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Some New Twists to Problems Involving
the Gaussian Probability Integral

Marvin K. Simon, Fellow, IEEE and Dariush Divsalarrellow, IEEE

~ Abstract—Using an alternate form of the Gaussian probability The form in (2) is not readily obtainable by a change of
integral discovered a number of years ago, it is shown that the variables directly in (1). It can, however, be obtained by

solution to a number of previously considered communication 5 giraightforward change of variables of a standard known
problems can be simplified and, in some cases, made more accu-

rate (i.e., exact rather than bounded). These problems include Integral_ _mVOIV'ng Q(a:), in particular, [_10’ eq_. 3'_362(2}]'_

the evaluation of: 1) bit-error probability of uncoded phase- In addition to the advantage of having finite integration
shift keying (PSK) with Costas loop tracking; 2) word-error limits, the form in (2) has the argument of the function
probability of antipodal modulation in the presence of fading; Q(x), namely, z, contained in the integrand rather than in
3) bit-error probability of coded M-ary PSK (MPSK) over the  na ‘integration limits as is the case in (1). The latter has

memoryless fading channel with given channel-state information; int Hi imolicati ith d to simolifving th

4) conditional symbol-error probability of MPSK in the presence some "_1 eresting implications with regard 1o simp Ifylng _e

of carrier synchronization error; and 5) average error probability ~ €valuation of performance results related to communication
for the binary additive white Gaussian noise (AWGN) intersym- problems wherein the argument @§(x) is dependent on

bol interference channel. Also obtained is a generalization of this random system parameters and, thus, requires averaging over
new alternate form to the case of a two-dimensional Gaussian e statistics of these parameters. In what follows, we give
probability integral with arbitrary correlation which can be used . . .

to evaluate the symbol-error probability of MPSK with 1-Q SOM€ examples of such problems with the hope of stimulating
unbalance. further application of the result in (2).

Index Terms—Communication theory.
Il. ERROR PROBABILITY PERFORMANCE OF
UNCODED PSK WITH COSTAS LOOP TRACKING
I. INTRODUCTION

. It is well known (see [2] for example) that the bit-error
A NUMBER of years ago, Craig [1] cleverly showed thabrobability performance of an uncoded PSK system with an

the evaluation of average probability of error for the two-, : . o
dimensional additive white Gaussian noise (AWGN) channb perfect carrier reference derived from a Costas loop is given
could be considerably simplified by choosing the origin o
coordinates for each decision region as that defined by the /2
signal vector, as opposed to using a fixed coordinate system Py(E) = /
origin for all decision regions derived from theceived
vector. This shift in vector space coordinate systems allowgghere

the integrand of the two-dimensional integral describing the
conditional (on the transmitted signal) probability of error BE; ¢) = Q< /%Eolb cos </)> 4)

Py(E; ¢)p(¢) dep @)

—w/2

to be independent of the transmitted signal. A by-product of
Craig's work was a new definite integral form for the Gaussian
probability function. In particular, the Gaussian probabilitys the conditional (on the loop phase erdr bit-error prob-

function Q(x) ordinarily defined by ability and
> 1 Y 2 exp(peq cOS 2¢)
Qx:/ eXp<__>dy 1) = = PAPeq —n/2< <72 (5
W=, 7= 2 M) = gy EsesT2 O
could also now be defined (but only far> 0) by is the probability density function (pdf) of the phase error
1 ™2 z? in the form of a Tikhonov distribution. Also, in (4) and (5),
Q) = T /0 P\ "9 e 0 (2) E, /Ny is the bit-energy-to-noise ratio and
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is the equivalent loop signal-to-noise ratio (SNR) with= Ill. W ORD-ERROR PROBABILITY PERFORMANCE OF
P, T, /Ny (P; denotes the total received power dgfiddenotes BINARY ANTIPODAL MODULATION WITH INDEPENDENT
the bit time interval) and RAYLEIGH FADING AMPLITUDES—KNOWN
CHANNEL-STATE INFORMATION
5, = —2E/No (7) ider th ission of f two binary digital
L= 1+27Eb/No Consider the transmission of one of two binary digital

waveforms (words) over an AWGN channel which is also

is the so-called squaring loss assuming ideal integrate-aR§rturbed by Rayleigh fading. In particular, define the two
dump arm filters for the Costas loop. Substituting (4) and (§gnsmitted signals of duratioNI" s by
in (3) results in

N
1) =VP> dup(t —nT
e = [ 0\ cn ) W02 20) so(t) =P Y. duplt = 1)
) /2 No Tlo(peq) s1(t) =—so(t) (1)

wherep(¢) is a unit amplitude rectangular pulse of duration

which ordinarily is evaluated by numerical integration using s in the interval0 < ¢ < 7', andd,, takes on values-1

an appropriate subroutine f6)(z) which itself is an integral depending on the specific binary data pattern that represents
in accordance with its definition in (1). The evaluation of (g§1€ Signals. The additive Gaussian noig¢) has single-sided
can be simplified (?) a bit by using the form @{x) given in POWer spectral densitvg W/Hz, and assume that each bit

