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SOME NEW ZARISKI PAIRS OF SEXTIC CURVES
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Abstract. A topological invariant of reduced sextic curves with simple singularities is
given. Twelve new Zariski pairs of sextic curves are determined. Each pair consists of two
curves with non-isomorphic fundamental groups.

Introduction. Two plane curves C1, C2 of the same degree form a Zariski pair if
C1, C2 have the same combinatorial data (cf. [1, 2]) and the pairs (P 2, C1) and (P 2, C2)

are not homeomorphic. A brief account of the history of Zariski pairs can be found in [4]. It
is remarkable that the degrees of all known Zariski pairs are at least six.

If the fundamental groups of the complements of C1, C2 in P 2 are not isomorphic, then
the Zariski pair C1, C2 is called a strong Zariski pair, otherwise it is a weak Zariski pair. The
first strong Zariski pair was discovered in 1929 by Zariski in [16] which is the beginning of
the long history of the study of this subject.

LetC be a reduced sextic curve with simple singularities only and letX be the K3 surface
obtained from the double cover branched over C. Let NC be the orthogonal complement in
H 2(X,Z) of the sublattice generated by all irreducible components of the inverse image of
C in X. Shimada shows in [11] that NC is a topological invariant of the pair (P 2, C). When
C is a generic member of its equisingular deformation class, NC is the transcendental lattice
of the K3 surface X. Let γX be the discriminant form of the Picard lattice of X. For some
special maximizing sextics there are two non-isomorphic positive definite lattices of rank two
whose discriminant forms are isomorphic to −γX. By Shimada’s theorem they are Zariski
pairs, called arithmetic Zariski pairs. Shimada was able to enumerate all such pairs [10, 11].

For any reduced sextic with simple singularities, not necessarily maximizing, let M be
the primitive hull of the sublattice generated by all irreducible components of the inverse
image of C in X. By Shimada’s theorem and Nikulin’s lattice theory, the discriminant group
A of M is a topological invariant of (P 2, C), which is weaker than NC. In [12] and [15] this
invariant was used to obtain a series of Zariski pairs and Zariski triplets of reduced sextics.

In this paper we show that there are Zariski pairs of sextic curves which cannot be de-
tected by either invariants as mentioned before. We prove that the discriminant group of the
primitive hull of the sublattice generated by the −2 curves arising from the simple singulari-
ties is a topological invariant of the sextic curve. Twelve new Zariski pairs are found by using
this invariant.
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Then we compute the fundamental groups of the complements of the curves of one pair
in details. It turns out that all these twelve Zariski pairs are strong Zariski pairs.

We are grateful to the referee for many useful comments and suggestions. He showed us
a lattice theoretic technique by which Theorem 2.1 has been improved significantly. We have
abandoned our tedious numerical computations of the fundamental groups of D7 +A11 +A1

after the referee suggested Degtyarev’s method of dessin d’enfants as an alternative. The proof
of Theorem 1.1 was rewritten upon referee’s suggestions.

Notations and conventions:
C denotes the field of complex numbers.
Zn = Z/nZ for a natural number n.
π1(X) denotes the fundamental group of a connected manifoldX.
The even unimodular lattice of signature (3, 19) is denoted by Λ, called the K3 lattice.

The cohomology group Hi(X,Z) is abbreviated as Hi(X).

1. A topological invariant of sextic curves with simple singularities. Let Y be a
compact complex nonsingular algebraic surface. A reduced curve C on Y is called an even
curve if there is a line bundle L on Y such that O(C) ∼= L⊗2. Such a line bundle L is
uniquely determined by C if H 1(Y ; Z/2Z) = 0. It is well known that there is a double cover
f : X → Y of a compact surface X over Y branched over C.

THEOREM 1.1. Let Y1, Y2 be two compact complex nonsingular surfaces such that
H 1(Y1; Z2) = H 1(Y1; Z2) = 0. Let C1, C2 be reduced even curves in Y1, Y2, respectively.
Let ψ : (Y1, C1) → (Y2, C2) be a homeomorphism. Let fi : Xi → Yi be the double cover
branched over Ci for i = 1, 2. Then there is a homeomorphism φ : (X1, f

−1
1 (C1)) →

(X2, f
−1
2 (C2)) such that f2φ = ψf1.

