
Some new techniques in design and
analysis of exact (exponential)

algorithms

Fedor V. Fomin∗ Fabrizio Grandoni† Dieter Kratsch‡

September 5, 2005

Abstract

This survey concerns techniques in design and analysis of algo-
rithms that can be used to solve NP hard problems faster than ex-
haustive search algorithms (but still in exponential time). We discuss
several of such techniques: Measure & Conquer, Exponential Lower
Bounds, Bounded Tree-width, and Memorization. We also consider
some extensions of the mentioned techniques to parameterized algo-
rithms.

1 Introduction

In this survey we use the term exact algorithms for algorithms that
find exact solutions of NP-hard problem (and thus run in exponential
time).

The design of exact algorithms has a long history dating back to
Held and Karp’s paper [42] on the travelling salesman problem in
the early sixties. The last years have seen an emerging interest in
constructing exponential time algorithms for combinatorial problems
like Coloring [9, 14], Max-Cut [64], 3-SAT [12, 22] (see also the

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
fomin@ii.uib.no. Supported by Norges forskningsr̊ad project 160778/V30. This work
was done while the first author was at the Humboldt-Unoversität Berlin, supported by
Alexander von Humboldt Foundation.

†Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113,
00198 Roma, Italy, grandoni@di.uniroma1.it. Supported by Web-Minds project of the
Italian Ministry of University and Research, under the FIRB program.

‡LITA, Université de Metz, 57045 Metz Cedex 01, France, kratsch@univ-metz.fr

1

survey of Iwama [43] devoted to exponential algorithms for 3-SAT),
Minimum Dominating Set [32], Tree-width [34]. There are two
nice surveys of Woeginger [65, 66] describing the main techniques that
have been established in the field. We also recommend the paper of
Schöning [61] for an introduction to exponential time algorithms.

In this paper we review four techniques for the design and analysis
of exact algorithms which were not covered in the mentioned surveys.
We also show how some of the techniques can be extended to param-
eterized algorithms.

The techniques are

• Measure & Conquer. For more than 30 years Davis-Putnam-
style exponential time search tree algorithms have been the most
common tools used for finding exact solutions of NP-hard prob-
lems. Despite of that, the way to analyze such recursive algo-
rithms is still far from producing tight worst case running time
bounds. The “Measure & Conquer” approach is one of the re-
cent attempts to step beyond such limitations. It is based on
the choice of the measure of the subproblems recursively gener-
ated by the algorithm considered; this measure is used to lower
bound the progress made by the algorithm at each branching
step. A good choice of the measure can lead to a significantly
better worst case time analysis. We exemplify the approach by
showing how to use it for solving the Minimum Dominating
Set problem.

• Lower bounds. Since it is so difficult to obtain tight worst case
running time bounds on exponential-time search tree algorithms,
the natural question, we believe, that should be addressed is
to find lower bounds for the worst case running time of such
algorithms. 1

• Bounded tree-width and dynamic programming. Dy-
namic programming is another common tool for exact algo-
rithms. Here we discuss how structural properties of graphs and
combinatorial bounds can be used to obtain fast exact algorithms
on planar and sparse graphs. We also show how this technique
can be used for parameterized algorithms.

• Memorization. This technique was introduced by Robson and
is used to reduce the running time of exponential-time algorithms
at the cost of space. We overview this technique and explain how
to use it for parameterized algorithms.

1Let us remark that we are interested in exponential lower bounds for a specific class
of algorithms, so these type of results do not imply that P6= NP.

2

2 Measure & Conquer

In this section we study the analysis of search tree algorithms. Search
tree algorithms are also called branch-and-reduce algorithms, split-
ting algorithms, backtracking algorithms etc. Such an algorithm is
recursively applied to a problem instance and uses two types of rules.
Reduction rules are used to simplify the instance. Branching rules are
used to solve the problem by recursively calling smaller instances of
the problem. An execution of such an algorithm can best be analyzed
by a search tree: assign the root node to the input of the problem;
recursively assign a child to a node for each smaller instance reached
by a branching rule at the instance of the node. Our goal is to analyze
the running time of search tree algorithms, i.e. to upper bound the
number of nodes of the search tree in the worst case.

In [65] among the major techniques to construct exponential-time
algorithms Woeginger lists “pruning the search tree” and describes the
classical method to analyze search tree algorithms for the problems
Independent Set, 3-SAT and Bandwidth. The analysis of such
recursive algorithms is based on the bounded search tree technique:
a measure of the size of an instance of the problem is defined; this
measure is used to lower bound the progress made by the algorithm
at each branching step. One obtains a linear recurrence or a collection
of linear recurrences for each reduction and branching rule. Those
linear recurrences can be solved using standard techniques. Finally
the worst case is taken over all linear recurrences and a running time
of the type O(αp) is obtained, where p is some (natural) parameter
for the size of the problem.

For the last 30 years the research on exact algorithms has been
mainly focused on the design of more and more sophisticated algo-
rithms. However, measures used in the analysis of search tree algo-
rithms had been usually very simple, e.g. number of vertices for graphs
and number of variables for satisfiability problems. Retrospective it is
somewhat surprising that almost all analysis of search tree algorithms
used standard measures for such a long period. Although a few papers
used non-standard measures the general potential of a careful choice
of the measure had not been discovered until very recently.

The idea behind Measure & Conquer is to focus on the choice of
the (non-standard) measure, instead of creating algorithms with more
and more rules. If the measure fulfils the following three conditions
then the approach outlined above works.

• The measure of an instance of a subproblem obtained by a re-
duction or a branching rule must be smaller than the measure of
the instance of the original problem.

3

• The measure of each instance is nonnegative.

• The measure of the input is upper bounded by some function of
“natural parameters” of the input.

The last property is needed to retranslate the asymptotic upper
bound in terms of the non-standard measure into an upper bound in
terms of some natural parameters for the size of the input (such as the
number of vertices in a graph or the number of variables in a formula).
This way one is able to derive from different (and often complicated)
measures, results that are easy to state and compare.

2.1 Eppstein’s work

It seems that Eppstein was the first who observed the power of using
non-standard measures for analyzing search tree algorithms. He used
this type of analysis in several papers, among them [9, 30].

Eppstein’s TSP algorithm [30]. There is a well-known dynamic
programming O(2n · n2)2 algorithm for the travelling salesman
problem (TSP) by Held and Karp [42] and there is no improve-
ment since 1962. Eppstein studied TSP for graphs of maximum de-
gree three (for which the problem remains NP-hard) and obtained
an O(2n/3nO(1)) algorithm [30]. More precisely, he studies the trav-
elling salesman problem with forced edges. The input is a
(multi)graph G, a cost function c : E(G) → R and a set of forced
edges F ⊆ E(G); the output is a minimum cost hamiltonian cycle of
G containing all edges of F .

The search tree algorithm is simple. It consists of various reduction
rules (step 1 in [30]), a unique branching rule (step 3) and it terminates
in a leaf (step 2) if G− F forms a collection of disjoint 4-cycles since
in this case a minimum cost solution can be computed in polynomial
time. In step 3 an edge xy is chosen and then the algorithm branches
in the instances G,F∪{xy} (force xy) and G−xy, F (discard xy). The
analysis of the algorithm uses the following interesting non-standard
measure: s(G,F) = |V (G)| − |F | − |C|, where C is the set of 4-cycles
of G that form connected components of G−F . Note that despite the
negative coefficients in the definition of the measure 0 ≤ s(G,F) ≤ n
for all instances G,F . Using this measure the analysis gets fairly easy.
Beigel and Eppstein’s 3-coloring algorithm [9]. The O(20.411n)
time 3-coloring algorithm presented in [9] is the fastest one known. To
a large extent the paper studies special constraint satisfaction

2Whether not specified differently, n and m denote the number of vertices and edges
of the input graph, respectively.

4

problems (CSP). An instance of CSP consists of a collection of n
variables, each with a list of possible colors, and a collection of m con-
straints consisting of a tuple of variables and a color for each variable.
A solution assigns a possible color to each variable such that no con-
straint is satisfied, i.e. not every variable of the constraint is colored
in the way specified by the constraint. For an instance of the prob-
lem (a, b)-CSP, each variable has at most a possible colors and each
constraint involves at most b variables. Note that 3-SAT is equiva-
lent to (2,3)-CSP. Furthermore 3-coloring, 3-list-coloring and
3-edge-coloring can be translated to (3,2)-CSP.