(2). In particular, we obtain the following development: (durationT’ s) of the signals is independently faded with an
identical Rayleigh distribution. As such, the received signal

Py(E) = 1 [assumingsy(t) was sent] is expressed as
b T 12l (0. )
™ IO(pe )
w2 - r(t) = so(t) + n(t) (12)
. / exp <— _b 5 C082</)>
—x/2 Jo Nosin“6 where
- exp(peqcos 2p)dOd¢ N
_ 1 $0(t) = VP Y padnp(t — nT) (13)
m21o(Peq) n=1
/2 /2 E
b A : : : .
. / exp {—m(l + cos 2(/))} and p = (p1, p2, -+, pn) is an independently identically
—m/2 /0 0 S distributed (i.i.d.) sequence with normalized{(p?} = 1)
- exp(peq cos 2¢)dl d¢ Rayleigh pdf
B 1 /2 E, )
T (o)) Jo TP\ 2N, sin? 6 plpi) = 2pi exp(—p;),  0<pi < oo (14)
e E, It is straightforward to show that i lete knowl
) _ . 26 L dobdb ghtforward to show that, assuming complete knowl-
/_77/2 eXp{( 2Ny sin® 6 +pq> cos d)} ¢ edge of the channel fading state, the optimum (maxinaum
1 7/2 E, posterior) receiver implements the decision rule
- 272 1o(peq) /0 P <_ 2Nj sin’ 9) nT

N
@ E Choosesg(t) if Prndn / r(t)dt >0
. / exp { <—4b2 + pe(I) cos <I>} d® db. ol) ; (n—=1)T )
2Ny sin” @ .
) otherwise choose;(¢). (15)

. A N nT X . . .
Finally, recognizing that the integral b is in the form of SINC& X = 37,y pudn [(,_1yp 7(t) dt is Gaussian with
a modified Bessel function of the first kind, we get the fingionditional mean and variance

—T

desired result N NoT N
_ D 2 _ i¥oi 2
1 /2 Eb E{X|80(t)} - PT z_:l P> Var{X} - 2 z_:l Pn
P(E) =2 / P <_ 9N, sin? 9) - "~
0 E 0 then it is easily shown that the conditional average word-error
Iy <—4b2 + peq> probability based on the above decision rule is given by
2Ny sin” @ 6. (10)

IO(peq)

The form of (10) is interesting in that tlg(x) function needed

in the integrand of (8) has been replaced by a modified Bessel
function with an argument related to both the equivalent loofhe unconditional error probability is then obtained by aver-
SNR (p.4) and the detection SNREE, /No). aging (16) over theV identical pdf's in (14) resulting in the

(16)

P(E|p) =Q<
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N-fold integral short, the bit-error performance was derived in the form of

a union—Chernoff bound where the Chernoff bound portion

o0 oo o0 applied to the pairwise error probability and the union bound

= /0 /0 e /0 Q portion converted the pairwise error probability to average bit-

error probability using the transfer function bound method. We

“p(p1)p(p2) -+ plpn) dp1dpz --- dpn. (17)  shall show here that using the alternate formgf;) given in

. . L (2) enables one to eliminate the need for Chernoff bounding
e I o, e pmise o prababi e, e esuing o o

" the average bit-error probability is strictly a union (transfer

B <1 function) bound
Y/ S Following [3], we denote a coded MPSK symbol sequence
N of length N by®
2
/2 <Z p") PT/NO X = (371, T, .’IZN) (20)
/ exp n=l 5
0 sin” 6 where the kth element ofx, namely, xx, represents the

transmitted MPSK symbol at timeand is a nonlinear function
of the state of the encodey, and theb information bitsuy

N
. H 2p; exp(—p2) | do dpy dps --- dpx at its mp_ut, i.e.,r), = f(s’“’. u_k). The FransVuon from state
by to state is defined by a similar nonlinear relation, namely,

LR PT/N, N si41 = g(sk, ux). Corresponding to the transmission xf
:_/ {/ 2pexp {—PQ <1 + — 0):|dp} dfé the channel outputs the sequence
0 0 si

s n%é
(18) Yy = (y17 Y2, 00, yN) (21)
which, when simplified, becomes where thekth element ofy, namely, y, representing the
N channel output at timé, is given by
/2 _
P(E) = 1 / P}T/N dé. (19) Yk = PrTx + N (22)
w
0 1+ in? 90 As before,p;. is the normalized fading amplitude for ttigh

transmission and,, is a zero-mean complex Gaussian random
For the Rayleigh-fading case as considered here, evaluatigfiiaple with variancer? per dimension.

