Filomat 22:2 (2008), 59-64

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE

Sameer Ahmad Gupkari

Abstract

The sequence space a_{c}^{r} have been defined and the classes $\left(a_{c}^{r}: \ell_{p}\right)$ and $\left(a_{c}^{r}: c\right)$ of infinite matrices have been characterized by Aydin and Başar (On the new sequence spaces which include the spaces C_{0} and C, Hokkaido Math. J. 33(2) (2004), 383-398) [1], where $1 \leq p \leq \infty$. The main purpose of the present paper is to characterize the classes $\left(a_{c}^{r}: f\right)$ and $\left(a_{c}^{r}: f_{0}\right)$, where f and f_{0} denote the spaces of almost convergent and almost convergent null sequences with real or complex terms.

2000 Mathematics Subject Classification: 46B20; 46E30; 40C05
Keywords and phrases. Sequence spaces of non absolute type, almost convergent sequences, β - duals and matrix mappings.
Received : July 12, 2008
Communicated by Vladimir Rakočević

1. Introduction

Let ω be the space of all sequences, real or complex and let ℓ_{∞} and c respectively be the Banach spaces of bounded and convergent sequences $x=\left(x_{k}\right)$ with the usual norm $\|x\|=\sup _{k}\left|x_{k}\right|$. Let $S: \ell_{\infty} \rightarrow \ell_{\infty}$ be the shift operator defined by $(S x)_{n}=x_{n+1}$ for all $n \in \square$. A Banach limit L is defined on ℓ_{∞}, as a non negative linear functional such that $L(S x)=L(x)$ and $L(e)=1, e=(1,1,1, \ldots)$ [2]. A sequence $x \in \ell_{\infty}$ is said to be almost convergent to the generalized limit α if all Banach limits of x are α [3]. We denote the set of almost convergent sequences by f and almost convergent null sequences by f_{0}, i.e.

$$
f=\left\{x \in \ell_{\infty}: \lim _{m} t_{m n}(x)=\alpha, \text { uniformly in } n\right\}
$$

and $\quad f_{0}=\left\{x \in \ell_{\infty}: \lim _{m} t_{m n}(x)=0\right.$, uniformly in $\left.n\right\}$
Where $\quad t_{m n}(x)=\frac{1}{m+1} \sum_{k=0}^{m} x_{k+n}, \quad t_{-1, n}=0$
and $\quad \alpha=f-\lim x$.

Let λ and μ be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \square=\{0,1,2, \ldots\}$. Then we say that A defines a matrix mapping from λ in to μ, and denote it by writing $A: \lambda \rightarrow \mu$ if for every sequence $x=\left(x_{k}\right) \in \lambda$, the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x , is in μ, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k},(n \in \square) \tag{1.1}
\end{equation*}
$$

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. We denote by $(\lambda: \mu)$ the class of all matrices A such that $A: \lambda \rightarrow \mu$. Thus $A \in(\lambda: \mu)$ if and only if the series on the right side of (1.1) converges for every $n \in \square$ and every $x \in \lambda$.

For a sequence space λ, the matrix domain λ_{A} of an infinite matrix A is defined by

$$
\lambda_{A}=\left\{x=\left(x_{k}\right) \in \omega: A x \in \lambda\right\}
$$

The object of this paper is to characterize the classes $\left(a_{c}^{r}: f\right)$ and $\left(a_{c}^{r}: f_{0}\right)$ of infinite matrices.

The sequence space a_{c}^{r} is defined as the set of all sequences whose A^{r} - transform is in C [1], i.e.

$$
a_{c}^{r}=\left\{x=\left(x_{k}\right) \in \omega: \lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left(1+r^{k}\right) x_{k} \text { exists }\right\}
$$

Where A^{r} denotes the matrix $A^{r}=\left(a_{n k}^{r}\right)$ defined by

$$
a_{n k}^{r}= \begin{cases}\frac{1+r^{k}}{n+1} & ,(0 \leq k \leq n) \\ 0, & (k>n)\end{cases}
$$

We refer the reader to [1] for relevant terminology and additional references on the space a_{c}^{r}.

