition. By taking n1 = 0, n2 = n− 1, it follows from

Lemma 2.2 that Ψ1(x) is increasing in x.

(b) Letting ci = i
(n
i

)
pi and di =

(n
i

)∑i
j=1 pj, we find that �i =

ci
di

= �i = ih̃p(i) is decreasing

in i ∈ {1, . . . , n} under the given condition. By taking n1 = 1, n2 = n, it follows from

Lemma 2.2 that Ψ2(x) is decreasing in x.

The rational function Ψ1(x) seems to appear at several places in the literature. For example,

Samaniego (1985) proved that a coherent system with n i.i.d. IFR (increasing failure rate)

components is IFR if and only if the function Ψ1(x) is increasing in x ∈ (0,∞). A similar result

holds for a coherent system with DFR components. The above lemma gives simple conditions in

terms of the hazard rate and the reverse hazards rates of the signature vector for the monotonicity

of the functions Ψ1 and Ψ2.

Now we state the main result of this paper.

Theorem 2.3. Let TX(p) be the lifetime of a coherent system with signature vector p and with

the components lifetimes X1, . . . ,Xn which are independent with a common continuous distri-

bution F and density function f . Let Y1, . . . , Yn be i.i.d. with common continuous distribution

G and density function g. Then

(a) if

(n − j)h(j + 1) is increasing in j for any j = 0, . . . , n− 1, (2.8)

then

X1 ≥hr Y1 =⇒ TX(p) ≥hr TY(p), (2.9)

(b) If

jh̃(j) is decreasing in j for any j = 1, . . . , n, (2.10)

then

X1 ≥rh Y1 =⇒ TX(p) ≥rh TY(p), (2.11)

(c) Let Φ(u) =
∑n

j=0 ξ(j)u
n−j , for all u ∈ (0, 1) where ξ(j) =

∑n
i=j pi+1(−1)i−j

(n−j−1
n−i−1

)(n
j

)
(n−

j), j = 0, . . . , n. If
hX(t)

hY (t)
is increasing in t (2.12)

and for some point v ∈ (0, 1),

7



(i) uΦ′(u)
Φ(u) is decreasing and positive for all u ∈ (0, v),

(ii) (1−u)Φ′(u)
Φ(u) is decreasing and negative for all u ∈ (v, 1).

Then,

X1 ≥lr Y1 =⇒ TX(p) ≥lr TY(p),

Proof

(a) From (2.3),

hTX (p)(t) = Ψ1

(
F (t)

F (t)

)
hX(t)

≤ Ψ1

(
G(t)

G(t)

)
hY (t)

= hTX (p)(t), (2.13)

as Ψ1(x) is increasing in x > 0 and hX(t) ≤ hY (t) for all t and the fact that hX(t) ≤
hY (t) ⇒ F (t) ≤ G(t) for all t.

(b) The proof is similar to that of part (a) above and hence omitted.

(c) It is known that the survival function of Xi:n can be written as (see [Gupta (2002, p. 839)])

P (Xi:n > t) =

i−1∑
j=0

(−1)i−j−1

(
n

j

)(
n− j − 1

n− i

)
F

n−j
(t),

from which its density function is

fi:n(t) = hX(t)

i−1∑
j=0

(−1)i−j−1

(
n

j

)(
n− j − 1

n− i

)
(n − j)F

n−j
(t),

where hX(t) is the hazard rate function of X. Hence, it follows that

fTX(p)(t) = hX(t)

n∑
i=1

i−1∑
j=0

pi(−1)i−j−1

(
n

j

)(
n− j − 1

n− i

)
(n− j)F

n−j
(t)

= hX(t)

n∑
j=0

n∑
i=j

pi+1(−1)i−j

(
n− j − 1

n− i− 1

)(
n

j

)
(n− j)F

n−j
(t)

= hX(t)

n∑
j=0

ξ(j)F
n−j

(t),

where ξ(j) =
∑n

i=j pi+1(−1)i−j
(n−j−1
n−i−1

)(n
j

)
(n− j), j = 0, . . . , n.