An O(20.449n) time algorithm for (3,2)-CSP is the fundamental
result of [9]. The algorithm also solves (4,2)-CSP and then its running
time is O(20.854n). The basic idea is that any (4,2)-CSP instance can
be transformed into a (3,2)-CSP instance by expanding each of its
four-color variables to two three-color variables. Therefore the natural
measure of a (4,2)-CSP instance would be n = n3 + 2n4, where ni

denotes the number of variables with i possible colors. Crucial for the
analysis of the algorithm is the use of the non-standard measure n =
n3 +(2− ε)n4 where the best choice of ε turns out to be ε ≈ 0.095543.
Eppstein’s quasiconvex analysis [31]. Multivariate recurrences
frequently arise in the analysis of the worst-case running time of search
tree algorithms. Two examples are provided in the paper. One is a
subroutine, used in a graph coloring algorithm [29], listing all maximal
independent sets of size at most k. In fact when analyzing a search tree
algorithm an instance is often characterized by more than one size pa-
rameter (variable), and thus it is convenient to establish multivariate
recurrences (instead of linear recurrences based on a unique variable)
for the reduction and branching rules. Those variables are part of the
input or come up during an execution of the algorithm in a natural
way or might be chosen to improve the upper bound of the worst-case
running time to be obtained. For example, the linear recurrences in
terms of s(G,F) obtained in the analysis of the TSP algorithm in [30]
can easily be translated into multivariate recurrences in the variables
|V (G)|, |F | and |C|. Furthermore the linear recurrences in terms of
the non-standard measure n = n4 + (2− ε)n3 obtained for the reduc-
tion and branching rules of the (4,2)-CSP algorithm in [9] can be
translated easily into multivariate recurrences in the variables n3 and
n4.

Given the multivariate recurrences we would like to obtain an up-
per bound on the running time of the algorithm. Eppstein showed
that this multivariate system can be turned into an equivalent system
of recurrences in a unique variable, where the new variable is a linear
combination of the size parameters. It is sufficient to choose the co-

5

efficients (weights) which minimize the resulting running time. The
optimal weight vector can be computed using quasiconvex program-
ming.
Byskov and Eppstein’s maximal bipartite subgraph listing
algorithm [16]. The O(20.826n) time algorithm to list all maximal
bipartite subgraphs of a graph is the fastest one known. The algorithm
can also be found in Byskov’s Ph.D. thesis [15] which contains a variety
of exponential-time algorithms.

The key operations of the algorithm are: coloring a vertex black
(resp. white), remove an edge and remove a vertex. The key idea is
that all neighbors of a black (resp. white) vertex can either be white
(resp. black) or have to be removed. To indicate this state they will
be half-colored: half-white (resp. half-black). Thus an instance of the
problem is a half-colored graph G = (V, F, B, W,E) where F is the set
of full vertices (i.e. uncolored yet), B is the set of half-black vertices
and W is the set of half-white vertices.

The algorithm is based on a lengthy case analysis (p. 35–49 in [15])
generating reduction and branching rules. The analysis of the running
time is based on Eppstein’s technique: multivariate recurrences and
quasiconvex programming. The recurrences depend on two variables:
number of full variables and number of half-colored variables. Once
provided the long list of two-variable recurrences they will be solved
using Eppstein’s quasiconvex programming based approach and one
obtains the running time O(20.826n) of the algorithm.3

2.2 A set cover algorithm

A more careful choice of the measure can lead to a significantly bet-
ter analysis of the worst case running time of simple search tree
algorithms. To illustrate this let us consider the following simple
exponential-time search tree algorithm for the minimum set cover
problem that has been presented in [32] by the authors of this sur-
vey. The analysis is based on a sophisticated choice of the measure.
This algorithm is used to obtain the fastest known algorithm for the
minimum dominating set problem having running time: O(20.610n)
using polynomial space and O(20.598n) using exponential space.

In the NP-hard problem Minimum Set Cover (MSC) we are
given a universe U of elements and a collection S of (non-empty)
subsets of U . The aim is to determine the minimum cardinality of a
subset S ′ ⊆ S which covers U , that is such that ∪S∈S′S = U . The
frequency of u ∈ U is the number of subsets S ∈ S in which u is

3However to verify the stated running time without having a special program on hands
is non-trivial.

6

contained. For the sake of simplicity, we always assume that S covers
U . With this assumption, an instance of MSC is univocally specified
by S.

The NP-hard problem Minimum Dominating Set (MDS) asks
to determine the smallest cardinality of a dominating set for the input
graph G. Recall that a set D ⊆ V (G) is called a dominating set of the
graph G if every vertex of G is either in D, or adjacent to some vertex
in D. MDS for an input graph G can be naturally reduced to MSC
by imposing U = V (G) and S = {N [v]| v ∈ V }, where N [v] denotes
the closed neighborhood of vertex v in G. Thus D is a minimum
dominating set of G if and only if S ′ = {N [v]| v ∈ D} is a minimum
set cover of (U ,S). Thus an O(2α(|S|+|U|)) algorithm for MSC implies
an O(22αn) algorithm for MDS.

Consider the following simple recursive search tree algorithm msc
for solving MSC:

1 int msc(S) {
2 if(|S| = 0) return 0;
3 if(∃S, R ∈ S : S ⊆ R) return msc(S\{S});
4 if(∃u ∈ U(S)∃ a unique S ∈ S : u ∈ S)

return 1+msc(del(S, S));
5 take S ∈ S of maximum cardinality;
6 if(|S| = 2) return poly-msc(S)
7 return min{msc(S\{S}), 1+msc(del(S, S))};
8 }

Here del(S,S) = {Z|Z = R\S 6= ∅, R ∈ S} is the instance of MSC
which is obtained from S by removing the elements of S from the
subsets in S, and by eventually removing the empty sets obtained.
Algorithm poly-msc is the polynomial-time minimum set cover algo-
rithm solving MSC for instances where all subsets have cardinality
two, which can be reduced to a minimum edge cover problem, based
on a well-known reduction to maximum matching.

Essentially algorithm msc has two reduction rules (in line 3 and 4)
and one branching rule (in line 7). If the maximum cardinality of a
subset is at least 3 then the algorithm chooses a subset S of maximum
cardinality and branches into the two subproblems SIN = del(S,S)
(the case where S belongs to the minimum set cover) and SOUT = S\S
(corresponding to the case S is not in the minimum set cover). It is
easy to see that the simple algorithm is correct.

7

2.2.1 Analyzing the algorithm msc

How should we analyze the running time of msc? Classical analysis
with the natural measure s(U ′,S ′) = |S ′| + |U ′| for the size of an
instance (U ′,S ′) of MSC provides an upper bound of O(20.465(|S|+|U|))
[40]. (The recurrence corresponding to the unique branching rule is
P (s) ≤ P (s− 1) + P (s− 4) where P (s) denotes the number of leaves
in the search tree generated by the algorithm to solve a problem of
size s = s(U ,S).)

We show how to refine the running time analysis to
O(20.305(|S|+|U|)) via a more careful choice of the measure of an in-
stance of MSC (without modifying the algorithm!).

Intuition. The choice is based on the following observations show-
ing two “side effects” not taken into account by the above classical
analysis: Removing a large set has a different impact on the “progress”
of the algorithm than removing a small one. In fact, when we remove
a large set, we decrease the frequency of many elements. Decreasing
elements frequency pays of on long term, since the elements of fre-
quency one can be filtered out (without branching). A dual argument
holds for the elements. Removing an element of high frequency is
somehow preferable to removing an element of small frequency. In
fact, when we remove an element occurring in many sets, we decrease
the cardinality of all such sets by one. This is good on long term, since
sets of cardinality one can be filtered out. This suggests the idea to
give a different weight to sets of different cardinality and to elements
of different frequency in the measure of an instance.
The measure. Let ni denote the number of subsets S ∈ S of car-
dinality i. Let moreover mj denote the number of elements u ∈ U
of frequency j. The measure s = s(U ,S) of the size of an instance
of MSC is defined to be: s(U ,S) =

∑
i≥1 wi ni +

∑
j≥1 vj mj , where

the weights wi, vj ∈ (0, 1] will be fixed in the following. Note that
s ≤ |S| + |U|. Thus when obtaining a running time O(2αs) we may
conclude that msc has running time O(2α(|S|+|U|)).
Notation.

∆ wi =

{
wi − wi−1 if i ≥ 3,

w2 if i = 2,
and ∆ vi =

{
vi − vi−1 if i ≥ 3,

v2 if i = 2.

Intuitively, ∆wi (∆ vi) is the reduction of the size of the problem cor-
responding to the reduction of the cardinality of a set (of the frequency
of an element) from i to i− 1. Let us note that this holds also in the
case i = 2.
Constraints. In order to simplify the running time analysis, we will
add the following constraints:

8

• w1 = v1 = 1 and wi = vi = 1 for i ≥ 6;

• 0 ≤ ∆ wi ≤ ∆wi−1 for i ≥ 2.

Let us observe that this implies that only the weights v2, v3, v4, v5 and
w2, w3, w4, w5 have still to be fixed. Furthermore for every i ≥ 3,
wi ≥ wi−1, and vi ≥ vi−1.
Recurrences. Let Ph(s) be the number of subproblems of size h,
0 ≤ h ≤ s, solved by msc to solve an instance of the MSC of size
s. As in a classical analysis for all reduction rules and all branching
rules we obtain recurrences. Typically the analysis is more difficult
and more tedious than in the case of simple measures because now
one branching rule can generate a lot of recurrences.

For the detailed analysis we refer to [32]. We only mention all re-
currences corresponding to the unique branching rule (which are prac-
tically all important recurrences). Suppose the algorithm has chosen
a set S with |S| ≥ 3 in line 5, thus msc branches into two subproblems
SIN = del(S,S) and SOUT = S\S. Let ri be the number of elements
of S of frequency i. Note that there cannot be elements of frequency
1, and that

∑
i≥2 ri = |S|.