2. Main Results

Define the sequence $y=\left(y_{k}(r)\right)$, which will be used as the A^{r} - transform of a sequence $x=\left(x_{k}\right)$, i.e.

$$
\begin{equation*}
y_{k}(r)=\sum_{j=0}^{k} \frac{1+r^{j}}{k+1} x_{j} \quad ;(k \in \square) \tag{2.1}
\end{equation*}
$$

For brevity in notation, we write

$$
a(n, k, m)=\frac{1}{m+1} \sum_{j=0}^{m} a_{n+j, k}
$$

and

$$
\tilde{a}(n, k, m)=\Delta\left[\frac{a(n, k, m)}{1+r^{k}}\right](k+1)=\left[\frac{a(n, k, m)}{1+r^{k}}-\frac{a(n, k+1, m)}{1+r^{k+1}}\right](k+1)
$$

for $n, k, m \in \square$.
We denote by λ^{β}, the β-dual of a sequence space λ and mean the set of the sequences $x=\left(x_{k}\right)$ such that $x y=\left(x_{k} y_{k}\right) \in c s$ for all $y=\left(y_{k}\right) \in \lambda$. Now, we may give the following lemma which is needed in proving the Theorem (2.1) below.

Lemma 2.1[1]: Define the sets d_{1}^{r} and d_{2}^{r} as follows

$$
d_{1}^{r}=\left\{a=\left(a_{k}\right) \in \omega: \sum_{k}\left|\Delta\left(\frac{a_{k}}{1+r^{k}}\right)(k+1)\right|<\infty\right\}
$$

and $\quad d_{2}^{r}=\left\{a=\left(a_{k}\right) \in \omega:\left(\frac{a_{k}}{1+r^{k}}\right) \in C S\right\}$
where $\Delta\left(\frac{a_{k}}{1+r^{k}}\right)=\frac{a_{k}}{1+r^{k}}-\frac{a_{k+1}}{1+r^{k+1}}$ for all $k \in \square$.
Then $\quad\left[a_{c}^{r}\right]^{\beta}=d_{1}^{r} \cap d_{2}^{r}$.
Theorem 2.1: $\quad A \in\left(a_{c}^{r}: f\right)$ if and if

$$
\begin{align*}
& \sup _{m, n \in \square} \sum_{k}|\tilde{a}(n, k, m)|<\infty \tag{2.2}\\
& \left\{\frac{a_{n k}}{1+r^{k}}\right\}_{k \in \square} \in c s \text { for all } n \in \square . \tag{2.3}
\end{align*}
$$

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \tilde{a}(n, k, m)=\alpha_{k} \quad \text { uniformly in } \mathrm{n}, \text { for each } k \in \square \tag{2.4}\\
& \lim _{m \rightarrow \infty} \sum_{k}\left|\tilde{a}(n, k, m)-\alpha_{k}\right|=0 \text { uniformly in } \mathrm{n} . \tag{2.5}
\end{align*}
$$

Proof: Suppose that the conditions (2.2), (2.3), (2.4) and (2.5) hold and $x \in a_{c}^{r}$. Then Ax exists and at this stage, we observe from (2.4) and (2.2) that

$$
\sum_{j=0}^{k}\left|\alpha_{j}\right| \leq \sup _{m, n \in \square} \sum_{j}|\tilde{a}(n, j, m)|<\infty
$$

holds for every $k \in \square$. This gives that $\left(\alpha_{k}\right) \in \ell_{1}$. Since $x \in a_{c}^{r}$ by the hypothesis, and $a_{c}^{r} \cong c$, we have $y \in c$. Therefore, one can easily see that $\left(\alpha_{k} y_{k}\right) \in \ell_{1}$ for each $y \in c$ and also there exists $M>0$ such that $\sup _{k}\left|y_{k}\right|<M$. Now for any $\varepsilon>0$, choose a fixed $k_{0} \in \square$, there is some $m_{0} \in \square \quad$ by (2.4) such that

$$
\left|\sum_{k=0}^{k_{0}}\left[\tilde{a}(n, k, m)-\alpha_{k}\right] y_{k}\right|<\frac{\varepsilon}{2}
$$

for every $m \geq m_{0}$, uniformly in n.
Also, by (2.5), there is some $m_{1} \in \square$, such that

$$
\sum_{k=k_{0}+1}^{\infty}\left|\tilde{a}(n, k, m)-\alpha_{k}\right|<\frac{\varepsilon}{2 M}
$$