of (17) could be simplified by recognizing that thé-fold  For the case of known channel-state information, it was
average can be looked upon as a single average over the gfswn in [3] that using the maximum-likelihood decision
squared random varlabE 1 P Thus, in this instance, (19) metric for i.i.d. fading per transmission, the conditional (on the
may not be that much simpler than (17) although the formghannel-state information) pairwise error probability, namely,

is still an integral with finite limits whereas the latter wouldhe probability of decidingk when indeedk was transmitted,
become an integral over a semi-infinite interval. However, i8 given by

the more general i.i.d. fading case where no simple expression

exists for the pdf ofzn L P2, the technique of applying (2) . 1 N
to the Gaussian integral in (17) will always, regardless of the P(x—xlp)=0Q % Z P7lEn — Tn? (23)
fading pdf, reduce to a single integral of some functiorfof nen

raised to theVth power analogous to (19). where7 is the set of alln for which 2, # .

Using the form ofQ)(z) given in (2), we can express (23) as
IV. BIT-ERROR PROBABILITY OF CODED MPSK SGNALING

OVER A MEMORYLESS FADING CHANNEL— /2 Z prlEn = znl?
KNOWN CHANNEL-STATE INFORMATION P(x — %|p) = 1 / exp 4 =<7 s do
The previous example can be considerably generalized to T Jo 80% sin” ¢
yield similar benefits. In particular, consider the transmission
of coded (MPSK) signals over an AWGN channel which 21 /ﬂ/Q[D(e)]dz(x,fc) do (24)
is also perturbed by fadiny.If the fading is independent T Jo

from transmission to transmission then the resulting channerl1ere
is memoryless. An example of the performance evaluation

for such an example was considered in [3] where the error D(6) A exp{_ 1 } (25)
correction coding was specifically trellis coding. The reader 852 sin? 6

is referred to that paper for the details of the analysis. In, _ _ _ o
A similar method using a different representatiort{fr ) but with infinite
3Note that we are not restricting the fading statistics to be Rayleiginge is discussed in [7].
distributed. In fact, later we shall show that simple results are obtainable®We assume that the MPSK symbols are normalized such|that= 1,
for Rician as well as Rayleigh fading. i.e., the signals lie on the perimeter of the unit circle.
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and required in order to apply the transfer function bound has
P2(x, %) A Z 2| — 22 (26) been ellmlnated and instead rgplaced by a single integration
’ = nlsmn " on the variabled after evaluating the transfer functiom
nen

this sense, the form of)(z) in (2) allows manipulations
represents the square of the weighted Euclidean distardén to those afforded by the Chernoff bound but without

between the two symbol sequences. Alternately the necessity of invoking a boundctually, this observation
L can be made directly from (2) by noting that the integrand

Px—%|p) == / H [D(g)]ﬂilfvn—wnlz dg. (27) has its maximum value whe# = 7 /2. Thus, replacing the
T Joo Gén integrand by its maximum value we get the well-known upper

L S
The exact form of (24) is to be compared with the Chernoﬁ]Ound onQ(z), namely,Q(z) < 3 exp(~2?/2), which is in

e form of a Chernoff bound.

bound given by [3, eq. (20)], namely The average om,, required in (31) is easily evaluated for

P(x — %|p) < DE %) (28) Rayleigh- and Rician-fading channels. In particular, using the
results in [3] and lettingl /202 = E,/Ny, we have for the
where Rayleigh pdf of (14)
A 1 _
D= o {_802 } (29) [D(O)]aln =P = % (35)
Finally, the unconditional pairwise error probability is given 1+ sin? @
b
Y where as in [3]
R
Pax—%)= [ (D@ B2 P, A 2T aNe (36)
w2
- 1 / [D(6)] & 2”40 (30) Similarly, for the Rician channel characterized by the pdf
T Jo
where the overbar denotes statistical averaging over the vector ~ 2(Pi) =2pi(1 + K) exp[-K — P(1+K)]
random variable. Furthermore, since thg,’s are i.i.d., then - Io[20:/ K(1+ K)), 0<p; <o (37)
the average op can be partitioned with the result that
©/2 we have
- =1 [ [ DEOFEET e @)
T ' [D(B)A 1P
Using the pair-state method discussed in [3], the exact 1+ K e K (LK By 5in® 0
pairwise error probability of (30) or (31) can be convertedtoa ~ By D() K/ ) (39)
union bound on the average bit-error probability. In particular, 1+ K+ sinZ 0
a pair-state transition diagram [4] is constructed in terms of
the pair state which clearly simplifies to (36) fof{ = 0. Note that for binary
A A PSK (BPSK) (i.e.,M = 2) we haveg,, = 4 independent oh
Sk = (51, 8%),  Un = (ug, W) (32) and, thus, for the Rayleigh case, for example, (31) simplifies
6
where &, 1 are, respectively, the estimates of the state (t)?
the decoder and the information symbol. Using the definition d
of x,, and rewriting (26) as 1 /2 1
P, %)= D P2 f(sn, W) = f(Bn, W) mJo | Es/No
-2
ncn sin” 6
= Z §%(Sn, Un) (33) whered is the cardinality ofy, i.e., the Hamming distance
nen betweenx andx. If the two code words are equal and opposite,
then, by analogy with results in [3] and [4], the averagiend = N and (39) agrees with (19). .
bit-error probability is upper bounded by Application of (34) for specific trellis codes can be easily

carried out using the examples given in [3].