For all the possible values of |S| ≥ 3 and of the ri such that∑6
i=2 ri + r≥7 = |S|, we have the following set of recurrences:

Ph(s) ≤ Ph(s−∆ sOUT) + Ph(s−∆ sIN),

where

∆ sOUT , w|S| +
6∑

i=2

ri ∆ vi + r2 w2 + δ(r2) v2,

∆ sIN , w|S| +
6∑

i=2

ri vi + r≥7 + ∆w|S|

(
6∑

i=2

(i− 1) ri + 6 · r≥7

)
,

and δ(r2) = 0 for r2 = 0, and δ(r2) = 1 otherwise.
Solving recurrences. Fortunately we can restrict our attention to
the case 3 ≤ |S| ≤ 7. In fact, since ∆w|S| = 0 for |S| ≥ 7, each
recurrence with |S| ≥ 8 is “dominated” by some recurrence with |S| =
7.

Thus we consider a large but finite number of recurrences. For
every fixed 8-tuple (w2, w3, w4, w5, v2, v3, v4, v5) the number Ph(s) is
within a polynomial factor of αs−h, where α is the largest number
from the set of real roots of the set of equations

αs = αs−∆ sOUT + αs−∆ sIN

9

corresponding to different combinations of values |S| and ri. Thus the
estimation of Ph(s) boils up to choosing the weights minimizing α.
Choosing weights. This optimization problem is interesting in its
own and we refer to Eppstein’s work [31] on quasiconvex programming
for general treatment of such problems. It turns out that α = α(v, w)
is a quasiconvex function of the weights (see [31]). We numerically
(using a randomized local search algorithm) obtained the following
values of the weights:

wi =





0.3774 if i = 2,

0.7548 if i = 3,

0.9095 if i = 4,

0.9764 if i = 5,

and vi =





0.3996 if i = 2,

0.7677 if i = 3,

0.9300 if i = 4,

0.9856 if i = 5,

which yields α ≤ 1.2352 . . . < 1.2353.4

Running time. Let K denote the set of the possible sizes of the
subproblems solved. Note that |K| is polynomially bounded. The
total number P (s) of subproblems solved satisfies:

P (s) ≤
∑

h∈K

Ph(s) ≤
∑

h∈K

αs−h ≤ |K|αs.

The cost of solving a problem of size h ≤ s, excluding the cost of solv-
ing the corresponding subproblems (if any), is a polynomial poly(s) of
s. Thus the time complexity of the algorithm is

O(poly(s)|K|αs) = O(1.2353|U|+|S|) = O(20.305(|U|+|S|)).

Theorem 1. Algorithm msc solves MSC in time O(20.305(|U|+|S|)).

By simply combining the reduction from MDS to MSC with al-
gorithm msc one obtains algorithm mds.

Corollary 2. Algorithm mds solves MDS in time O(20.305(2n)) =
O(20.610n).

Applying the memorization technique described in Section 5 to mds
the running time can be further reduced to O(20.598 n).

Though search tree algorithms form a very prominent class of pa-
rameterized algorithms, it is yet not fully understood in which way
Measure & Conquer can be applied to such algorithms. We leave this
as an interesting open problem.

4Although computing the weights minimizing α is computationally a non-trivial task,
given the weights, checking whether a given α is feasible or not is easy.

10

3 Exponential lower bounds

Impressive improvements on the upper bound of the worst case run-
ning time of a particular exponential-time search tree algorithm can
be achieved by a refined analysis and use of a suitable measure as
we have seen in the previous section. This suggests the possibility
that the time complexity of exponential-time exact algorithms might
be largely overestimated. Indeed, most running times of exponential-
time search tree algorithms could be too pessimistic and the worst case
running time of such an algorithm might be significantly faster. None
of the tools and methods for analyzing such algorithms is guaranteed
to provide tight upper bounds of the running time.

Consequently, while for most of the known polynomial time algo-
rithms, the known running times seem to be tight, this is most likely
not the case for exponential-time search tree algorithms. Therefore it
is natural to ask for lower bounds of the worst case running time of
such algorithms. A lower bound may give an idea how far the running
time analysis is from being tight. Furthermore lower bounds might
also help to compare exponential-time search tree algorithms.

There are several results on lower bounds for different so-called
DPLL algorithms for SAT and k-SAT (see e.g. [5, 54]). However not
much more is known on lower bounds for existing exponential-time
search tree algorithms for other problems, and in particular for graph
problems. One of the reasons to this could be that for most of the
graph problems the construction of good lower bounds seems to be a
difficult and challenging task even for very simple algorithms.

3.1 A lower bound for algorithm mds

The following lower bound for the O(20.610n) polynomial-space algo-
rithm mds of the previous section has been provided in [32]. Recall
that algorithm mds solves the Minimum Dominating Set problem
based on a reduction to the Minimum Set Cover problem and uses
the algorithm msc.

Theorem 3. The worst case running time of mds is Ω(20.333n).

Proof. Consider the following input graph Gn (n ≥ 1): the vertex set
of Gn is {ai, bi, ci : 1 ≤ i ≤ n}. The edge set of Gn consists of two
types of edges: for each i = 1, 2 . . . , n, the vertices ai, bi and ci induce
a triangle Ti; and for each i = 1, 2, ..., n− 1: {ai, ai+1}, {bi, bi+1} and
{ci, ci+1} are edges.

Each node of the search tree corresponds to a subproblem of the
minimum set cover problem with input (U ; S = {Sv : v ∈ V }) where
Sv = N [v].

11

We give a selection rule for the choice of the vertices v (respectively
sets Sv) to be chosen for the branching. The goal is to choose a
selection rule

• which is compatible with the algorithm, and

• such that the number of nodes in the search tree obtained by the
execution of algorithm msc on the instance of MSC generated
by the graph Gn is as large as possible.

In each round i, i ∈ {2, 3, . . . , n − 1}, we start with a pair C =
{xi, yi} of vertices (belonging to triangle Ti), where {x, y} ⊂ {a, b, c}.
Initially C = {a2, b2}. Our choice makes sure that for each branching
vertex x the cardinality of its set Sx is five in the current subproblem S,
and that none of the rules of line 2,3 and 4 of the algorithm will ever be
applied. Consequently only the branching rule is applied, and by line
7 of msc either the set Sv is taken into the set cover (S := del(S, Sv)),
or Sv is removed (S := S \ Sv).

For each pair C = {xi, yi} of nodes we branch in the following 3
ways
1) take Sxi ,
2) remove Sxi , and then take Syi ,
3) remove Sxi , and then remove Syi .

The following new pairs of vertices correspond to each of the three
branches:
1) C1 = {ai+2, bi+2, ci+2} \ xi+2,
2) C2 = {ai+2, bi+2, ci+2} \ yi+2,
3) C3 = {xi+1, yi+1}.

On each pair Cj we recursively repeat the process. Thus of the
three branches of Ti two are proceeded on Ti+2 and one is proceeded
on Ti+1.

To show a lower bound on the worst case running time of algorithm
msc respectively mds on input Gn we analyze the number of leaves
of the search tree. Let P (i) be the number of leaves in the search
tree when all triangles up to Ti have been used for branching. Thus
P (i) = 2 · P (i − 2) + P (i − 1), and hence P (i) ≥ 2i−2. Consequently
the worst case number of leaves in the search tree of msc for a graph
on n vertices is at least 2n/3−2. Thus the worst case running time of
mds is Ω(20.333n).

Notice that there is a large gap between theO(20.610n) upper bound
and the Ω(20.333n) lower bound for the worst case running time of algo-
rithm mds. This suggests the possibility that the analysis of algorithm
mds can be further refined.

12

4 Tree-width based techniques

The notion of tree-width was introduced by Robertson and Seymour
[55]. A tree decomposition of a graph G is a pair ({Xi : i ∈ I}, T),
where {Xi : i ∈ I} is a collection of subsets of V (G) and T is a tree
such that the following three conditions are satisfied:

1.
⋃

i∈I Xi = V (G).

2. For all {v, w} ∈ E(G), there is an i ∈ V (T) such that v, w ∈ Xi.

3. For all i, j, k ∈ V (T), if j is on a path from i to k in T then
Xi ∩Xk ⊆ Xj .

The width of a tree decomposition ({Xi : i ∈ V (T)}, T) is
maxi∈V (T) |Xi| − 1. The tree-width of a graph G, denoted by tw(G),
is the minimum width over all its tree decompositions. A tree decom-
position of G of width tw(G) is called an optimal tree decomposition
of G.

A tree decomposition ({Xi : i ∈ V (T)}, T) of G with T being a
path is called a path decomposition of G. The path-width of a graph
G, denoted by pw(G), is the minimum width over all its path decom-
positions.

A branch decomposition of a graph G is a pair (T, µ), where T is
a tree with vertices of degree one or three and µ is a bijection from
the set of leaves L of T to E(G). Let e be an edge of T . The removal
of e results in two subtrees of T , say T1 and T2. Let Gi be the graph
formed by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The
middle set mid(e) of e is the intersection of the vertex sets of G1 and
G2, i.e., mid(e) := V (G1) ∩ V (G2).