The required result is equivalent to proving that

fTX(p)(t)

fTY(p)(t)
=

hX(t)

hY (t)
.

∑n
j=0 ξ(j)F

n−j
(t)∑n

j=0 ξ(j)G
n−j

(t)
,
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is increasing in t. From the assumption that hX(t)
hY (t) is increasing in t, we only need to show

that

Δ(t) =
Φ(F (t))

Φ(G(t))
,

is increasing in t, where, Ψ(u) =
∑n

j=0 ξ(j)u
n−j(t).

Suppose that for some xv, F (xv) = v.

Case 1: For all t ∈ (xv,∞), i.e., F (t) ∈ (0, v), the sign of the derivative Δ(t) is

Δ′(t) =sgn g(t)
Φ′(G(t))

Φ(G(t))
− f(t)

Φ′(F (t))

Φ(F (t))

= hY (t)
G(t)Φ′(G(t))

Φ(G(t))
− hX(t)

F (t)Φ′(F (t))

Φ(F (t))

≥ hY (t)

[
G(t)Φ′(G(t))

Φ(G(t))
− F (t)Φ′(F (t))

Φ(F (t))

]

= hY (t)

[
u1Φ

′(u1)
Φ(u1)

− u2Φ
′(u2)

Φ(u2)

]
≥ 0

where G(t) = u1 and F (t) = u2. The first inequality follows from the assumptions that
uΨ′(u)
Ψ(u) is positive and the fact that X ≥lr Y =⇒ X ≥hr Y . It follows from X ≥lr Y =⇒
X ≥st Y that u1 ≤ u2. Now using this observation, the second inequality follows from the

assumption that uΨ′(u)
Ψ(u) is decreasing and positive for u ∈ (0, v).

Case 2: For all t ∈ (0, xv), i.e., F (t) ∈ (v, 1), the sign of the derivative Δ(t) with respect

to t is

Δ′(t) =sgn g(t)
Φ′(G(t))

Φ(G(t))
− f(t)

Φ′(F (t))

Φ(F (t))

= h̃Y (t)
(1−G(t))Φ′(G(t))

Φ(G(t))
− h̃X(t)

(1− F (t))Φ′(F (t))

Φ(F (t))

= h̃X(t)

[
−(1− F (t))Φ′(F (t))

Φ(F (t))

]
− h̃Y (t)

[
−(1−G(t))Φ′(G(t))

Φ(G(t))

]

≥ h̃Y (t)

[
−(1− u2)Φ

′(u2)
Φ(u2)

]
− h̃Y (t)

[
−(1− u1)Φ

′(u1)
Φ(u1)

]
≥ 0,

where G(t) = u1 and F (t) = u2. The first inequality follows from the assumptions that

− (1−u)Φ′(u)
Φ(u) is positive for all u ∈ (v, 1) and the fact that X ≥lr Y =⇒ X ≥rh Y . It

follows from X ≥lr Y =⇒ X ≥st Y that u1 ≤ u2. Now using this observation, the

second inequality follows from the assumption that − (1−u)Φ′(u)
Φ(u) is increasing and positive

in u ∈ (v, 1).
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Equations (2.8) and (2.10) give simple sufficient conditions on the signature vector for two

systems to be ordered according to hazard rate and reverse hazard rate orderings. This problem

has also been studied by Navarro et al. (2013). However, as seen by examples in the next

section, their results are different from results of this paper. Kochar et al. (1999) established

the following results for comparing two coherent systems with signature vectors p and q, but

with i.i.d.component lifetimes X1, . . . Xn.

Theorem 2.4. (Kochar et al.1999) Let p and q be the signature vectors of two coherent systems

with same number of components and let TX(p) and TX(q) be their lifetimes, where the the

elements of the vector X are i.i.d. Then

(a) p ≥st q ⇒ TX(p) ≥st TX(p)

(b) p ≥hr q ⇒ TX(p) ≥hr TX(p)

(c) p ≥lr q ⇒ TX(p) ≥lr TX(p)

A similar result holds for reverse hazard rate ordering. Combining the results of the above

theorem with the previous theorem, we obtain the following general results which show how

the hazard rate, the reversed hazard rate and the likelihood ratio orders between X and Y and

signature vectors p and q are preserved by the lifetimes of the corresponding coherent systems.