PROOF. For i = 1, 2, the double cover fi : Xi\f−1
i (Ci) → Yi\Ci , as a Z2 bundle,

is determined by its characteristic class ωi ∈ H 1(Yi\Ci,Z2). Let σi : H 1(Yi\Ci,Z2) →
H3(Yi, Ci; Z2) be the isomorphism from Poincaré-Lefschetz duality.

The pair (Yi , Ci) yields an exact sequence

0 → H3(Yi , Ci; Z2)
∂i→ H2(Ci; Z2) → H2(Yi; Z2) ,

due to H3(Yi; Z2) ∼= H 1(Yi; Z2) = 0. Since fi is ramified at Ci, we have ∂iσi(ωi) = [Ci ],
where [Ci ] is the fundamental class in H2(Ci; Z2). Since the isomorphism from H2(C1,Z2)

to H2(C2,Z2) induced by ψ carries [C1] to [C2], the class σ1(ω1) is carried to σ2(ω2). Let
ψ∗ : H 1(Y2\C2; Z2) → H 1(Y1\C1; Z2) be the isomorphism induced by ψ. Then ψ∗(ω2) =
ω1. This implies that there is an isomorphism φ : X1\f−1

1 (C1) → X2\f−1
2 (C2) such that

f2φ = ψf1.

Extend φ to the whole X1 by φ(q) = f−1
2 ψf1(q) for every q ∈ f−1

1 (C1). Then φ is the
desired homeomorphism. �

Let C be a reduced sextic curve with simple singularities only. Let π : X0 → P 2 be the
double cover branched over C. Let ρ : X → X0 be the minimal resolution of singularities.
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Then X is a K3 surface. Let E be the set of all exceptional −2 curves of ρ. Denote E =⋃
Ei∈E Ei. Let M be the sublattice of H 2(X,Z) generated by all members of E . Denote the

primitive hull of M in H 2(X) by M̃.

THEOREM 1.2. The orthogonal complement M⊥ of M in H 2(X) is a topological in-
variant of the pair (P 2, C).

PROOF. (after [5]) Let U = X\E. It follows from Theorem 1.1 that the homeomor-
phism class of U is determined by that of (P 2, C). Denote the inclusion map from U into X
by j.

Let R be the kernel of the lattice H2(U) under the intersection pairing, i.e.,

R = {u ∈ H2(U); ux = 0 for all x ∈ H2(U)} .
Then the lattice H2(U)/R is a topological invariant of (P 2, C).

There is a commutative diagram

H2(U)
j∗ ��

∼=
��

H2(X)

∼=
��

H 2(X,E) �� H 2(X)
r �� H 2(E) ,

where the vertical maps are isomorphisms from Poincaré-Lefschetz duality and the second
row is exact. Hence

Im(j∗) ∼= Ker(r) = M⊥ .
Since the homomorphism j∗ preserves the intersection pairing and the cup product in

H 2(X) is nondegenerate on M, we obtain Ker(j∗) = R. Therefore M⊥ ∼= H2(U)/R, which
is a topological invariant of (P 2, C). �

For any lattice L, the group disc(L) = L∨/L is called the discriminant group of L,
where L∨ is the dual lattice of L.

COROLLARY 1.3. The discriminant group disc(M̃) is a topological invariant of
(P 2, C).

PROOF. This is because disc(M̃) is isomorphic to disc(M⊥) by [7, 1.6.1] and the latter
is a topological invariant by Theorem 1.2 �

FIGURE 1. Dynkin graph of D7 + A11 +A1.
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2. Zariski pairs of sextic curves. Using Corollary 1.3 we found twelve new Zariski
pairs of sextic curves. Each of them consists of a conic and a quartic component. Among
these pairs, one has Milnor number 19 and the other eleven are its perturbations.

THEOREM 2.1. There are twelve Zariski pairs with singularity types

D7 + A11 + A1, D5 + A11 + 2A1, D7 + A7 + A3 + A1, A11 + 2A3 + A1 ,

A11 + A3 + 3A1, D5 + A7 + A3 + 2A1, D7 + 3A3 + A1, A7 + 3A3 + A1 ,

A7 + 2A3 + 3A1, D5 + 3A3 + 2A1, 5A3 + A1, 4A3 + 3A1 .

Every curve in these pairs is the union of an irreducible conic and an irreducible quartic
curve.