The width of (T, µ) is the maximum size of the middle sets over all
edges of T , and the branch-width of G, bw(G), is the minimum width
over all branch decompositions of G. (In case where |E(G)| ≤ 1, we
define the branch-width to be 0; if |E(G)| = 0, then G has no branch
decomposition; if |E(G)| = 1, then G has a branch decomposition
consisting of a tree with one vertex—the width of this branch decom-
position is considered to be 0).

Tree-width and branch-width are related parameters and can be
considered as measures of the “global connectivity” of a graph. The
following result is due to Robertson and Seymour [(5.1) in [56]].

Theorem 4 ([56]). For any connected graph G with |E(G)| ≥ 3,
bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G).

Tree-width is one of the most basic parameters in graph algorithms.
There is a well established theory on the design of polynomial (or even

13

linear) time algorithms for many intractable problems when the input
is restricted to graphs of bounded tree-width. See [11] for a compre-
hensive survey. But what is more important for us, many problems
on graphs with n vertices and tree-width (branch-width) at most `
can be solved in time c` · nO(1), where c is some problem dependent
constant.

For example, Alber et al. [1] proved that MDS on graphs of tree-
width at most ` can be solved in time O(22`n). Fomin and Thilikos
showed in [36] that for graphs G given with a branch-decomposition of
width at most `, a minimum dominating set of G can be computed in
time O(3

3`
2 m) = O(25.197n). (See also [27] for general discussions on

transformations of tree-width based dynamic programming algorithms
into algorithms on graphs of bounded branch-width and vice versa.)
It can be shown that for graphs of path-width at most ` the running
time of the algorithm of Alber et al. is O(3`n).

All results mentioned above are based on the following observation.

Observation 5. Let P be a problem on graphs and G be a class of
graphs such that

• for every graph G ∈ G of branch-width at most `, the problem P
can be solved in time 2cP` · nO(1), where cP is a constant, and

• for every graph G ∈ G a branch decomposition (not necessary
optimal) of G of width at most g(n) can be constructed in poly-
nomial time.

Then for every graph G ∈ G, the problem P can be solved in time
2cP ·g(n) · nO(1).

Similar observations are valid for tree and path decompositions.
In the following subsections we shall see how Observation 5 com-

bined with good combinatorial upper bounds, provide us with fast
algorithms for several interesting graph classes.

4.1 Planar graphs

Using a well-known approach of Lipton and Tarjan [49] based on the
celebrated planar separator theorem [48], one can obtain algorithms
with time complexity cO(

√
n) for many problems on planar graphs.

However, the constants “hidden” in O(
√

n) can be crucial for practical
implementations. During the last few years some work has been done
to compute and to improve the “hidden” constants [3, 4].

Dynamic programming can be seen as a simpler and, sometimes,
faster alternative to the approach of Lipton and Tarjan. To use Ob-

14

servation 5 efficiently, we need to establish upper bounds on the tree-
width and branch-width of planar graphs.

Upper bounds. Let αt and αb be constants such that for every
planar graph tw(G) ≤ αt

√
n +O(1) and bw(G) ≤ αb

√
n +O(1).

In [6] Alon, Seymour, and Thomas proved that any Kr-minor free
graph on n vertices has tree-width at most r1.5√n. (Here Kr is com-
plete graph on r vertices.) Since no planar graph contains K5 as a
minor, we have that αb(G) ≤ αt(G) ≤ 61.5 ≤ 14.697. By using deep re-
sults of Robertson, Seymour, and Thomas, one can easily prove much
better bounds as follows.

Before we proceed, let us remind the notion of a minor. Given an
edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x
and y and remove all loops and duplicate edges. A graph H obtained
by a sequence of edge-contractions is said to be a contraction of G. H
is a minor of G if H is the subgraph of some contraction of G.

The following is a combination of statements (4.3) in [56] and (6.3)
in [58].

Theorem 6 ([58]). Let k ≥ 1 be an integer. Every planar graph with
no (k × k)-grid as a minor has branch-width at most 4k − 3.

Since a graph on n vertices does not contain a ((d√ne+1)×(d√ne+
1))-grid as a minor, we have that αb(G) ≤ 4. Fomin and Thilikos [38]
obtained the following bounds

Theorem 7 ([38]). αb ≤
√

4.5 < 2.1214 and αt < 3.1820.

The proof in [38] makes strong use of deep graph theoretic results
from [7] and [57, 62]. In particular, Alon, Seymour and Thomas in-
troduced the concept of “majority” in order to study the existence
of small separators in planar graphs. On the other side, the results
in [62, 57] are strongly based on the notion of “slope”. The main idea
of the proof in [38] was to show that slopes can be transformed to
majorities.

Now to apply Observation 5, we need to construct a tree or a
branch decomposition of small width. It is a long standing open prob-
lem whether an optimal tree decomposition of a planar graph can be
constructed in polynomial time. For branch decompositions the situ-
ation is different. An optimal branch decomposition of a planar graph
can be constructed in polynomial time by using the algorithm due
to Seymour and Thomas (Sections 7 and 9 in [62]). The algorithm
can be implemented such that its running time is O(n4). Recently,
the running time of the algorithm was reduced by Gu and Tamaki to
O(n3) [41].

15

Putting things together. Thus for planar graphs the function g(n)
of Observation 5 can be taken g(n) =

√
4.5n. As we already discussed,

for Minimum Dominating Set, cP ≤ 5.1962, and we arrive at the
fastest known algorithms on planar graphs for MDS with running time

O(3
3
2

√
4.5·nn + n3) = O(25.044

√
n).

Similar approach yields an algorithm for Maximum Independent
Set on planar graphs with running time O(23.182

√
n).

This machinery not only improves the time bounds but also
provides an unified approach for many exponential time algorithms
emerging from the planar separator theorem of Lipton and Tarjan
[48, 49]. (See [37] for further details.)

Non-local problems. Observation 5 cannot be used to obtain
2O(

√
n) time algorithms on planar graphs for “non-local” problems like

Hamiltonian Cycle (HC), where we are asked if the input graph
has a Hamiltonian cycle, i.e. a (simple) cycle containing all vertices
of the graph. The reason is that all known algorithms, solving HC on
graphs of branch-width at most ` have running time 2O(` log `)nO(1),
thus on planar graphs Observation 5 yields only algorithms with run-
ning time 2O(

√
n log n).

The intuition, why only 2O(` log `)nO(1) time algorithms for HC on
graphs of branch-width at most ` are known is the following. While
performing dynamic programming, we keep for every edge e of the
branch decomposition the set of “patterns” which encode all possible
information how possible hamiltonian cycles can hit mid(e). The only
known way of doing this is basically to keep as the states of dynamic
programming all possible permutations of the set mid(e), which ends
up in running time 2O(` log `)nO(1). This seems to be a natural obstacle
and no significantly faster algorithm solving Hamiltonian cycle on
graphs of bounded branch-width (or tree-width) is known.

Note that for obtaining 2O(
√

n) time algorithms for MDS on planar
graphs, planarity comes into play twice: First in the upper bound on
the branch-width of a graph and second in the polynomial time al-
gorithm constructing an optimal branch decomposition. It is possible
to get rid of the logarithmic factor in the exponent for a number of
nonlocal problems as well. The main idea to speed-up algorithms ob-
tained by the branch decomposition approach is to exploit planarity
for the third time: use planarity in dynamic programming on graphs
of bounded branch-width. To explain how planarity can be used in
dynamic programming, we need to go deeper into the properties of
planar branch decompositions.

It is more convenient to work with graphs embedded on a sphere
instead of a plane. Let Σ be a sphere (x, y, z : x2 + y2 + z2 = 1).

16

By a Σ-plane graph G we mean a planar graph G with the vertex set
V (G) and the edge set E(G) drawn (without crossing) in Σ. An O-arc
is a subset of Σ homeomorphic to a circle. An O-arc in Σ is called
noose of a Σ-plane graph G if it meets G only in vertices. The length
of a noose O is |O ∩ V (G)|, the number of vertices it meets. Every
noose O bounds two open discs ∆1, ∆2 in Σ, i.e. ∆1 ∩ ∆2 = ∅ and
∆1 ∪∆2 ∪O = Σ.

For a Σ-plane graph G, we define a sphere cut branch decomposition
〈T, µ〉 as a branch decomposition such that for every edge e of T
there exists a noose Oe bounding the two open discs ∆1 and ∆2 such
that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus the length of the noose Oe is
|mid(e)|.

It follows almost directly from results of Seymour and Thomas [62]
that the optimal branch decomposition constructed by their algorithm
is in fact a sphere cut branch decomposition (see [26] for details).

Let C be a Hamiltonian cycle and let Oe be a noose of a Σ-plane
graph G corresponding to an edge e of a sphere cut branch decompo-
sition. Here is the moment when planarity is used for the third time.
Because the graph is Σ-plane, the number of possible ways Hamilto-
nian cycles can hit the noose Oe (which is mid(e)) can be bounded by
the |mid(e)|-th Catalan number, which yields almost immediately an
algorithm of running time 2O(bw(G))nO(1) = 2O(

√
n).