Theorem 2.5. Under the assumptions of Theorem 2.3

(a) if either (n − j)hp(j) or (n − j)hq(j) is increasing in j ∈ {j = 0, . . . , n − 1}, then

p ≥hr q ⇒ TX(p) ≥hr TY(q).

(b) if either jh̃p(j) or jh̃q(j) is decreasing in j for j = 1, . . . , n, then p ≥rh q ⇒ TX(p) ≥rh

TY(q).

(c) if the conditions of Theorem 2.3 (c) are satisfied by either p or q, then p ≥lr q ⇒
TX(p) ≥lr TY(q).

3 Some numerical examples

In this section, we present some coherent systems that satisfy the conditions of Theorem 2.3.

Example 3.1. Consider a coherent system of order 4 with lifetime

TX(p) = min(X1,max(X2,X3,X4)).

It is easy to show that the signature vector of this system is p = (14 ,
1
4 ,

1
2 , 0). Note that the

condition of “(n − j)h(j + 1) is increasing in j” is equivalent to that (n−r)pr+1

(n−k)pk+1
≥

∑n
j=r+1 pj∑n
j=k+1 pj

for

all r ≥ k, whenever pk+1 > 0. Below we check this condition for various cases of k and r.
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• If r = 3 and k = 2, then (n−r)pr+1

(n−k)pk+1
= 0 ≥

∑n
j=r+1 pj∑n
j=k+1 pj

= 0.

• If r = 3 and k = 1, then (n−r)pr+1

(n−k)pk+1
= 0 ≥

∑n
j=r+1 pj∑n
j=k+1 pj

= 0.

• If r = 2 and k = 1, then (n−r)pr+1

(n−k)pk+1
= 8

3 ≥
∑n

j=r+1 pj∑n
j=k+1 pj

= 4
3 .

• If r = 1 and k = 0, then (n−r)pr+1

(n−k)pk+1
= 3

4 ≥
∑n

j=r+1 pj∑n
j=k+1 pj

= 3
4 .

That is, this system satisfies condition (a) of Theorem 2.3.

Example 3.2. Consider a coherent system of order 4 with lifetime

TX(p) = max(X1,min(X2,X3,X4)).

It is easy to show that the signature vector of this system is p = (0, 12 ,
1
4 ,

1
4 ). Note that the

condition of “jh̃(j) is decreasing in j” is equivalent to that
∑r

i=1 pi∑k
i=1 pi

≥ rpr
kpk

for all r ≥ k, whenever

pk > 0. The above inequality is evaluated for various possible values of k and r.

• If r = 3 and k = 2, then
∑r

i=1 pi∑k
i=1 pi

= 3
2 ≥ rpr

kpk
= 3

4 .

• If r = 4 and k = 3, then
∑r

i=1 pi∑k
i=1 pi

= 4
3 ≥ rpr

kpk
= 4

3 .

• If r = 4 and k = 2, then
∑r

i=1 pi∑k
i=1 pi

= 2 ≥ rpr
kpk

= 1.

That is, the condition in Theorem 2.3 (b) is satisfied by such a system.

Example 3.3. Consider a coherent system of order 4 with signature vector p = (0, 13 ,
2
3 , 0). It

can be seen that

Ψ(u) = ξ(0)u4 + ξ(1)u3 + ξ(2)u2

= 4u4 − 12u3 + 8u2.

It can be seen that

Δ1(u) =
uΨ′(u)
Ψ(u)

=
16u4 − 36u3 + 16u2

4u4 − 12u3 + 8u2
,

and

Δ2(u) =
(1− u)Ψ′(u)

Ψ(u)
=

(1− u)(16u3 − 36u2 + 16u)

4u4 − 12u3 + 8u2
.