PROOF. Let L denote the negative definite lattice of the Dynkin graphD7 +A11 +A1.

The 19 generators of L are labeled according to Figure 1.
For any subset S of {e4, e6, e11, e15}, letDS be the Dynkin subgraph obtained by deleting

the vertices in S. ThenDS is one of the types as listed. LetL′ be the root lattice corresponding
to DS. Let V = Q ⊗Z (Zλ⊕ L′), in which λ2 = 2. Let

u1 = e1 + 3e2 + 2e3 + 2e5 + 2e7

4
+

2∑
i=0

3e4i+8 + 2e4i+9 + e4i+10

4
∈ V

and

u2 = u1 + λ+ e19

2
.

It can be verified that u2
i ∈ 2Z and uiw ∈ Z for any w ∈ Zλ⊕L′ for i = 1, 2. Let Pi be

the lattice generated by Zλ⊕ L′ and ui. Then P1 and P2 are overlattices of Zλ ⊕ L′. Using
Nikulin’s criterion for lattice embeddings [7, 1.12.2], one verifies that there are primitive
embeddings σ1 : P1 → Λ and σ2 : P2 → Λ from P1 and P2 into the K3 lattice Λ. Moreover,
it is not hard to check that P1 and P2 satisfy the two conditions in Urabe’s theorem [13]. It
follows that there are reduced sextic curves C1 and C2 with DS as its type of singularities
such that the Picard lattices of the corresponding K3 surfaces are isomorphic to P1 and P2,
respectively. We can use the algorithm in [14] or [12] to verify that the configurations of
C1 and C2 are the same, i.e., the union of an irreducible quartic and a conic. The divisor
classes representing the strict transforms of the conic components are shown in Table 1 and
the configurations are shown in Table 2. Two local components of A2p−1 are labeled I and II.
The smooth local component of D2p+1 is labeled I and the other local component II.

The primitive hull of σ1(L
′) is isomorphic to L′ + Zu1 and that of σ2(L

′) is isomorphic
to L′ + 2Zu1. Hence

| disc(σ̃1(L′))| < | disc(σ̃2(L′))| .
It follows from Corollary 1.3 that (P 2, C1) is not homeomorphic to (P 2, C2). �

REMARK 2.2. In the case of D7 +A11 +A1, let X1 and X2 be the K3 surfaces corre-
sponding to C1 and C2, respectively. It is verified that the transcendental lattices of both X1
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singularities strict transform of the conic component

D7 +A11 + A1 λ− e1+e2+2e3+2e4+2e5+2e6+2e7
2 −

∑6
i=1 iei+7+∑5

i=1 ie19−i
2

D5 +A11 + 2A1 λ− e1+e2+2e3+2e4+2e5
2 −

∑6
i=1 iei+7+∑5

i=1 ie19−i
2

D7 +A7 + A3 + A1 λ− e1+e2+2e3+2e4+2e5+2e6+2e7
2 −

∑4
i=1 iei+7+∑3

i=1 ie15−i
2 − e16+2e17+e18

2

A11 + 2A3 +A1 λ− e1+2e2+e3
2 −

∑6
i=1 iei+7+∑5

i=1 ie19−i
2

A11 + A3 + 3A1 λ− e1+2e2+e3
2 −

∑6
i=1 iei+7+∑5

i=1 ie19−i
2

D5 +A7 + A3 + 2A1 λ− e1+e2+2e3+2e4+2e5
2 −

∑4
i=1 iei+7+∑3

i=1 ie15−i
2 − e16+2e17+e18

2

D7 + 3A3 + A1 λ− e1+e2+2e3+2e4+2e5+2e6+2e7
2 − e8+2e9+e10

2 − e12+2e13+e14
2 − e16+2e17+e18

2

A7 + 3A3 +A1 λ− e1+2e2+e3
2 −

∑4
i=1 iei+7+∑3

i=1 ie15−i
2 − e16+2e17+e18

2

A7 + 2A3 + 3A1 λ− e1+2e2+e3
2 −

∑4
i=1 iei+7+∑3

i=1 ie15−i
2 − e16+2e17+e18

2

D5 + 3A3 + 2A1 λ− e1+e2+2e3+2e4+2e5
2 − e8+2e9+e10

2 − e12+2e13+e14
2 − e16+2e17+e18

2

5A3 + A1 λ− e1+2e2+e3
2 − e8+2e9+e10

2 − e12+2e13+e14
2 − e16+2e17+e18

2

4A3 + 3A1 λ− e1+2e2+e3
2 − e8+2e9+e10

2 − e12+2e13+e14
2 − e16+2e17+e18

2

TABLE 1. The strict transforms of the conic components.

and X2 are isomorphic to the one represented by the matrix
(

6 0
0 2

)
. Hence Shimada’s criterion

[11] cannot tell whether {C1, C2} is a Zariski pair.