With a more careful work involving tricks on compressing the num-
ber of states in dynamic programming, Dorn et al. [26] established
a O(26.903

√
n) time algorithm solving HC on planar graphs. A sim-

ilar approach can be used to obtain an O(210.8224
√

n) time algorithm
for Planar Graph TSP, where one asks for a shortest tour visiting
all vertices of a weighted planar graph. Similarly, Planar Longest
Cycle is solvable in time O(27.214

√
n).

Finally, let us note that the separator based approach can be used
to obtain a 2O(

√
n) time algorithm for HC on planar graphs [23]. How-

ever, it seems that by making use of branch decompositions one can
prove significantly better bounds on the worst case running time of
algorithms on planar graphs.

4.2 Parameterized algorithms on planar
graphs

A similar approach (with some modifications) can be used for the
design of parameterized algorithms on planar graphs. The last ten
years have seen a rapid development of a new branch of computational
complexity: Parameterized Complexity. (See the book of Downey
and Fellows [28].) Roughly speaking, a parameterized problem with

17

parameter k is fixed parameter tractable if it admits a solving algorithm
with running time f(k)|I|β. (Here f is a function depending only on
k, |I| is the length of the non parameterized part of the input and β
is a constant.) In many cases, f(k) = ck is an exponential function
for some constant c. Some attention was paid to the construction of
parameterized algorithms with running time of the kind f(k) = c

√
k

for different problems on planar graphs. The first paper on the subject
was the paper by Alber et al. [1] describing an algorithm with running
time O(46

√
34kn) = O(269.972

√
kn) for the Minimum Dominating Set

problem on planar graphs.

Let L be a parameterized problem, i.e. L consists of pairs (I, k)
where I is the input and k is the parameter of the problem. Reduction
to linear problem kernel is the replacement of problem inputs (I, k) by
a reduced problem with inputs (I ′, k′) (linear kernel) with constants
c1, c2 such that

k′ ≤ c1k, |I ′| ≤ c2k
′ and (I, k) ∈ L ⇔ (I ′, k′) ∈ L.

(We refer to Downey and Fellows [28] for discussions on fixed param-
eter tractability and the ways of constructing kernels.)

Observation 8. Let L be a parameterized problem (G, k), where G is
a graph such that

• there is a linear problem kernel (G′, k′) computable in time
Tkernel(|V (G)|, k) with constants c1, c2 such that an optimal
branch decomposition of G′ is computable in time Tbw(|V (G′)|),

• for graphs of branch-width at most `, problem L can be solved in
time O(2c3`n), where c3 is a constant, and

• bw(G′) ≤ c4

√
k, where c4 is a constant.

Then L can be solved in time O(2c3c4
√

kk + Tbw(|V (G′)|) +
Tkernel(|V (G)|, k)).

Proof. The algorithm works as follows. First it computes a linear
kernel in time Tkernel(|V (G)|, k). Then it constructs a branch decom-
position of the kernel G′ in time Tbw(|V (G′)|). (If there is no such
kernel, the problems has no solution.) The size of the kernel is at
most c1c2k = O(k). The branch-width of the kernel is at most c4

√
k

and it takes time O(2c3c4
√

kk + Tbw(|V (G′)|) + Tkernel(|V (G)|, k)) to
solve the problem.

Let us on exemplify on parameterize Dominating Set problem
how Observation 8 can be used.

18

The k-Dominating Set problem asks to compute, given a graph
G and a positive integer k, a dominating set of size k or to report
that no such set exists. Alber, Fellows and Niedermeier [2] show that
the k-Dominating Set problem on planar graphs admits a linear
problem kernel. (The size of the kernel is 335k. Recently this result
was improved to 67k by Chen et al. [17].) This reduction can be
performed in O(n3) time. As we already mentioned, the MDS on
graphs of branch-width at most ` can be solved in time O(23log43·`m)
[36]. Thus c3 ≤ 3log43.

What about the constant c4 for MDS? It is proved in [36] that for
every planar graph G with a dominating set of size k, the branch-width
of G is at most 3

√
4.5
√

k, i.e. c4 ≤ 3
√

4.5. Therefore by Observation 8,
k- Dominating set can be solved in time O(29·log43·√4.5

√
kk + n3 +

k3) = O(215.130
√

k + n3) on planar graphs. This is the fastest known
algorithm for k-Planar Dominating Set.

By similar arguments, one can show that k-Vertex Cover on
planar graphs can be solved in time O(k4 + 24.5

√
kk + kn). (See [37]

for details.)

Parameterized versions of non-local problems. For non-local
problems Observation 8 cannot be applied directly, however similar
arguments are valid. Let us consider the following parameterized
version of Hamiltonian Cycle problem: In the k-Cycle prob-
lem we are given a graph G and a positive integer k, the task is
to find a cycle of length at least k, or to conclude that there is no
such a cycle. By adopting the technique from [26], a longest cycle
in a planar graph of branch-width at most ` can be found in time
O(23.4`` n). If the branch-width of G is at least 4

√
k + 1 − 3 then

by Theorem 6, G contains a (
√

k + 1 × √k + 1)-grid as a minor and
thus contains a cycle of length at least k. If the branch-width of G is
less than 4

√
k + 1− 3 then we can find the longest cycle in G in time

O(23.4·4√k+1
√

k n) = O(213.6
√

k
√

k n + n3). By standard techniques
(see for example [28]) the recognition algorithm for k-Cycle on pla-
nar graphs can easily be turned into one constructing a cycle of length
at least k, if such a cycle exists.

The described technique can be applied to a large collection of
parameterized problems (so-called bidimensional problems) and it can
also be extended to more general graph classes. See [24, 25, 36] for
further details.

19

4.3 Sparse graphs

Another class of graphs for which tree-width based techniques can be
used to design exact algorithms are graphs of small maximum degree
and graphs with small number of edges.

One of the usual approaches to obtain exact algorithms on sparse
graphs are search tree algorithms. There are quite many exact al-
gorithms in the literature for different NP hard problems on sparse
graphs and in particular on graphs of maximum degree three, see e.g.
[8, 20, 35, 39, 47]

The following result is due to Fomin and Høie [33].

Theorem 9 ([33]). For any ε > 0, there exists an integer nε such that
for every graph G with maximum degree at most three and |V (G)| >
nε, pw(G) ≤ (1/6 + ε)|V (G)|.

The proof of Theorem 9 provides an algorithm to construct a path
decomposition of width at most (1/6 + ε)|V (G)|. Theorem 9 and
Observation 5 imply the following

Corollary 10. For graphs of maximum degree at most three MDS is
solvable in time 3n/6 · nO(1) = O(20.265n).

By similar approach one can also obtain the fastest known so far
2n/6 ·nO(1) = O(20.167n)-time algorithms for Maximum Independent
Set and Max-Cut on graphs of maximum vertex degree three. 5

The proof of Theorem 9 is based on a result of Monien and Preis
[50] about the bisection width of 3-regular graphs.

Let us also mention an interesting upper bound on the tree-width
of graphs in terms of the number of edges obtained by Kneis et al.
[44]

Theorem 11 ([44]). For any graph G on m edges, tw(G) ≤ m/5.217.

This result implies, for example, that Max-Cut can be solved in
time O(2m/5.217).

4.3.1 Lower bounds

The worst case running time of the algorithms described in this subsec-
tion depends on combinatorial bounds on path-width of graphs with
maximum degree three. Thus it is natural to ask, how small can be

5Recently, Kojevnikov and Kulikov [46] announced a new search tree algorithm for
Maximum Independent Set on graphs of maximum degree three with running time
2n/6 · nO(1).

20

the path-width or tree-width of graphs of maximum degree three, or
even 3-regular graphs.

Lower bounds on these graph parameters can be obtained by mak-
ing use of Algebraic Graph Theory. In particular, Bezrukov et al.
[10] (by making use of the second smallest eigenvalues of Ramanujan
graph’s Laplacian) showed that there are 3-regular graphs with the
bisection width at least 0.082n. (See [10] for more details.) It can be
easily shown that the result of Bezrukov et al. also yields the lower
bound 0.082n for path-width of graphs with maximum degree three.

The gap between 0.082n and 0.167n for the upper bound on the
path-width of 3-regular graphs provides some hopes for faster algo-
rithms.

5 Memorization

The time complexity of many exponential time search tree algorithms
can be reduced at the cost of an exponential space complexity via
the memorization technique by Robson [59]. Memorization works as
follows: the solutions of all the subproblems solved are stored in an
(exponential-size) database. If the same subproblem turns up more
than once, the algorithm is not to run a second time, but the already
computed result is looked up. The database is implemented in such
a way that the query time is logarithmic in the number of solutions
stored and polynomial in the size of the problem: this way the cost of
each look up is polynomial.

In order to illustrate the technique better, we will consider a
specific NP-hard problem, the Minimum Vertex Cover problem
(MVC), and a specific algorithm to solve it. The techniques described
in this section can easily be adapted to many other algorithms and
problems. Moreover, for the sake of simplicity, we will analyze the al-
gorithm with the standard measure (using Measure & Conquer, better
bounds are achievable).