The graphs of the functions Δ1(u) and Δ2(u) are given in Figures 2 and 3, respectively. It is

seen that Δ1(u) is decreasing and is positive in u ∈ (0, 0.61) and Δ2(u) is decreasing and is

negative in u ∈ (0.61, 1), which is shows that the conditions (i) and (ii) of Theorem 2.3 (c) are

satisfied.
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Figure 2: Plot of Δ1(u), for all u ∈ (0, 0.61)
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Figure 3: Plot of Δ2(u), for all u ∈ (0.61, 1)

Example 3.4. Consider a coherent system of order 4 with signature vector p = (0, 12 ,
1
2 , 0). It

can be seen that

Ψ(u) = ξ(0)u4 + ξ(1)u3 + ξ(2)u2

= −6u3 + 6u2,

Δ3(u) =
uΨ′(u)
Ψ(u)

=
12u2 − 18u3

6u2 − 6u3
,

and

Δ4(u) =
(1− u)Ψ′(u)

Ψ(u)
=

(1− u)(12u − 18u2)

6u2 − 6u3
.

The graphs of the functions Δ3(u) and Δ4(u), are given in Figures 4 and 5, respectively. It is

seen that Δ3(u) is decreasing and is positive in u ∈ (0, 0.667) and Δ2(u) is decreasing and is

negative in u ∈ (0.667, 1), which is shows that conditions (i) and (ii) of Theorem 2.3 (c) are

satisfied.

In Tables 1 and 2, we characterize all possible coherent systems of sizes 3, 4 and 5, for which

the results of Theorem 2.3 (a) and (b) hold.
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Figure 4: Plot of Δ3(u), for all u ∈ (0, 0.667)
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Figure 5: Plot of Δ4(u), for all u ∈ (0.667, 1)

Table 1. Coherent systems of sizes 3 and 4

p (n − j)h(j + 1) jr̃(j)

(13 ,
2
3 , 0) ↑ j

(0, 23 ,
1
3) ↓ j

p (n − j)h(j + 1) jr̃(j)

(12 ,
1
2 , 0, 0) ↑ j

(14 ,
3
4 , 0, 0) ↑ j

(14 ,
1
4 ,

1
2 , 0) ↑ j

(14 ,
7
12 ,

1
6 , 0) ↑ j

(0, 56 ,
1
6 , 0) ↑ j ↓ j

(0, 23 ,
1
3 , 0) ↑ j ↓ j

(0, 23 ,
1
3 , 0) ↑ j ↓ j

(0, 12 ,
1
2 , 0) ↑ j ↓ j

(0, 13 ,
2
3 , 0) ↑ j ↓ j

(0, 13 ,
2
3 , 0) ↑ j ↓ j

(0, 16 ,
5
6 , 0) ↑ j ↓ j

(0, 0, 12 ,
1
2) ↓ j

(0, 0, 34 ,
1
4) ↓ j

(0, 12 ,
1
4 ,

1
4 ) ↓ j

(0, 16 ,
7
12 ,

1
4) ↓ j
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Table 2. Coherent systems of size 5

p (n− j)h(j + 1) jr̃(j)