REMARK 2.3. For the eight Dynkin graphs

D7 + A7 + A3 + A1,D5 + A7 + A3 + 2A1,D7 + 3A3 + A1, A7 + 3A3 + A1 ,

A7 + 2A3 + 3A1,D5 + 3A3 + 2A1, 5A3 + A1, 4A3 + 3A1

appearing in Theorem 2.1, there are Zariski pairs which can be detected by Shimada’s invari-
ant [12], [15]. However, each curve in these pairs has an irreducible quartic and two lines as
its components.

In order to compute the equations of these two curves, we need to determine the splitting
curves of low degrees.

For a reduced sextic curve C with simple singularities, let π : X0 → P 2 be the double
cover branched over C and let ρ : X → X0 be the minimal resolution of singularities. Let
f = πρ. A curve E in X is called an exceptional −2 curve if ρ(E) is a point. Let λ be
the divisor class of the pull back of a line on P 2. An irreducible curve D on P 2 is called a
splitting curve if it is not a component of C and there is an irreducible curve D1 on X such
that the restriction of f on D1 is a birational morphism onto D. Such a curve D1 is called a
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singularities configuration

D7 + A11 +A1

D7 A11 A1
conic I I

quartic II II I,II

D5 + A11 + 2A1

D5 A11 A1 A1
conic I I

quartic II II I,II I,II

D7 + A7 + A3 +A1

D7 A7 A3 A1
conic I I I

quartic II II II I,II

A11 + 2A3 + A1

A11 A3 A3 A1
conic I I

quarticic II II I,II I,II

A11 +A3 + 3A1

A11 A3 A1 A1 A1
conic I I

quartic II II I,II I,II I,II

D5 + A7 + A3 + 2A1

D5 A7 A3 A1 A1
conic I I I

quartic II II II I,II I,II

D7 + 3A3 +A1

D7 A3 A3 A3 A1
conic I I I I

quartic II II II II I,II

A7 + 3A3 + A1

A7 A3 A3 A3 A1
conic I I I

quartic II II II I,II I,II

A7 + 2A3 + 3A1

A7 A3 A3 A1 A1 A1
conic I I I

quartic II II II I,II I,II I,II

D5 + 3A3 + 2A1

D5 A3 A3 A3 A1 A1
conic I I I I

quartic II II II II I,II I,II

5A3 +A1

A3 A3 A3 A3 A3 A1
conic I I I I

quartic II II II II I,II I,II

4A3 + 3A1

A3 A3 A3 A3 A1 A1 A1
conic I I I I

quartic II II II II I,II I,II I,II

TABLE 2. Configurations of Zariski pairs.

lift of D. A splitting curve D is called a Z-splitting curve if the divisor class of D1 is in the
primitive hull of the sublattice generated by λ and all exceptional −2 curves.

Assume that C is lattice-generic, i.e., the Picard number of X is equal to µC + 1, where
µC is the Milnor number of C.

Let Sing(C) be the set of all singularities of C. For each p ∈ Sing(C), let Ep be the set of
−2 curves inX mapped to p under f. Let LC be the set of x ∈ Pic(X) satisfying the following
conditions:

(1) xλ = 1, x2 = −2 and xE ≥ 0 for every exceptional −2 curve in X;
(2)

∑
E∈Ep xE ≤ 1 for every p ∈ Sing(C).
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Let L be the subgroup of Pic(X) generated by all exceptional −2 curves and let L+
be the subset of L consisting of effective divisors. The involution of X over P 2 induces an
involution ιC on Pic(X).