MVC consists in determining the minimum cardinality of a subset
V ′ of vertices (vertex cover) such that every edge is incident to at
least one vertex in V ′. Let us consider the following simple search
tree algorithm to solve MVC: (1) if there is a vertex v of degree zero,
remove it; (2) if there is a vertex v of degree one, add w to the vertex
cover and remove both v and w (with all the edges incident to them);
(3) select v of maximum degree; (3.a) if deg(v) = 2, solve the problem
with the trivial polynomial-time algorithm; (3.b) otherwise, branch by
either including v or its neighborhood N(v) in the vertex cover, and
by removing v or its closed neighborhood N [v], respectively. Solve the
two subproblems generated recursively. Observe that each subproblem

21

involves an induced subgraph of the original graph. This property is
crucial in order to apply memorization, as it will be clearer soon.6

Let P (n) be the number of leaves in the search tree recursively
generated by the algorithm to solve the problem on a graph with n
vertices. The worst case recurrence, corresponding to the case we
branch at a vertex of degree 3, is

P (n) ≤ P (n− 1) + P (n− 4),

from which we obtain P (n) < 20.465 n. Since each recursive call takes
polynomial time, and the total number of subproblems solved is within
a polynomial factor from P (n), the running time of the algorithm
(according to the standard analysis) is O(20.465 n). Let Ph(n), h ≤ n,
be the number of subproblems being graphs with h vertices solved
when the algorithm solves MVC on a graph with n vertices. Observe
that, by basically the same analysis, Ph(n) < 20.465(n−h).

5.1 The basic technique

The running time can be reduced, at the cost of an exponential space
complexity, in the following way. Whenever we solve a subproblem
G′, we store the pair (G′,mvc(G′)) in a database. Before solving
any subproblem, we check whether its solution is already available in
the database. Observe that, since G has O(2n) induced subgraphs,
the database can be easily implemented such that each query takes
polynomial time in n.

There are
(
n
h

)
induced subgraphs of G with h vertices, which im-

plies Ph(n) ≤ (
n
h

)
since no subproblem is solved twice. Moreover the

upper bound Ph(n) ≤ 20.465(n−h) still holds. Altogether

Ph(n) ≤ min{20.465(n−h),

(
n

h

)
}.

By Stirling’s approximation, and balancing the two terms, one obtains
that, for each h, Ph(n) ≤ 20.465(n−αn) < 20.425 n, where α > 0.0865
satisfies

20.465(1−α) =
1

αα(1− α)1−α
.

As a consequence, the running time is O(20.425 n).

6Chen, Kanj and Jia [18] erroneously applied memorization to a MVC algorithm which
does not satisfy this property; this mistake was later corrected in the journal version of
their paper [19].

22

5.2 A refined approach

If the graph considered is disconnected, one can solve the vertex cover
problem corresponding to each connected component separately. More
precisely, if G1, G2, . . . , Gp are the connected components of G, then

mvc(G) =
p∑

i=1

mvc(Gi).

This, in combination with memorization, can help to further reduce
the running time bound, provided that the degree of the graph is
bounded by a small constant. In fact, the number of connected in-
duced subgraphs on h vertices of a graph of maximum degree d is
much smaller than

(
n
h

)
, provided that h is sufficiently small.

Theorem 12 ([59]). Let d ≥ 3 be a constant and G a graph of max-
imum degree d. Let G(h) be the set of all connected induced subgraphs
of G on h vertices. Then

|G(h)| = O
((

(d− 1)d−1

(d− 2)d−2

)h

nO(1)

)
.

Proof. The claim is trivially true when h = n. So let us assume h < n.
Consider a graph G′ ∈ G(h). Since G is connected, there must be one
edge incident to exactly one vertex of G′, say {u, r} ∈ E(G) with
r ∈ V (G′) and u ∈ V − V (G′).

Let T ′(r) be an arbitrary spanning tree of G′ rooted at r (there
must be one such tree since G′ is connected). Consider an arbitrary
ordering of the edges. This numbering allows to univocally associate
to T ′(r) a (d − 1)-ary tree T ′′ (where the position of the children of
each vertex is taken into account): the neighbors of each vertex w,
excluding the parent vertex (u if w = r) are ordered following the
ordering on the edges; an edge e which is not in T ′(r) gives an empty
subtree in T ′′ in the corresponding position.

Thus, given G and the ordering of the edges, there is a one-to-
many mapping between G(h) and the set of triples (v, e, T ′′), where v
is a vertex, e is an edge incident to v, and T ′′ is a (d−1)-ary tree. The
claim follows by recalling that the number of (d−1)-ary trees is upper
bounded by c(d− 1)d−1/(d− 2)d−2, for a small constant c [45].

For example, if the maximum degree of a graph is at most 4, one
obtains

Ph(n) = O(min{20.465(n−h), (27/4)h}),
and thus a running time of O(20.465(1−α)n) = O(20.398 n), where

20.465(1−α) = (27/4)α ⇔ α =
log(20.465)

log(20.465) + log(27/4)
> 0.1444.

23

This result can easily be extended to the case of arbitrary graphs, by
branching on the vertices of degree 5 or larger in a preliminary phase:

P (n) ≤
{

P (n− 1) + P (n− 6)
20.398 n

≤ max{20.362 n, 20.398 n}.

Observe that vertices of degree smaller than two are removed by
reduction rules. Thus, without loss of generality, we can consider
in the analysis only the connected induced subgraphs of minimum
degree 2: even better upper bounds are available on the number of
such graphs.

Theorem 13 ([60]). Let d ≥ 3 be a constant and G a graph of
maximum degree at most d. Let G(h, 2) be the set of connected induced
subgraphs of G with h vertices and minimum degree at least 2. Then
|G(h, 2)| = O(c(d)h nO(1)) where

c(d) = max
x∈X

{
2−x0

d−1∏

i=0

((
d− 1

i

)
/xi

)xi
}

,

and

X =

{
x = (x0, x1, . . . , xd−1) ∈ Rd

+ |
d−1∑

i=0

xi = 1 and
d−1∑

i=0

i xi = 1

}
.

Proof. Consider an arbitrary G′ ∈ G(h, 2). We consider the same
many-to-one mapping from the (d− 1)-ary trees to the spanning trees
of G′ as in the proof of Theorem 12, but this time we restrict our
attention to the spanning trees with the minimum possible number
of leaves `. Note that no two leaves of such spanning trees can be
adjacent (otherwise we could create a new spanning tree with one less
leaf, which contradicts the minimality assumption). Consider one such
tree T ′ and one of its leaves v. Let u = u(v) be a vertex adjacent to v
in G′ but not in T ′, selected arbitrarily. Note that u must exist since
the minimum degree is 2, and it must be an internal vertex of T ′ by
the minimality assumption. Let w be the lowest level ancestor of v in
T ′ of degree 3 or larger (w = r is no such vertex exists). We can obtain
a different tree T ′′ with the same number of leaves by adding to T ′ the
edge e(v) = {u, v} and by cutting the new cycle introduced at the edge
e′(v) = {w,w′} right below w in T ′. Note that there is a one-to-one
mapping between v and both e(v) and e′(v). As a consequence, this
replacement of edges can be performed simultaneously on an arbitrary
subset of the leaves of the original spanning tree without interference,
leading each time to a different spanning tree. This implies that there
are at least 2` distinct spanning trees with ` leaves.

24

Let us give a weight 2−h0 to each spanning tree of G′ with h0 ≥ `
leaves. The weighted sum of such trees is at least one (since there
are at least 2` trees of weight 2−`). As a consequence, the weighted
sum of all the spanning trees of the graphs in G(h, 2) is an upper
bound on |G(h, 2)|. The number of (d − 1)-ary trees with hi vertices
of out-degree i, i ∈ {0, 1, . . . , d− 1}, is upper bounded by

(
h

h0, h1, . . . , hd−1

)(
d−1∏

i=0

(
d− 1

i

)hi
)

,

where the first factor considers the possible ways to assign out-degrees
to vertices, and the second takes into account the positions of the
children of each vertex in the tree. Note that the (h0, h1, . . . , hd−1)
must belong to the following set

H = {(h0, h1, . . . , hd−1) ∈ Nd |
d−1∑

i=0

hi = h and
d−1∑

i=0

i hi = h− 1}.

With the notation xi = hi/h (and letting h tend to infinity),

∑

H

(
2−h0

(
h

h0, h1, . . . , hd−1

) d−1∏

i=0

(
d− 1

i

)hi
)

= O

∑

H

(
2−x0

d−1∏

i=0

((
d− 1

i

)
/xi

)xi
)h




= O

|H|

(
max
x∈X

{
2−x0

d−1∏

i=0

((
d− 1

i

)
/xi

)xi
})h


 .

The claim follows by observing that, for any constant d, |H| is poly-
nomially bounded.

For example if the maximum degree is 4, one obtains
|G(h, 2)| = O(5.5981h), corresponding to the case (x0, x1, x2, x3) '
(0.2440, 0.5359, 0.1962, 0.0239). As a consequence, the running time is
O(20.465(1−α)n) = O(20.392 n), where

α =
log(20.465)

log(20.465) + log(5.5981)
> 0.1576.