(35 ,
2
5 , 0, 0, 0) ↑ j

(25 ,
3
5 , 0, 0, 0) ↑ j

(15 ,
4
5 , 0, 0, 0) ↑ j

(25 ,
1
2 ,

1
10 , 0, 0) ↑ j

(15 ,
7
10 ,

1
10 , 0, 0) ↑ j

(25 ,
3
10 ,

3
10 , 0, 0) ↑ j

(15 ,
3
5 ,

1
5 , 0, 0) ↑ j

(15 ,
1
2 ,

3
10 , 0, 0) ↑ j

(15 ,
2
5 ,

2
5 , 0, 0) ↑ j

(15 ,
3
10 ,

1
2 , 0, 0) ↑ j

(15 ,
1
5 ,

3
5 , 0, 0) ↑ j

(15 ,
1
2 ,

1
5 ,

1
10 , 0) ↑ j

(15 ,
3
10 ,

2
5 ,

1
10 , 0) ↑ j

(15 ,
1
5 ,

1
2 ,

1
10 , 0) ↑ j

(15 ,
1
5 ,

2
5 ,

1
5 , 0) ↑ j

(15 ,
1
5 ,

1
5 ,

2
5 , 0) ↑ j

(0, 0, 0, 3
5 ,

2
5) ↓ j

(0, 0, 02
5 ,

3
5) ↓ j

(0, 0, 0, 1
5 ,

4
5) ↓ j

(0, 0, 25 ,
1
2 ,

1
10 ) ↓ j

(0, 0, 15 ,
7
10 ,

1
10) ↓ j

(0, 0, 25 ,
3
10 ,

3
10) ↓ j

(0, 0, 15 ,
3
5 ,

1
5 ) ↓ j

(0, 0, 15 ,
1
2 ,

3
10 ) ↓ j

(0, 0, 15 ,
2
5 ,

2
5 ) ↓ j

(0, 0, 15 ,
3
10 ,

1
2) ↓ j

(0, 0, 15 ,
1
5 ,

3
5 ) ↓ j

(0, 15 ,
1
2 ,

1
5 ,

1
10 ) ↓ j

(0, 15 ,
3
10 ,

2
5 ,

1
10 ) ↓ j

(0, 15 ,
1
5 ,

1
2 ,

1
10 ) ↓ j

(0, 15 ,
1
5 ,

2
5 ,

1
5) ↓ j

(0, 15 ,
1
5 ,

1
5 ,

2
5) ↓ j
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Table 2. Coherent systems with size 5

p (n− j)h(j + 1) jr̃(j)

(0, 9
10 ,

1
10 , 0, 0) ↑ j ↓ j

(0, 45 ,
1
5 , 0, 0) ↑ j ↓ j

(0, 7
10 ,

3
10 , 0, 0) ↑ j ↓ j

(0, 35 ,
2
5 , 0, 0) ↑ j ↓ j

(0, 7
10 ,

1
5 ,

1
10 , 0) ↑ j ↓ j

(0, 35 ,
3
10 ,

1
10 , 0) ↑ j ↓ j

(0, 12 ,
3
10 ,

1
5 , 0) ↑ j ↓ j

(0, 12 ,
3
10 ,

1
5 , 0) ↑ j ↓ j

(0, 0, 9
10 ,

1
10 , 0) ↑ j ↓ j

(0, 0, 45 ,
1
5 , 0) ↑ j ↓ j

(0, 0, 35 ,
2
5 , 0) ↑ j ↓ j

Ross (1980) proved that the number N of failed components at the time a system fails has

the discrete IFRA property. As elaborated in [Navarro and Samaniego (2017)], this fact implies

that the signature of a system of arbitrary order n cannot have internal zeros, that is, there

exist no integers i ∈ {1, . . . , n − 2} and j ∈ {2, . . . , n − i} for which pi > 0 and pi+j > 0 while

pi+1 = · · · , pi+j−1 = 0. They also give an elementary proof of this result. Looking at Tables 1

and 2, we may conjecture that every signature vector that can be written (p1, p2, ..., pj , 0, 0, ..., 0)

for some j < n (p1, p2, ..., pj , 0, 0, ..., 0) for satisfies the condition (2.8) and a that every signature

vector that can be written as (0, 0, ..., 0, pj , pj+1, ..., pn) for some j > 1 satisfies the condition

(2.10) in Theorem 2.3.

In the following, we characterize all possible coherent systems of sizes 4 and 5 for which the

results of Theorem 2.3 (c) can be applied.

Table 3. Coherent systems with sizes 4 and 5

p uΨ′(u)
Ψ(u) > 0 (1−u)Ψ′(u)

Ψ(u) < 0

(0, 12 ,
1
2 , 0) ↓ u ∈ (0, 0.667) ↓ u ∈ (0.667, 1)

(0, 23 ,
1
3 , 0) ↓ u ∈ (0, 0.708) ↓ u ∈ (0.708, 1)

(0, 13 ,
2
3 , 0) ↓ u ∈ (0, 0.61) ↓ u ∈ (0.61, 1)

p uΨ′(u)
Ψ(u) > 0 (1−u)Ψ′(u)

Ψ(u) < 0

(0, 7
10 ,

3
10 , 0, 0) ↓ u ∈ (0, 0.767) ↓ u ∈ (0.767, 1)