1 (™% 14d
Py(E) < p bl D), Ill1=1d8 (34
0 V. CONDITIONAL SyMBOL ERROR PROBABILITY OF MPSK
where T[D(6), I] is the transfer function of the pair- IN THE PRESENCE OFCARRIER SYNCHRONIZATION ERROR

state transition diagram whose branch labels contain theConsider a coherent MPSK system with a carrier tracking

82(Sns Un)lpn=1 i .,
Mﬁn o)l for the no fading case and loop that produces a phase erpr The conditional (ongp)
[D(6)]#*(S=:Un)"" for the fading case. Once again note that the

Chernoff bound on the pairwise error probability previously €A similar result was obtained in [8].
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symbol-error probability of such a system has been previously
computed in [2, Appendix B] and is given by

P(E; ¢) = MJ\; 1_ ierf[,/]]i—z sin (% +</>)

- ierf [\/ff:z sin (% - d))]

1 vV Es/Nosin(w/M+¢) )
- ﬁ /0 exp(—y°~)

-erf [y cot (% + d))} dy

1 v Es/Nosin(w/M—¢) y
- ﬁ /0 exp(—y~)

erf [y cot (% - ¢)} dy. (40)

We now show that this expression can be simplified using tr';ie L. Geometry for correct decision region far
alternate form ofQ(z) given in (2). 9= y 9 '

The vector representation of an MPSK system consists of
M points uniformly distributed on a circle of radiugE,. Combining (44) with (43) and simplifying using appropriate
For this system, the geometry for the correct decision regichanges of variables gives the final desired result for the
associated with the transmitted signal posgt= —/E, is conditional symbol-error probability, namely
illustrated in Fig. 1 where, as suggested in [1], the origin of
coordinates has been shifted to the signal point. Also note tH3{E; ¢)
for convenience we have rotated the coordinate systent by . /-(1\4—1)77/1\4—45

radians. Following the approach in [1] (also see [5, Ch. 3, —
Section 3.2.8]), we can write the probability of an error given 2
that signalsy is transmitted as

exp

B Fo sin? @

E, sin? (% + d))] o
0

2 (T
m—(7/M+¢) hd + i (I=m/tee exp _E s (M d)) dd
P(E; ¢lso) = /0 de /R pr,o(r, 0)dr or Jo No  sin? @
0 e (45)
+/ d9/ pr, ol(r, 8)dr (41)
—a+ (7 /M—¢) Ry

) ) i . where we have also taken note of the fact that from the sym-
where [t is the distance from the signal point to the boundapyetry of the signal constellation?(E; ¢|s;) is independent

point £ (in general, a function o) and pr, e(r, #) is the of ;. Note that no error functions are needed to evaluate (45)
bivariate Gaussian pdf that represents the noise vector in pataf 17 = 2 (BPSK), (45) simplifies to

coordinates, that is

r 2 1 /77/2 < E, cos? d))
9= _r ; P(E; == —= = ") 4o
pr,o(r, 0) Ve exp< No)’ 0<r<oco (42 (B ¢)|m=2 =l PN s e
which is clearly independent & Substituting (42) into (41) 1 e <_& cos? </>> 4D
and performing the integration angives the simplification 21 Jrj2—o Ny sin? @
(M—D)x/M~¢ 1 R? 1 [T/ E, cos? ¢
) _ - 1 + = -= do.
PE; @lso) /0 21 eXp( No) d9 21 )2 exp( No sin? ‘1>>
0 2 (46)
+/ 2i exp <—%) df. (43)
_ _ _ m
_ [(A_l Lym/M] _¢ 0 Making the changes of variables = —(¢ — 7/2), 8 =
Applying the law of sines to triangleQO’E and OO'E’, we & — /2 in the second and third integrals of (46), respectively,
get we see that these terms cancel and thus
mw
sin{-— +¢ 1 (/2 E, cos?
Rx—l = 7(rM ) P(E; ¢)|lm=2 == / exp <—— 3 d)) e
E; Sin(—+</)+9) T Jo No sin” @