By the same arguments as above, this running time bound extends to
graphs of arbitrary degree. Based on this approach, Robson obtained
the currently fastestO(20.250 n) exponential space MVC algorithm [60].

Note that the maximization in Theorem 13 must be performed in
a very careful way. In fact, underestimating the value of c(d) would
lead to wrong running time bounds. The value of c(d) for some values
of d are given in Table 1.

25

Table 1 Upper bounds on c(d) for d ∈ {3, 4, . . . , 10}.

d c(d)
3 3.4143
4 5.5981
5 7.7654
6 9.9275
7 12.0871
8 14.2455
9 16.4031
10 18.5602

5.3 Memorization in parameterized algo-
rithms

The parameterized k-Vertex Cover problem asks to compute, given
a graph G and a positive integer k, a vertex cover of size k or to report
that no such set exists.

The algorithm described in the previous subsection can be easily
adapted to this task: it is sufficient to update k (besides G) at each
recursive call in order to keep track of the number of vertices added to
the vertex cover along each search path. Using the same notation as
in the previous section, but measuring the progress of the algorithm
in terms of k (instead of n), we obtain the following tight recurrence

P (k) ≤ P (k − 1) + P (k − 3) < 20.552 k,

which corresponds again to the case in which the algorithm branches
at a vertex of degree 3. The corresponding running time is O(20.552 k).

A linear problem kernel of size 2k for the k-Vertex Cover prob-
lem (not necessary planar) was obtained by Chen et al. [19]. This
result is based on graph-theoretical results of Nemhauser and Trotter
[51] and Buss and Goldsmith [13]. The running time of the algo-
rithm constructing such a kernel is O(kn + k3). Thus Tkernel(|I|, k) =
O(kn + k3).

By applying such a kernalization to each subproblem generated,
and using the basic memorization technique described in Section 5.1,
one obtains

Ph(k) ≤ min{20.552(k−h),

(
2k

2h

)
}.

As a consequence, the running time is O(20.552(1−α)k + kn) =

26

O(20.528 k + kn) where α > 0.044 satisfies

20.552(1−α) =
(

1
αα(1− α)1−α

)2

.

By applying a similar (slightly weaker) approach, Niedermeier and
Rossmanith [53] derived a O(20.360 k + kn) exponential space vertex
cover algorithm from their own O(20.370 k + kn) polynomial space al-
gorithm [52].

However, it is not clear a priori how to apply the refined ap-
proach of Section 5.2 (based on the number of connected induced
subgraphs) to the problem. In fact, consider a vertex cover instance
(G, k), where the connected components of G are G1, G2, . . . , Gp, with
p ≥ 2. A simple-minded idea is to branch on the subproblems (G1, k),
(G2, k),. . . , (Gp, k). Though this approach is correct in principle, it
leads to a bad running time bound (since the value of the argument
does not decrease in the subproblems).

Chandran and Grandoni [63] described a simple way to circumvent
this problem. Suppose the maximum degree is bounded by a constant
d. If a connected component contains a small (constant) number of
vertices, the corresponding vertex cover problem can be solved in con-
stant time by brute force. Thus, without loss of generality, we can
assume that each connected component contains at least dh + 1 ver-
tices (and hence at least dh edges), for some constant h to be fixed
later. Since each vertex of the vertex cover can cover at most d edges,
the size of the minimum vertex cover of each component is at least h.
As a consequence, we can branch on the subproblems (Gi, k−(p−1)h)
instead of (Gi, k). In fact, if mvc(Gi) > k − (p− 1)h for some i, then
mvc(G) > k. This leads to a new set of recurrences of the kind

P (k) ≤
p∑

i=1

P (k − (p− 1)h) ≤ 2k/h.

By choosing a sufficiently large (but still constant) h, we can ensure
that these recurrences are not tight (and thus the worst-case running
time is not affected by the branching on the connected components).
For example, imposing h = 3, one obtains P (k) < 20.334 k.

By combining this idea with the refined memorization technique
described in Section 5.2, one obtains for graphs of degree at most 4 a
running time O(20.552(1−α)k + kn) = O(20.497 k + kn) where

20.552(1−α) = 5.59812α ⇔ α =
log(20.552)

log(20.552) + 2 log(5.5981)
> 0.0999.

Also in this case the same running time bound extends to graphs
of arbitrary degree, provided that vertices of degree 5 or larger are

27

removed in a preliminary phase:

P (k) ≤
{

P (k − 1) + P (k − 5)
20.552 k

≤ max{20.406 k, 20.552 k}.

Using this approach, Chandran and Grandoni [63] derived a
O(20.350 k + kn) exponential space algorithm from the O(20.370 k + kn)
polynomial space algorithm in [52]. This is the currently fastest algo-
rithm for the parameterized k-Vertex Cover problem.7

Acknowledgement. Many thanks to Dimitrios M. Thilikos for his
helpful remarks and suggestions.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and
R. Niedermeier, Fixed parameter algorithms for dominating set
and related problems on planar graphs, Algorithmica, 33 (2002),
pp. 461–493.

[2] J. Alber, M. R. Fellows, and R. Niedermeier, Polynomial-
time data reduction for dominating set, Journal of the ACM, 51
(2004), pp. 363–384.

[3] J. Alber, H. Fernau, and R. Niedermeier, Graph separa-
tors: a parameterized view, J. Comput. System Sci., 67 (2003),
pp. 808–832.

[4] , Parameterized complexity: exponential speed-up for planar
graph problems, J. Algorithms, 52 (2004), pp. 26–56.

[5] M. Alekhnovich, E. Hirsch, and D. Itsykon, Exponential
lower bounds for the running time of DPLL algorithms on sat-
isfiable formulas, in Proceedings of the 31st International Col-
loquium on Automata, Languages and Programming (ICALP
2005), vol. 3142 of LNCS, Springer, Berlin, 2004, pp. 84–96.

[6] N. Alon, P. Seymour, and R. Thomas, A separator theorem
for nonplanar graphs, J. Amer. Math. Soc., 3 (1990), pp. 801–808.

[7] , Planar separators, SIAM J. Discrete Math., 7 (1994),
pp. 184–193.

[8] R. Beigel, Finding maximum independent sets in sparse and
general graphs, in Proceedings of the 10th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 1999), ACM and SIAM,
1999, pp. 856–857.

7Recently Chen et al. [21] announced O(1.2740k + kn) = O(20.350 k + kn)-time poly-
nomial space algorithm.

28

[9] R. Beigel and D. Eppstein, 3-coloring in time O(1.3289n),
Journal of Algorithms, 54 (2005), pp. 168–204.

[10] S. Bezrukov, R. Elsässer, B. Monien, R. Preis, and J.-
P. Tillich, New spectral lower bounds on the bisection width of
graphs, Theoretical Computer Science, 320 (2004), pp. 155–174.

[11] H. L. Bodlaender, A partial k-arboretum of graphs with
bounded treewidth, Theoretical Computer Science, 209 (1998),
pp. 1–45.

[12] T. Brueggemann and W. Kern, An improved deterministic
local search algorithm for 3-SAT, Theoretical Computer Science,
329 (2004), pp. 303–313.

[13] J. F. Buss and J. Goldsmith, Nondeterminism within P,
SIAM J. Comput., 22 (1993), pp. 560–572.

[14] J. M. Byskov, Enumerating maximal independent sets with ap-
plications to graph colouring, Operations Research Letters, 32
(2004), pp. 547–556.

[15] J. M. Byskov, Exact algorithms for graph colouring and exact
satisfiability, PhD thesis, University of Aarhus, Denmark, (Au-
gust, 2004).

[16] J. M. Byskov, Byskov and D. Eppstein, An algorithm for
enumerating maximal bipartite subgraphs, manuscript, (2004).

[17] J. Chen, H. Fernau, I. A. Kanj, and G. Xia, Parametric du-
ality and kernelization: Lower bounds and upper bounds on kernel
size, in Proceedings of the 22nd International Symposium on The-
oretical Aspects of Computer Science (STACS 2005), vol. 3403 of
LNCS, Springer, Berlin, 2005, pp. 269–280.

[18] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further ob-
servations and further improvements, in Proceedings of the 26th
Workshop on Graph Theoretic Concepts in Computer Science
(WG 1999), vol. 1665 of LNCS, Springer, Berlin, 1999, pp. 313–
324.

[19] , Vertex cover: further observations and further improve-
ments, Journal of Algorithms, 41 (2001), pp. 280–301.

[20] J. Chen, I. A. Kanj, and G. Xia, Labeled search trees and
amortized analysis: improved upper bounds for NP-hard problems,
in Proceedings of the 14th Annual International Symposium on
Algorithms and Computation (ISAAC 2003), vol. 2906 of LNCS,
Springer, Berlin, 2003, pp. 148–157.

[21] , Simplicity is beaty: Improved upper bounds for vertex cover,
manuscript, 2005.