for every $m \geq m_{1}$ uniformly in n. Therefore, we have

$$
\begin{aligned}
& \left|\frac{1}{m+1} \sum_{i=0}^{m}(A x)_{n+i}-\sum_{k} \alpha_{k} y_{k}\right|=\left|\sum_{k}\left[\tilde{a}(n, k, m)-\alpha_{k}\right] y_{k}\right| \\
& \quad \leq\left|\sum_{k=0}^{k_{0}}\left[\tilde{a}(n, k, m)-\alpha_{k}\right] y_{k}\right|+\left|\sum_{k=k_{0}+1}^{\infty_{0}}\left[\tilde{a}(n, k, m)-\alpha_{k}\right] y_{k}\right| \\
& \quad<\frac{\varepsilon}{2}+\sum_{k=k_{0}+1}^{\infty}\left|\tilde{a}(n, k, m)-\alpha_{k}\right|\left|y_{k}\right| \\
& \quad<\frac{\varepsilon}{2}+M \frac{\varepsilon}{2 M}=\varepsilon
\end{aligned}
$$

for all sufficiently large m , uniformly in n . Hence $A x \in f$, which proves the sufficiency.
Conversely suppose that $A \in\left(a_{c}^{r}: f\right)$. Then Ax exists for every $x \in a_{c}^{r}$ and this implies that $\left\{a_{n k}\right\}_{k \in \square} \in\left[a_{c}^{r}\right]^{\beta}$ for each $n \in \square$; the necessity of (2.3) is immediate.
Now $\sum_{k} a(n, k, m) x_{k}$ exists for each $m, n \quad$ and $x \in a_{c}^{r}$, the sequence $a_{m n}=\{a(n, k, m)\}_{k \in \square}$ define the continuous linear functionals $\phi_{m n}$ on a_{c}^{r} by

$$
\phi_{m n}(x)=\sum_{k} a(n, k, m) x_{k},(m, n \in \square)
$$

Since a_{c}^{r} and c are norm isomorphic ([1], Theorem 2.2), it should follow with (2.1) that

$$
\left\|\phi_{m n}\right\|=\left\|\tilde{a}_{m n}\right\|
$$

This just says that the functionals defined by $\phi_{m n}$ on a_{c}^{r} are point wise bounded. Hence, by the Banach- Steinhauss theorem, they are uniformly bounded, which yields that there exists a constant $M>0$ such that

$$
\left\|\phi_{m n}\right\| \leq M \quad \text { for all } m, n \in \square
$$

It therefore follows, using the complete identification just referred to that

$$
\sum_{k}|\tilde{a}(n, k, m)|=\left\|\phi_{m n}\right\| \leq M
$$

holds for all $m, n \in \square$ which shows the necessity of the condition (2.2).
To prove the necessity of (2.4), consider the sequence $b^{(k)}(r)=\left\{b_{n}^{(k)}(r)\right\}_{n \in \square} \in a_{c}^{r}$ for every $k \in \square$, where

$$
b_{n}^{(k)}(r)=\left\{\begin{array}{lc}
(-1)^{n-k} \frac{1+k}{1+r^{k}}, & (k \leq n \leq k+1) \\
0 & ,(0 \leq n \leq k-1 \quad \text { or } \quad n>k+1)
\end{array} ;(n, k \in \square)\right.
$$

Since Ax exists and is in f for each $x \in a_{c}^{r}$, one can easily see that

$$
A b^{(k)}(r)=\left\{\Delta\left(\frac{a_{n k}}{1+r^{k}}\right)(k+1)\right\}_{n \in \square} \in f
$$

for each $k \in \square$, which shows the necessity of (2.4).
Similarly by taking $x=e \in a_{c}^{r}$, we also obtain that

$$
A x=\left\{\sum_{k} \Delta\left(\frac{a_{n k}}{1+r^{k}}\right)(k+1)\right\}_{n \in \square} \in f
$$

and this shows the necessity of (2.5). This completes the proof.
If the space f is replaced by f_{0}, then Theorem (2.1) is reduced to
Corollary 2.1: $A \in\left(a_{c}^{r}: f_{0}\right)$ if and if (2.2), (2.3) and (2.4), (2.5) also hold with $\alpha_{k}=0$ for all $k \in \square$.

References

[1] C. Aydin, Feyzi Başar, On the new sequence spaces which include the spaces C_{0} and c, Hokkaido Math. J. 33 (2)(2004), 383-398.
[2] S. Banach, Theòrie des operations linéaries, Warszawa, 1932.
[3] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math.

80(1948), 167-190.
[4] S. Nanda, Matrix transformations and almost boundedness, Glasnik Mat. (34), 14(1979), 99-107.

Department of Mathematics, National Institute of Technology, Srinagar-190006, India
E-mail: sameergupkari@rediffmail.com