: MW =Q 1/2—EISCOS(7) 47
Ry sin (M - ¢) (a4) B Ny

VE, :sin(%ﬂ/)—e)'

which is the well-known result used in Example 1.
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VI. EVALUATION OF A WELL-KNOWN INTEGRAL It is to be emphasized that (54) is not readily obtainable by
Consider the integral any straightforward change of variables in (48).
C
I = / ’ exp(—a222 tbz)erfczdz (48) VIl. AVERAGE ERROR PROBABILITY FOR THE BINARY
Ci AWGN INTERSYMBOL INTERFERENCE(ISI) CHANNEL

where erfcz is the complementary error function with ar- |t js well known [9] that maximum-likelihood demodulation
gumentz and Cy, C; are constants which, in many casegs pinary equiprobable data transmitted over an AWGN chan-
of interest, are either zero or infinite. This integral occurg,g| with ISI of finite memoryL can be based on 2! state

for example, in problems where average error probabilifye|jis where the states are determined by the precebiagl
performance is to be computed in the presence of Gaussigfla symbols. The algorithm for selecting the most probable
interference other than that produced by the additive nOi%%quence is the well known maximum-likelihood decoding

For the special case @f; = —oo, (> = oo this integral can (yjterbi) algorithm. The evaluation of the performance of such
be evaluated in closed form as [6, Appendix 1, Eq. (A.1.108)] gemodulator has in the past been expressed in terms of a
g 9 9 union—Chernoff (upper) bound on the average error probability

/_Oo exp(—a°z" £ bz) erfc z dz [9]. As in Example 4, we shall once again show how the

N b2 +5 Chernoff portion of the bound can be eliminated by instead

=, &P <@)erfc[ﬁ}- (49) using an exact expression based on (2) for the pairwise error
_ ava ~ probability which, in this example, also corresponds to the

For any other pair of value§’;, C; a closed form for this probanility of choosing a particular incorrect path in the trellis

integral has not been found. Although we too cannot find @ther than the correct one.

closed form for the general case of (48), we are, however,consider a binary data source characterized by the impulse

able to convert the integral into one of fixed finite limits whicksequence

therefore simplifies the case where one of the two constants

C1, Cs is infinite, e.g.,Cy = 0, Cy = . d(t) = Z dy6(t — kT) (55)
Rewriting (48) in terms of the Gaussian probability integral

and using (2), we get heme
s where, as befordd, } is a binary i.i.d. sequence taking on val-
=2 / Q(@) exp(_a%«? + bz) dz ues=1. Before transmission over the AWGN channel, the data
C1 source is passed through a transmit filter with impulse response

2 [T/2 pCe 1 h(t). Thus, the transmitted message (signal) is described b
:—/ / exp[—<a2+ — )zQ:I:bz}dde. ®) ge (signal) y
T Jo Cy sin

(50) z(t)= Y dph(t—kT) (56)
Completing the square of the argument of the exponential h=m
gives and the corresponding received signalig) = z(t) + n(t).
x/2 5 Assuming a maximume-likelihood decision rule, then it has
I:z/ exp [_bT} been shown [9] that the pairwise probabilify(x — X),
T Jo 242(0) namely, the probability of choosing the incorrect transmitted

sequence [uniform samples oft) spaced byl" s] x when in

C.
2 b
'/C1 eXp {_ [A(e)z + 2A(9):| }dz 40 (51)  fact x was transmitted, is given by

where g N-I L-1
1 Px—x%x)=0Q — e2ho +2 exer_ih;
A(0) = y/a? + — (52) No k;\ » ;
111
Performing the integration on gives the final desired result (57)
1 (™2 Jr B2 where {h;} are the ISI coefficients defined by
™ Jo  A0) [ QAQ(Q)} a [~ .
, b hey 2 [ ME-RDAE-IT) = by (69)
-qerfe|C A(0) £ ——| — erfc|CoA(0) £ ——| ¢ df. -
{atiouto 35 - arla®+ i ) |
(53) and {e; } are the error sequences defined by
. : B 1, dp=1,d,=-1
As an example, consider the special case whigre- 0, Cy = . A L(dy — d )= 0 — g (59)
0. Then, sinceerfc(oo) = 0, we have Bl ) =90, dp=dy
. -1, dpy=-1,d, =1
I= / exp(—a*2® + bz) erfc z dz Rather than use a Chernoff bound on (57) (as was done in
0

/2 ) [9]), one can again use the form @f(x) in (2) to write the
_t i exp {_ b :|erfc {i b } do. (54) Pairwise error probability as given in (60), shown at the bottom
T Jo  A(9) 242(0) 24(0) of the next page, which, as before, becomes the Chernoff
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N2 cosw,t
1 .7
F -[o(.)dt X
Choose
6= -
By é
¥@) o=tan-' L | Corresponding .
X to
m.i"la - ﬁ.l
1 1
7= | (®)ar
Fho |5
2r(i—1
2 sin(,t - ¢,) /3,:%) 12,...M

Fig. 2. Optimum MPSK receiver.