29

[22] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan,
J. Kleinberg, C. Papadimitriou, P. Raghavan, and
U. Schöning, A deterministic (2 − 2/(k + 1))n algorithm for
k-SAT based on local search, Theoretical Computer Science, 289
(2002), pp. 69–83.

[23] V. G. Dĕıneko, B. Klinz, and G. J. Woeginger, Exact
algorithms for the Hamiltonian cycle problem in planar graphs,
Operations Research Letters, (2005), p. to appear.

[24] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M.
Thilikos, Subexponential parameterized algorithms on graphs of
bounded genus and H-minor-free graphs, Journal of the ACM,
(2004, to appear).

[25] , Fixed-parameter algorithms for (k, r)-center in planar
graphs and map graphs, ACM Trans. Algorithms, 1 (2005),
pp. 33–47.

[26] F. Dorn, E. Penninkx, H. Bodlaender, and F. V. Fomin,
Efficient exact algorithms on planar graphs: Exploiting sphere
cut branch decompositions, in Proceedings of the 13th Annual
European Symposium on Algorithms (ESA 2005), vol. 3669 of
LNCS, Springer, Berlin, 2005, pp. 95–106.

[27] F. Dorn and J. A. Telle, Two birds with one stone: the best of
branchwidth and treewidth with one algorithm, 2005. manuscript,
http://www.ii.uib.no/ telle/bib/DT.pdf.

[28] R. G. Downey and M. R. Fellows, Parameterized complex-
ity, Springer-Verlag, New York, 1999.

[29] D. Eppstein, Small maximal independent sets and faster exact
graph coloring, Journal of Graph Algorithms and Applications, 7
(2003), pp. 131–140.

[30] , The travelling salesman problem for cubic graphs, in Pro-
ceedings of the 8th Workshop on Algorithms and Data Struc-
tures (WADS 2003), vol. 2748 of LNCS, Springer, Berlin, 2003,
pp. 307–318.

[31] D. Eppstein, Quasiconvex analysis of backtracking algorithms,
in Proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2004), ACM and SIAM, 2004, pp. 781–790.

[32] F. V. Fomin, F. Grandoni, and D. Kratsch, Measure and
conquer: Domination – a case study, in Proceedings of the 32nd
International Colloquium on Automata, Languages and Program-
ming (ICALP 2005), vol. 3580 of LNCS, Springer, Berlin, 2005,
pp. 191–203.

30

[33] F. V. Fomin and K. Høie, Pathwidth of cubic graphs and ex-
act algorithms, Technical Report 298, Department of Informatics,
University of Bergen, Norway, 2005.

[34] F. V. Fomin, D. Kratsch, and I. Todinca, Exact algorithms
for treewidth and minimum fill-in, in Proceedings of the 31st In-
ternational Colloquium on Automata, Languages and Program-
ming (ICALP 2004), vol. 3142 of LNCS, Springer, Berlin, 2004,
pp. 568–580.

[35] F. V. Fomin, D. Kratsch, and G. J. Woeginger, Exact (ex-
ponential) algorithms for the dominating set problem, in Proceed-
ings of the 30th Workshop on Graph Theoretic Concepts in Com-
puter Science (WG 2004), vol. 3353 of LNCS, Springer, Berlin,
2004, pp. 245–256.

[36] F. V. Fomin and D. M. Thilikos, Dominating sets in planar
graphs: Branch-width and exponential speed-up, in 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003),
New York, 2003, ACM and SIAM, pp. 168–177.

[37] , A simple and fast approach for solving problems on pla-
nar graphs, in Proceedings of the 21st International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2004),
vol. 2996 of LNCS, Springer, Berlin, 2004, pp. 56–67.

[38] , New upper bounds on the decomposability of planar graphs,
Journal of Graph Theory, (2005, to appear).

[39] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Ross-
manith, Worst-case upper bounds for MAX-2-SAT with an appli-
cation to MAX-CUT, Discrete Applied Mathematics, 130 (2003),
pp. 139–155.

[40] F. Grandoni, A note on the complexity of minimum dominating
set, Journal of Discrete Algorithms, (to appear).

[41] Q.-P. Gu and H. Tamaki, Optimal branch-decomposition of
planar graphs in O(n3) time, in Proceedings of the 32nd In-
ternational Colloquium on Automata, Languages and Program-
ming (ICALP 2005), vol. 3580 of LNCS, Springer, Berlin, 2005,
pp. 373–384.

[42] M. Held and R. M. Karp, A dynamic programming approach
to sequencing problems, Journal of SIAM, 10 (1962), pp. 196–210.

[43] K. Iwama, Worst-case upper bounds for k-SAT, Bulletin of the
EATCS, 82 (2004), pp. 61–71.

[44] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Al-
gorithms based in treewidth of sparse graphs, in Proceedings of

31

the 31st International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2005), LNCS, Springer, Berlin, 2005,
to appear.

[45] D. E. Knuth, The art of computer programming, Addison-
Wesley, second ed., 1975. Vol. 1: Fundamental algorithms.

[46] A. Kojevnikov and A. S. Kulikov, A new approach for
proving upper bounds for MAX-2-SAT, 2005. manuscript,
http://logic.pdmi.ras.ru/ arist/papers.html.

[47] A. S. Kulikov and S. S. Fedin, Solution of the maximum
cut problem in time 2|E|/4, Rossĭıskaya Akademiya Nauk. Sankt-
Peterburgskoe Otdelenie. Matematicheskĭı Institut im. V. A.
Steklova. Zapiski Nauchnykh Seminarov (POMI), 293 (2002),
pp. 129–138, 183.

[48] R. J. Lipton and R. E. Tarjan, A separator theorem for pla-
nar graphs, SIAM J. Appl. Math., 36 (1979), pp. 177–189.

[49] , Applications of a planar separator theorem, SIAM J. Com-
put., 9 (1980), pp. 615–627.

[50] B. Monien and R. Preis, Upper bounds on the bisection width
of 3- and 4-regular graphs, in Proceedings of the 26th Interna-
tional Symposium on Mathematical Foundations of Computer
Science (MFCS 2001), vol. 2136 of LNCS, Springer, Berlin, 2001,
pp. 524–536.

[51] G. L. Nemhauser and L. E. Trotter, Jr., Properties of
vertex packing and independence system polyhedra, Math. Pro-
gramming, 6 (1974), pp. 48–61.

[52] R. Niedermeier and P. Rossmanith, Upper bounds for vertex
cover further improved, in Proceedings of the 16th International
Symposium on Theoretical Aspects of Computer Science (STACS
1999), vol. 1563 of LNCS, Springer, Berlin, 1999, pp. 561–570.

[53] , On efficient fixed-parameter algorithms for weighted vertex
cover, Journal of Algorithms, 47 (2003), pp. 63–77.

[54] P. Pudlak and R. Impaglazzio, A lower bound for DLL algo-
rithms for k-SAT, in Proceedings of the 11th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2000), ACM and SIAM,
2000, pp. 128–136.

[55] N. Robertson and P. D. Seymour, Graph minors. II. Al-
gorithmic aspects of tree-width, Journal of Algorithms, 7 (1986),
pp. 309–322.

[56] , Graph minors. X. Obstructions to tree-decomposition, J.
Combin. Theory Ser. B, 52 (1991), pp. 153–190.

32

[57] , Graph minors. XI. Circuits on a surface, J. Combin. The-
ory Ser. B, 60 (1994), pp. 72–106.

[58] N. Robertson, P. D. Seymour, and R. Thomas, Quickly
excluding a planar graph, J. Combin. Theory Ser. B, 62 (1994),
pp. 323–348.

[59] J. M. Robson, Algorithms for maximum independent sets, Jour-
nal of Algorithms, 7 (1986), pp. 425–440.

[60] , Finding a maximum independent
set in time O(2n/4), 2001. manuscript,
http://dept-info.labri.fr/ robson/mis/techrep.html.

[61] U. Schöning, Algorithmics in exponential time, in Proceedings
of the 22nd International Symposium on Theoretical Aspects of
Computer Science (STACS 2005), vol. 3404 of LNCS, Springer,
Berlin, 2005, pp. 36–43.

[62] P. D. Seymour and R. Thomas, Call routing and the rat-
catcher, Combinatorica, 14 (1994), pp. 217–241.

[63] L. Sunil Chandran and F. Grandoni, Refined memoriza-
tion for vertex cover, Information Processing Letters, 93 (2005),
pp. 125–131.

[64] R. Williams, A new algorithm for optimal constraint satisfac-
tion and its implications, in Proceedings of the 31st International
Colloquium on Automata, Languages and Programming (ICALP
2004), vol. 3142 of LNCS, Springer, Berlin, 2004, pp. 1227–1237.

[65] G. Woeginger, Exact algorithms for NP-hard problems: A
survey, in Combinatorial Optimization - Eureka, you shrink!,
vol. 2570 of LNCS, Springer-Verlag, Berlin, 2003, pp. 185–207.

[66] , Space and time complexity of exact algorithms: Some open
problems, in Proceedings of the 1st International Workshop on
Parameterized and Exact Computation (IWPEC 2004), vol. 3162
of LNCS, Springer-Verlag, Berlin, 2004, pp. 281–290.

33