(0, 35 ,
2
5 , 0, 0) ↓ u ∈ (0, 0.75) ↓ u ∈ (0.75, 1)

(0, 25 ,
3
5 , 0, 0) ↓ u ∈ (0, 0.702) ↓ u ∈ (0.702, 1)

(0, 45 ,
1
5 , 0, 0) ↓ u ∈ (0, 0.461) ↓ u ∈ (0.461, 1)

(0, 0, 35 ,
2
5 , 0) ↓ u ∈ (0, 0.546) ↓ u ∈ (0.546, 1)

Again from Table 3, we conjecture that for a system with signature vector of the type
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(0, 0, 0, . . . , pj , ..., pk, 0, 0, ..., 0), for some 2 < j < k < n − 1, the conditions for the likelihood

ratio order in Theorem 2.3 are satisfied.

Navarro et al. (2013) also obtained some stochastic comparisons results for coherent systems

with dependent but identically distributed components. Let TX and TY be the lifetimes of

two coherent systems with the same structure and with iid component lifetimes and common

absolutely continuous cumulative distribution functions F and G, respectively. Let h be the

common domination function and let us assume that it is twice differentiable. Among other

results, Navarro et al. (2013) proved the following result in Theorem 2.6 (iv):

If X ≥�r Y and uh′′(u)
h′(u) is nonnegative and decreasing in (0, 1), then TX ≥�r TY

We now provide a counterexample to illustrate that the condition (iv) in Theorem 2.6 of

Navarro et al. (2013) for establishing likelihood ratio ordering is not satisfied, but it satisfies

the conditions of our main result on likelihood ratio ordering between systems.

Example 3.5. Consider a coherent system of order 4 with signature vector p = (0, 23 ,
1
3 , 0) ,

and lifetime T = max(min(X1,X2),min(X3,X4)), where X1,X2,X3,X4 are independent and

identically distributed. As shown in Table 1 of Navarro et al. (2013) the domination function

of this system is

h(u) = 2u2 − u4,

and

Δ5(u) =
uh′′(u)
h′(u)

=
4u− 12u3

4(u− u3)
.

The graph of the function Δ5(u) is given in Figures 6. It is seen that Δ5(u) is not always non-

negative. Therefore the condition (iv) in Theorem 2.6 of Navarro et al. (2013) for establishing

likelihood ratio ordering is not satisfied, but the conditions (i) and (ii) in Theorem 2.3 (c) are

satisfied as seen from Table 3. Hence X ≥lr Y =⇒ TX ≥lr TY). These observations reveal that

the conditions established in Theorem 2.3 are quite general.

0.2 0.4 0.6 0.8 1.0

-10

-8

-6

-4

-2

Figure 6: Plot of Δ5(u), for all u ∈ (0, 1)
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4 Conclusions

In this paper, we consider the problem of stochastically comparing the lifetimes TX(p) and

TY(q) of two coherent systems with signature vectors p and q of the same size and with iid

component lifetimes distributed according to X and Y , respectively. The results established in

this paper generalize some of the known results in the literature. Most of the existing results

in the literature deal with the case when the two coherent systems have component lifetimes

which are identically distributed. In this paper, we first consider the case when a coherent

system operates under two different sets of independent and identically distributed component

lifetimes. We find simple sufficient conditions on the distribution of the signature vector under

which the two systems are stochastically ordered. In particular, We show that if (n− j)hp(j+1)

(jh̃p(j)) is increasing in j (decreasing in j) for any j ≥ 1 and X1 ≥hr(rh) Y1, then a system with

lifetime TX(p) is larger than a system with lifetime TY(p) according to the hazard rate order

(the reversed hazard rate order). We also give sufficient conditions on the signature vectors

for a similar result for likelihood ratio order. Then we combine these new results with (1.4) to

compare two coherent systems consisting of components with different lifetime distributions and

also with possible different signatures. We characterize possible coherent systems of size 3, 4 and

5 for which the above results can be applied; and also the proposed two conjectures for coherent

systems of size n > 5 are true. It will be interesting to examine whether our conjectures are

true. We plan to pursue this problem in the near future.
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