bound by letting the integrand take on its maximum valuguadrature. In particular, consider the optimum MPSK receiver
corresponding t@ = /2. Thus, following steps identical to illustrated in Fig. 2 where thé and() demodulation reference
those in [9, Ch. 4], we arrive at a union bound on the averagignals are given by

bit-error probability analogous to the union—Chernoff bound

given by [9, eq. (4.9.23)], namely re(t) = V2coswet ra(t) = —V2sin(wet = ¢u)  (62)
=/2 N—1 whereg,, represents the degree of unbalance, i.e., the deviation
1 .
B(FE) < Z w(e) — / H 2w( ) from perfect phase quadrature. In response to a transmitted
3 MPSK signal
L—1
1 ) _ 5P
. exp{_m <5kh0+2 ;Ekgk—zhz>} de S(t) = 2P COS(wct + enl) (63)

(61) whered,,, takes on valueg; = 27 (i—1)/M,i=1, 2, , M
with equal probabilityl /A/, the I and @) integrate- and dump
wherew(e) is the weight (number of nonzero components) afutput signals become
the sequence with components as in (59). The first sum in

(61) represents averaging over all possible error sequences. X = ~
The evaluation of (61) can be carried out by the transfer X — \/— cos 0 ‘+ / V3 cos w.t dt
function bound approach analogous to that used in Section IV. " T c
Y
VIIl. SymBoL ERROR PROBABILITY OF MPSK WITH v = \/— Sm? N
I—) UNBALANCE (DETECTION IN THE PRESENCE OF N
CORRELATED QUADRATURE NOISE COMPONENTY - N ~
Consider a coherent MPSK system witk() carrier de- + b /T n(t)[=v2 sin (wet — )] dt ~ (64)
modulation reference signals that are not in perfect phase VT Jo

1 /2 1 N-1 L1
P X)=— - 2ho + 2 Er_ihi
oot [ ot £ (w25

=—N i=1

|

1 w/2 N—-1 1 L-1
0 r 0

k=—N =1
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where E; = PT is the energy per MPSK symbol. The A
I and @) noisesNx, Ny in (64) are zero-mean correlated
Gaussian random variables, each with varianée= Ny/2
and correlation

E{NxNy} = o? sin ¢, 2 po?. (65)

Analogous to the MPSK decision problem with perféet)
demodulation, the calculation of the symbol-error probability
in the presence of—() unbalance can be determined from the
geometry of Fig. 3. Assuming, as before, that the transmitted
signal issqg = —vE, (i.e., §,, = —=), then the evaluation
can be carried out either assuming the p@iras the center of
coordinates (the classical approach) or by the simpler approach
of using the pointO’ (the location of the tip of the signal
vector) as the center of coordinates. In what follows, we shall
assume the latter. Since for the assumed transmitted signal we _—"
have from (64) and (65) that = —/E,, Y = —p/E,, then
defining the quantities

Fig. 3. Geometry for correct decision region fay.

S2VX2472= E,(1+ p?) Applying the law of sines to triangle®O’E and OO'E’
Ve in Fig. 3, we get
¢, = tan™t = =tan"! p (66) T
R, _ sin (M + d)s)
we have, by analogy with (41), that the probability of error E,(1+4 p?) sin (i + 9)
is given by M
. w
(M=1)x/M oo Ry _ S1n (M — ¢ (69)
P(E: dulso) = | a [ ol 0)dr VEGT?  sin(2-0)
+ /és do /Oo pr o(r, 0)dr (67) Combining (69) with (68) and simplifying using appropriate
—[(M—=1)x/M] R changes of variables gives the final desired result for the

symbol-error probability in the presence 6£Q unbalance,

where, as beforeR is the distance from the signal point to theyamely, as in (70), shown at the bottom of the page, where
boundary pointt' (in general, a function of) andpr,o(r, ) we have again made use of the symmetry of the signal

is the bivariate Gaussian pdf that represents the correlatgghstellation to note thaP(E; ¢,|s;) is independent of.

noise vector in polar coordinates, that is The importance of the form in (70) is that the dependence

) 5 ] on E;/Np is still in the argument of the exponential of the
pro(r )= exp {_7_ <1_p—sm29>} integrand and, thus, it is straightforward to extend this result
5 ? 2 ’
7TN0\/1—p2 NO 1_p
0<r<oo, —# <6< 7 (68) invoking Chernoff bounds.

1 (M—-1)7/M—¢, 1 — p2
P(E; ¢) = / Vi-o
0

S o 1+psin[2(<1>+%)}

e <_%<1+p2> {1+osinfp(e+ )]} (5 +¢5)> -

1-—p2 sin? @

1 /<M—1>w/M+¢s Ny

2r Jo 1—pSin[2(¢+%)}
— psi P T in? 1_(7)5
(- (g b))

p = sin by, $s =tan"! p = tan"!(sin ¢,) (70)

to, for example, coded modulation without the necessity of
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0.150

0.125 -

0.100 -

f(@;2,p)

0075

0.050 -

0.025 -

0.000 T
1.75

4.0E-06

3.0E-06 -

f(@;5,p)
2.0E-06 -

1.0E-06 -

0.0E+00 T
0 0.25

(b)
Fig. 4. The integrand of the parametric Gaussian probability integrak (& 2 and (b)x = 5.