Let CC be the set of x ∈ Pic(X) satisfying the following conditions:
(1) xλ = 2, x2 = −2 and xE ≥ 0 for every exceptional −2 curve in X;
(2)

∑
E∈Ep xE ≤ 1 for every p ∈ Sing(C);

(3) x /∈ Zλ⊕ L and ιC(x) �= x;
(4) x − l1 − l2 /∈ L+ for any l1, l2 ∈ LC.
Shimada [12, 5.18] gave the following numerical criterion for splitting conics.

PROPOSITION 2.4. A divisor class x ∈ Pic(X) is in CC if and only if x = [D] such
that D is a lift of a splitting conic.

LEMMA 2.5. Let (C1, C2) be a Zariski pair in Theorem 2.1. The curve C1 has a Z-
splitting conic curve. The curve C2 has no Z-splitting conic curve but has a family of Z-
splitting cubic curves.

PROOF. For each pair in Theorem 2.1, let v be the element of Q ⊗ (Zλ⊕L′) shown in
Table 3. It follows from v − u1 ∈ L′ that v ∈ P1. An easy calculation shows that v ∈ CC1 .

Hence v is the class of a lift of a splitting conic by Proposition 2.4. The intersection numbers of

singularities −2 divisor class v

D7 +A11 + A1 λ− 7e1+5e2+10e3+8e4+6e5+4e6+2e7
4 −

∑9
i=1 iei+7+6e17+3e18

4

D5 +A11 + 2A1 λ− 3e1+5e2+6e3+4e4+2e5
4 − e7

2 −
∑9
i=1 iei+7+6e17+3e18

4

D7 +A7 +A3 + A1 λ− 7e1+5e2+10e3+8e4+6e5+4e6+2e7
4 −

∑6
i=1 iei+7+3e14

4 − e16+2e17+3e18
4

A11 + 2A3 +A1 λ− 3e1+e2+2e3
4 − 2e5+4e6+2e7

4 −
∑9
i=1 iei+7+6e17+3e18

4

A11 + A3 + 3A1 λ− 3e1+e2+2e3
4 − e5+e7

2 −
∑9
i=1 iei+7+6e17+3e18

4

D5 +A7 +A3 + 2A1 λ− 3e1+5e2+6e3+4e4+2e5
4 − e7

2 −
∑6
i=1 iei+7+3e14

4 − e16+2e17+3e18
4

D7 + 3A3 + A1 λ− 7e1+5e2+10e3+8e4+6e5+4e6+2e7
4 −

∑3
i=1 iei+7

4 −
∑3
i=1 iei+11

4 −
∑3
i=1 iei+15

4

A7 + 3A3 + A1 λ− 3e1+e2+2e3
4 − 2e5+4e6+2e7

4 −
∑6
i=1 iei+7+3e14

4 − e16+2e17+3e18
4

A7 + 2A3 + 3A1 λ− 3e1+e2+2e3
4 − e5+e7

2 −
∑6
i=1 iei+7+3e14

4 − e16+2e17+3e18
4

D5 + 3A3 + 2A1 λ− 3e1+5e2+6e3+4e4+2e5
4 − e7

2 −
∑3
i=1 iei+7

4 −
∑3
i=1 iei+11

4 −
∑3
i=1 iei+15

4

5A3 + A1 λ− 3e1+e2+2e3
4 − 2e5+4e6+2e7

4 −
∑3
i=1 iei+7

4 −
∑3
i=1 iei+11

4 −
∑3
i=1 iei+15

4

4A3 + 3A1 λ− 3e1+e2+2e3
4 − e5+e7

2 −
∑3
i=1 iei+7

4 −
∑3
i=1 iei+11

4 −
∑3
i=1 iei+15

4

TABLE 3. Special divisor classes of splitting conics.
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the corresponding splitting conic with the conic and quartic components of C1 are determined
by the intersection numbers of v with e′is. They are shown in Table 4.

