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SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE 
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Abstract. The sequence space 

 
have been defined and the classes r

ca ( ):r
c pa l  and ( ):r

ca c

p

of 

infinite matrices have been characterized by Aydin and Başar (On the new sequence spaces which 
include the spaces  and c , Hokkaido Math. J. 33(2) (2004), 383-398) [1], where 10c ≤ ≤ ∞ . The 

main purpose of the present paper is to characterize the classes  ( ): fr
ca  and ( )0f:r

ca , where 

f and 0f denote the spaces of almost convergent and almost convergent null sequences with real or 
complex terms. 
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 1. Introduction 

 

Let ω be the space of all sequences, real or complex and  let ∞l  and  c  respectively 

be the  Banach spaces  of  bounded and convergent sequences ( )kx x=  with  the  usual 

norm k
k

x sup x= ∞. Let be the shift operator defined by :S ∞ →l l ( ) 1nn
S x x +=  for 

all . A Banach limit L is defined on n∈ ∞l , as a non negative linear functional such that 

( ) ( )L Sx = L x  and , ( ) 1L e = ( ),...1,1,1e = [2]. A sequence x ∞∈ l is said to be 
almost convergent to the generalized limit α if all Banach limits of x are α [3]. We denote 
the set of almost convergent sequences by f and almost convergent null sequences by 0f , 
i.e.  

   { }: lim ( ) ,mnm
f x t x uniformly in nα∞= ∈ =l  

and        { }0 : lim ( ) 0,mnm
f x t x uniformly in n∞= ∈ =l  

Where          
0

1( )
1

m

mn k n
k

t x x
m +

=

=
+ ∑ ,             1 , 0nt− =  

and     limf xα = − . 
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Let λ  and μ  be two sequence spaces and ( )nkA a=  be an infinite matrix of real 

or complex numbers , where nka { }, 0 ,1,∈ = 2,...n k . Then we say that A defines a 

matrix mapping from λ  in to  μ , and denote it by writing :A λ μ→  if for every sequence 

( )kx x λ= ∈ , the sequence ( ){ }n
Ax=Ax , the A-transform of  x, is in μ , where  

( ) nk kn
k

Ax a x= ∑ , (                                                  (1.1) )

)

n∈

For simplicity in notation, here and in what follows, the summation without limits runs from 0 
to . We denote by (∞ :λ μ  the class of all matrices A such that :A λ μ→ . Thus 

( :A )λ μ
x

∈  if and only if the series on the right side of (1.1) converges for every  

and every 

n ∈
λ∈ . 

For a sequence space λ , the matrix domain Aλ  of an infinite matrix A is defined by  

( ){ }:A kx x Axλ ω λ= = ∈ ∈   

 The object of this paper is to characterize the classes ( ):r
ca f  and ( )0:r

ca f of 

infinite matrices. 
The sequence space r  is defined as the set of all sequences whose r - transform 

is in c  [1], i.e
ca  A

.  

( ) ( )
0

1: lim 1
1

n
r k
c k kn k

a x x r x exists
n

ω
→∞

=

⎧ ⎫
= = ∈ +⎨ ⎬+⎩ ⎭

∑  

Where  denotes the matrix rA (r r
nk )A a=  defined by  

( )

( )

1 , 0
1

0 ,

k

r
n k

r k n
na

k n

⎧ +
≤ ≤⎪ += ⎨

⎪ >⎩

 

We refer the reader to [1] for relevant terminology and additional references on the 
space  .r

ca
 

2. Main Results 
  

Define the sequence  , which will be used as the - transform of a 

sequence 

( ( )ky y r= ) rA

( )kx x= , i.e.  

(
0

1( ) ;
1

jk

k j
j

ry r x k
k=

+
=

+∑ )∈                               (2.1) 

 
For brevity in notation, we write 
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 ,
0

1( , , )
1

m

n j k
j

a n k m a
m +

=

=
+ ∑  

and 

( ) ( )1

( , , ) ( , , ) ( , 1, )( , , ) 1 1
1 1 1k k k

a n k m a n k m a n k ma n k m k k
r r r +

⎡ ⎤ ⎡ ⎤+
= Δ + = − +⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦

%

for . , ,n k m ∈
We denote by βλ , the β -dual of a sequence space λ  and mean the set of the 

sequences ( )kx x= such that ( )k kx y x y c= ∈ s  for all ( )ky y λ= ∈ . Now, we may 
give the following lemma which is needed in proving the Theorem (2.1) below. 
 
Lemma 2.1[1]: Define the sets  and   as follows 1

rd 2
rd

 ( )1 : ( 1)
1

r k
k k

k

a
d a a k

r
ω

⎧ ⎫⎛ ⎞⎪ ⎪= = ∈ Δ + < ∞⎨ ⎬⎜ ⎟+⎝ ⎠⎪ ⎪⎩ ⎭
∑                        

and   ( )2 :
1

r k
k k

a
d a a cs

r
ω

⎧ ⎫⎛ ⎞⎪ ⎪= = ∈ ∈⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
 

where 1
11 1 1

kk k
k k

aa a
r r

+

kr +

⎛ ⎞
Δ = −⎜ ⎟+ + +⎝ ⎠

 for all k∈ .  