An interesting relation occurs if we specialize the result isecond integral in the region/2 < & < 7/2 + ¢, cancel,

(70) to the BPSK case. Letting/ = 2 in (70), we get then (71) simplifies to the desired result
1 /2= /1= p2 1 [7/2 /1= p2
P(E§ (/)u):_ — = P(E; (j)u):— S Sl —
2 Jo 1—psin 29 27 Jo 1—psin 20
E; 1 [1—psin 2@]} { E5< 1 )[l—psin 2@]}
. - dd . - dd
P { No <1 - p2) sin® @ R I R sin® @
1 7T/2+¢5 1 A2 1 77/2 1 _ 2
L V=2 LA VIR
2 Jo 14 psin 20 2 Jo 1+ psin 2
E; 1 (14 psin 2@]} { E5< 1 )[l—l-psin 2@]}
. - dd . - dd.
P { No <1 - p2) sin® @ B I P sin? @
(71) (72)

where we have further noted thais? ¢, = 1/(1+p?). Since Since the quadrature signal and noise compongnasid Ny
the first integral in the regiom/2 — ¢; < ® < 7/2 and the have no effect on the detection of BPSK (note that this is true
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even if Ny and Nx are correlated), then the average error
probability is also given by

209

TABLE |
EvaLUATION OF Q(x) By (74)

P(E)=Q< iﬁ)) 73

p
independent ofp,, or, equivalently,p. Hence, equating (72)

and (73), we arrive at a parametric (in termspdfexpression 32
for the Gaussian probability integral which is a generalizatioro

of (2), namely ot
1 77/2 1 _ 2 0.5
Qz) = — / A 06
2 Jo 1—psin 20 0.7
x? 1 [1 — p sin 29] o
. —_— dd 0.9
eXP{ 2 <1—p2> sin? @ }

1 77/2 1 _ 2 x=5

R VY

2r Jo 1+ psin 20

2 1 1 in 2¢ b
cexpd =L ) Lresin 2901,

2\1-p sin® ¢ g-g
02

71'/2
/0 J(®; 2, p) de. (74) 2

Fig. 4 is an illustration of f(®; =, p) versus ¢ for two gz

values ofx and values ofp in the range 0-1. Note that for
p = 0 the function is monotonically increasing . As p 08
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N=100 N=500
Qx) (Eq. (74) Qx) (exact) Qx) (Eq. (74 Q(x) (exact)
0.2309E-01 0.2275E-01 0.2282E-01 0.2275E-01
0.2308E-01 0.2275E-01 0.2282E-01 0.2275E-01
0.2306E-01 0.2275E-01 0.2281E-01 0.2275E-01
0.2301E-01 0.2275E-01 0.2280E-01 0.2275E-01
0.2296E-01 0.2275E-01 0.2279E-01 0.2275E-01
0.2290E-01 0.2275E-01 0.2278E-01 0.2275E-01
0.2284E-01 0.2275E-01 0.2277E-01 0.2275E-01
0.2279E-01 0.2275E-01 0.2276E-01 0.2275E-01
0.2276E-01 0.2275E-01 0.2275E-01 0.2275E-01
0.2275E-01 0.2275E-01 0.2275E-01 0.2275E-01
N=100 N=500
Q(x) (Eq. (74) Q(x) (exact) Q(x) (Eq. (74)) Q(x) (exact)
0.2960E-06 0.2867E-06 0.2885E-06 0.2867E-06
0.2948E-06 0.2867E-06 0.2883E-06 0.2867E-06
0.2921E-06 0.2867E-06 0.2877E-06 0.2867E-06
0.2892E-06 0.2867E-06 0.2872E-06 0.2867E-06
0.2874E-06 0.2867E-06 0.2868E-06 0.2867E-06
0.2868E-06 0.2867E-06 0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06 0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06 0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06 0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06 0.2867E-06 0.2867E-06

increases away from zero, the functigt®; z, p) exhibits a _%?
peak and eventually approaches a narrow distribution in the
neighborhood oft = 7/4 as p approaches unity. For fixed

z, however, the area under the various curves for differefifen using a geometry analogous to Fig. 3, it is straightforward
to show thatQ)(z1, y1; p) can be expressed as

values ofp is constant and depends only on the value: o
accordance with (74). As such, the valuegotan be used to
influence the accuracy of the integral evaluation. To illustrate

1 /2~
this point, Table | shows the evaluation of the integral in (74) Q(z1, y1; p) = =— /
0

as a function ofp using a simple Riemann sum &f points
for the same two values af as in Fig. 4 and several values
of N. Also shown are the corresponding exact value® of)
as determined from standard mathematical tables.