Assume that there is some v ∈ CC2 . The condition vλ = 2 implies that v is in the lattice
M generated by 2u1 and Zλ⊕L′. It can be verified that the only divisor class v ∈ M satisfying
the conditions v2 = −2 , xE ≥ 0 for every exceptional −2 curve E and

∑
E∈Ep xE ≤ 1 for

every p ∈ Sing(C2) is the strict transform of the conic component of C2, as displayed in
Table 1. This would imply that ιC2(v) = v. Hence CC2 is empty. By Proposition 2.4 C2 has
no splitting conic.

singularities intersection indices

D7 + A11 +A1

D7 A11 A1
conic 1 3 0
quartic 5 3 0

D5 + A11 + 2A1

D5 A11 A1 A1
conic 1 3 0 0
quartic 3 3 2 0

D7 + A7 +A3 +A1

D7 A7 A3 A1
conic 1 2 1 0
quartic 5 2 1 0

A11 + 2A3 + A1

A11 A3 A3 A1
conic 3 1 0 0
quartic 3 1 4 0

A11 + A3 + 3A1

A11 A3 A1 A1 A1
conic 3 1 0 0 0
quartic 3 1 2 2 0

D5 + A7 +A3 + 2A1

D5 A7 A3 A1 A1
conic 1 2 1 0 0
quartic 3 2 1 2 0

D7 + 3A3 +A1

D7 A3 A3 A3 A1
conic 1 1 1 1 0
quartic 5 1 1 1 0

A7 + 3A3 + A1

A7 A3 A3 A3 A1
conic 2 1 1 0 0
quartic 2 1 1 4 0

A7 + 2A3 + 3A1

A7 A3 A3 A1 A1 A1
conic 2 1 1 0 0 0
quartic 2 1 1 2 2 0

D5 + 3A3 + 2A1

D5 A3 A3 A3 A1 A1
conic 1 1 1 1 0 0
quartic 3 1 1 1 2 0

5A3 + A1

A3 A3 A3 A3 A3 A1
conic 1 1 1 1 0 0
quartic 1 1 1 1 4 0

4A3 + 3A1

A3 A3 A3 A3 A1 A1 A1
conic 1 1 1 1 0 0 0
quartic 1 1 1 1 2 2 0

TABLE 4. Intersection indices of the splitting conic.
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Let w = v + λ/2 − e19/2. Then w ∈ P2, w
2 = 0 and wei ≥ 0 for each ei /∈ S. The

divisor class w determines a pencil of elliptic curves on the K3 surface X2, whose image in
P 2 is a pencil of splitting cubic curves (compare [12, 5.20]). �

REMARK 2.6. Every member of the cubic pencil has even intersection number with
C2 at every point. This phenomenon is refered to as “porism”.

Once we have an equation of sextic curve with its configuration to be one of those in
Theorem 2.1, we can use Lemma 2.5 to tell if it is C1 or C2.

To conclude this section, we compute the equations of C1 and C2 for D7 + A11 + A1.

For this purpose we compute the moduli space M of sextics of D7 + A11 with a conic
and a quartic as the irreducible components. Let X = C +Q be such a curve with deg(C) =
2, deg(Q) = 4. Then C ∩ Q = {p, q}, where p and q are the D7 point and A11 point of
X, respectively. Under the homogeneous coordinates (x0 : x1 : x2) assign (1 : 0 : 0) and
(0 : 1 : 0) to p and q , respectively. Choose the tangent line of C at q to be the line x0 = 0
and the line with the maximal intersection number with Q at the point p as the line x1 = 0.
Then the three points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) are fixed. Under the affine coordinates
x = x1/x0, y = x2/x0, the equation of C and Q are

x + λy +my2 = 0

and

x2 − 2µxy2 + µ2y4 + ax3 + bx2y + cx2y2 + dxy3 = 0 ,

respectively, in which the coefficients λ,µ,m, a, b, c, d are to be determined.
It is easy to see that both λ andµ are nonzero. After a linear change x1 �→ sx1, x2 �→ tx2

for suitable s, t ∈ C∗ of the homogeneous coordinates, we may assume that λ = µ = 1.
Let C′ and Q′ be the conic and quartic curves defined by

(1) x + y +my2 = 0

and

(2) x2 − 2xy2 + y4 + ax3 + bx2y + cx2y2 + dxy3 = 0 ,

respectively. For generic values of m, a, b, c, d, the point (1 : 0 : 0) is a D7 point of C′ ∪Q′
and the point (0 : 1 : 0) is an A3 point. We need to find four conditions on m, a, b, c, d to
make (0 : 1 : 0) an A11 point.