Then  . 1 2
r r
ca d

β
⎡ ⎤ = ∩⎣ ⎦

rd

)
 
Theorem 2.1:  ( :r

cA a f∈  if and if 

,
sup ( , , )

m n k
a n k m

∈
< ∞∑ %                                               (2.2) 

1
n k

k
k

a
cs

r
∈

⎧ ⎫
∈⎨ ⎬

+⎩ ⎭
 for all n ∈ .                                          (2.3) 

 lim ( , , ) km
a n k m α

→∞
=%     uniformly in n, for each  k ∈      (2.4) 

lim ( , , ) 0km k
a n k m α

→∞
− =∑ %  uniformly in n.                     (2.5) 

 
Proof:    Suppose that the conditions (2.2), (2.3), (2.4) and (2.5) hold and  r

cx a∈ . Then Ax 
exists and at this stage, we observe from (2.4) and (2.2) that   

                 
,0

sup ( , , )
k

j
m nj j

a n j mα
∈=

≤∑ ∑ % < ∞                                           
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holds for every . This gives that k∈ ( ) 1kα ∈ l . Since r
cx a∈  by the hypothesis, and 

, we have r
ca ≅ c y c∈ . Therefore, one can easily see that ( ) 1k kyα ∈ l  for each 

 and also there exists   such that y c∈ 0M > sup k
k

y M< .  Now for any 0ε > , 

choose a fixed , there is some 0k ∈ 0m ∈   by (2.4) such that  

 [ ]
0

0
( , , )

2

k

k k
k

a n k m y εα
=

− <∑ %  

for every , uniformly in n . 0m m≥
Also, by (2.5), there is some , such that   1m ∈

0 1

( , , )
2k

k k
a n k m

M
εα

∞

= +

− <∑ %                

for every  uniformly in n . Therefore, we have 1m m≥

   ( ) [ ]
0

1 ( , , )
1

m

k k k kn i
i k k

A x y a n k m y
m

α α
+

=

− = −
+ ∑ ∑ ∑ %

 

                       [ ] [ ]
0 0

00 1
( , , ) ( , , )

k

k k k k
k k k

a n k m y a n k m yα α
∞

= = +

≤ − + −∑ ∑% %  

           
0 1

( , , )
2 k k

k k
a n k m yε α

∞

= +

< + −∑ %  

           
2 2

M
M

ε ε ε< + =  

for all sufficiently large m, uniformly  in n. Hence Ax f∈ , which proves the sufficiency. 

 Conversely suppose that ( ):r
cA a f∈ . Then Ax exists for every r

cx a  and 

this implies th

∈

at  { } r
n k ck

a a
β

∈
⎡∈ ⎣ ⎤⎦  for each n ∈ ; the necessity of (2.3) is immediate.  

Now exists for each m, n and ( , , ) k
k

a n k m x∑ r
cx a∈ , the sequence 

{ }( , , )
k

a a n k m
∈mn =  define the continuous linear functionals  m nφ on   by r

ca

   ( ) ( , , )mn k
k

x a n k m xφ = ∑  ,  ( ),m n ∈ . 

Since  and c  are norm isomorphic ([1], Theorem 2.2), it should follow with (2.1) that r
ca

m n m naφ = %
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This just says that the functionals defined by  m nφ  on   are point wise bounded. Hence, by 
the Banach- Steinhauss theorem, they are uniformly bounded, which yields that there exists a 
constant  such that  

r
ca

0M >

m n Mφ ≤ for all  ,m n ∈
    It therefore follows, using the complete identification just referred to that 

( , , ) m n
k

a n k m Mφ= ≤∑ %

 
holds for all  which shows the necessity of  the condition (2.2). ,m n ∈

  To prove the necessity of (2.4), consider the sequence 

( ) ( ){ }( ) ( )k k
n cn

b r b r a
∈

= ∈ r  for every k ∈ , where  

( )
( )

( )( )

11 , ( 1)
1 ; ,

0 , (0 1 1 )

n k
kk

n

k k n k
rb r n k

n k or n k

− +⎧ − ≤ ≤ +⎪ += ∈⎨
⎪ ≤ ≤ − > +⎩

 
Since Ax exists and is in f  for each r

cx a∈ , one can easily see that  

( ) ( ) ( 1)
1

n kk
k

n

a
Ab r k f

r
∈

⎧ ⎫⎛ ⎞⎪ ⎪= Δ + ∈⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
 

for each , which shows the necessity of (2.4).  k ∈
Similarly by taking r

cx e a= ∈ , we also obtain that  

( 1)
1

n k
k

k n

a
Ax k f

r
∈

⎧ ⎫⎛ ⎞⎪ ⎪= Δ + ∈⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
∑   

and this shows the necessity of (2.5) . This completes the proof.   
If the space  f  is replaced by 0f , then Theorem (2.1) is reduced to 

 
Corollary 2.1:   ( 0:r

c )A a f∈  if and if (2.2), (2.3) and (2.4), (2.5) also hold with 

0kα =  for all k . ∈
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