IX. THE TwoO-DIMENSIONAL GAUSSIAN
PROBABILITY INTEGRAL—A NEW FORM

The normalized (unit variance) two-dimensional Gaussian
probability integral is defined by

Qarmin=——Fm— [ [
T1, Yi; p) =
2/ 1=p? Jay Jy

2% +y? = 2pxy
- exp {— 21 =2 }da: dy. (75)
Rewriting (75) as in (76), shown at the bottom of the page,
we see that we can interpret this integral as the probability
that a signal vectos = (—z1, —y1) received in correlated
unit variance Gaussian noise falls in the upper right quadrant
of the (z, y) plane. Defining
S = \/a:% + y%,

¢s = tan

-1 4 (77)
x

V1—p?

27 1— psin 26
52 1 — psin 260 cos? ¢,
cexpq —— 5 — dé
2 (1-p%) sin’é
+i ‘?55 /1_p2
2r Jo 1—psin 26
o { ?21—psin2981n2¢5}d9
cexp d —
P 2 (1-p%) sin?6

(78a)

which, using (78a), simplifies still further to

1 x/2—tan™ " (y1/21)
Q(xlv Y1 p) - % /0

V1-—p?
1—psin 26
2?2 1— psin 20
2 (1-p?)sin” @

1 tan™ " (y1 /71) 1— 52
L / _Vi=p
27 Jo 1— psin 26

2 -
y? 1— psin 20 }
. - ————df. (78b
exp{ 2 (1—p?)sin® 60 (78b)

(76)

1 [e@) [e@)
Q($17y17P)—m/0 /0 eXP{—

(240" + @+ 90)" = 20w + 1)y +y1) } dody

2(1-p?)
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For the special case ¢f = 0, (78b) simplifies to [8] E. K. Hall and S. G. Wilson, “Design and analysis of turbo codes
on Rayleigh fading channels/EEE J. Select. Areas Commutio be
published.

Qz1, y15 0) = Q(x1)Q(y1) [9] A. J. Viterbi and J. K. OmuraPRrinciples of Digital Communication and

1 v /2—tan”t (y1 /21) 2 Coding. New York: McGraw-Hill, 1979.
- = exp{ — T3 de [10] I. S. Gradshteyn and I. M. RyzhikTable of Integrals, Series, and
21 Jo 2 ¢in? @ Products New York: Academic, 1980.
-1
1 tan™ " (y1/71) 2
— exp _.y_12 do
2 Jo 2 sin” 6

(79)

Marvin K. Simon (S'69-M'66-SM'75-F'78) is
currently a Senior Research Engineer with the Jet
Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA, where for the last 29 years he
has performed research as applied to the design of
NASA'’s deep-space and near-earth missions, which

In addition, whenz; = y; = z, we have

/4 2
Qv 0) = Q@) = | exp{—2”“"—}d9.

sin? 0

(80) - has resulted in the issuance of nine patents and 21
. . NASA Technical Briefs. Prior to 1998 he also held
Comparing (80) Wlt_h (2) we see that to co.njput.e Hyplare a joint appointment with the Electrical Engineer-
of the one-dimensional Gaussian probability integral, o ing Department, California Institute of Technology,

integrates the same integrand but only over the first half 0 where for six years he was responsible for teaching
duate-level courses on random processes and digital communications. He

! LY . . ar
the domain. The relation in (80) can also be directly Obtam%ﬁ(nown as an internationally acclaimed authority on digital communications
from comparing the symbol-error probability for quadratureith particular emphasis on modulation and demodulation, synchroniza-

PSK (QPSK) name|y [5 eq (4 132)] tion techniques for space, satellite, and radio communications, trellis-coded
! ! AT modulation, spread spectrum and multiple access communications, and com-

munication over fading channels. He has published more than 120 papers

E, 5 E, on the above subjects and is the coauthor of several textbooks. His work
P(E)=2Q — | -Q (81) has also appeared in the textboDkep Space Telecommunications Systems
No No Engineering(New York: Plenum, 1984) and he is co-author of a chapter

entitled “Spread Spectrum Communications,” which has appeared in several

with the general expression obtained for the symbol-errp?”dboo"s' He is currently preparing a text dealing with a unified approach
0 the performance analysis of digital communication over generalized fading

probability of MPSK using Craig’s method [5, eq. (3.119)]channels.

namely Dr. Simon is the co-recipient of the 1988 Prize Paper Award in Com-
munications of the |IEEE AANSACTIONS ON VEHICULAR TECHNOLOGY for
his work on trellis-coded differential detection systems. He is a Fellow of

. ™
1 (M-1)r/M E, sin? — the IAE, the winner of a NASA Exceptional Service Medal and a NASA
P(E) == / exp _—21\4 df. (82) Exceptional Engineering Achievement Medal, and, most recently, the winner
T Jo Ny sin” 6 of the IEEE Edwin H. Armstrong Achievement Award, all in recognition of

outstanding contributions to the field of digital communications and leadership
) ) ] ) ) in advancing this discipline.
Letting M = 4 in (82) and equating with (81) gives, after
simplification, the equivalent of (80).
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