Under the affine coordinatesw = x0/x1, y = x2/x1, the equations (1) and (2) become

(3) w + wy +my2 = 0

and

(4) w2 − 2y2w + y4 + aw + byw + cy2 + dy3 = 0 ,

respectively. Solving (3) yields

w = − my2

1 + y
.
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Plug this into (4) and we obtain y2(λ0 + λ1y + λ2y
2 + λ3y

3 + λ4y
4) = 0 where

λ0 = am− c ,

λ1 = am+ bm− 2c − d ,

λ2 = −m2 − 2m− 1 + bm− c − 2d ,

λ3 = −2m− 2 − d ,

λ4 = −1 .

In order that (C′,Q′)q = 6, all λi(0 ≤ i ≤ 3) must be zero. The system of equations
λ0 = λ1 = λ2 = 0 in terms of b, c, d has a unique solution{

b = −m2 − 2m− 1 + am

m
, c = am, d = −(m+ 1)2

}
.

Thus λ3 becomesm2 − 1, which has two zeros 1 and −1.
Hence the moduli space M has two connected components corresponding to the values

−1 and 1 of m. The equations are

(5) f (x, y) = (x + y − y2)(x2 − 2xy2 + y4 + ax3 + ax2y − ax2y2) = 0

and

(6) f (x, y) = (x + y + y2)(x2 − 2xy2 + y4 + ax3 − 4x2y + ax2y + ax2y2 − 4xy3) ,

respectively.

REMARK 2.7. The equations (5) and (6) can be used for the explicit computation of
the fundamental groups (see Remark 3.5) of lattice-generic sextics of typeD7 + A11.

In order to obtain an extra A1 point, the parameter a must take special values, which are
found by solving the system of equations f (x, y) = 0, ∂f (x, y)/∂x = 0, ∂f (x, y)/∂y = 0
in three variables a, x, y. The nontrivial solutions are a = −27, x = −1/18, y = 1/6 for (5)
and a = −1, x = −9/2, y = 3/2 for (6). Thus the equations for D7 + A11 + A1 are

(7) (x + y − y2)(−x2 + 2xy2 − y4 + 27x3 + 27x2y − 27x2y2) = 0

and

(8) (x + y + y2)(−x2 + 2xy2 − y4 + x3 + 5x2y + x2y2 + 4xy3) = 0 .

By Lemma 2.5 exactly one of these two sextic curves has a Z-splitting conic D. Since
(C,D)q = 3 and (D,Q)p > 2, the equation of D is x − y2 = 0 for (7) and x + y2 = 0 for
(8), respectively. Since (D,Q)p = 5 for (7) and (D,Q)p = 4 for (8), the curve defined by
(7) has a Z-splitting conic. Hence (7) and (8) are the equations of C1 and C2, respectively.

3. Fundamental groups. In this section we show in detail that the Zariski pair of
sextic curves with singularities D7 + A11 + A1 is a strong Zariski pair. As a matter of fact,
all other Zariski pairs in Theorem 2.1 are strong Zariski pairs, whose fundamental groups are
the same as those of D7 + A11 + A1.
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The computation of the fundamental group of the complement of a plane curve needs
Zariski-Van Kampen theorem more or less. One can do the computation directly on P 2, like
in [6] or [8, 9] and many other papers. We have used this classical method to compute our
curves. It is tedious. For sextic curves with at least one singularity of triple point, Degtyarev
developed an elegant method by using Grothendieck’s dessin d’enfants [3, 4], which makes
the computation almost combinatorial in nature. We will use this method to compute the
fundamental groups of the Zariski pair D7 + A11 + A1.

Let C be a simple sextic curve in P 2 with one singularity p of typeD7 and some double
points. Let X = P 2\C. Denote the fundamental group of X by π1(X). Let σ0 : Y0 → P 2 be
the blowing up of P 2 at the D7 point p and let E0 = σ−1

0 (p). Let C0 be the proper transform
of C in Y0. Then X is isomorphic to Y0\(E0 ∪ C0). There are two intersection points p1 and
p2 of E0 and C0 such that (C0, E0)pi = i for i = 1, 2 and p2 is a singularity of type A2.

For simplicity we assume that π−1
0 (p1)∩C0 contains three distinct points, in which π0 is the

projection from Y0 to E0.

Let Ȳ be the surface obtained by performing two elementary transformations with centers
at p1 and p2. Let Ē and C̄ be the proper transforms of E0 and C0 in Ȳ respectively. Then
Ȳ is the Hirzebruch surface Σ3 with Ē as its minimal section. The projection from Ȳ to Ē
is denoted by π. Let Fi be the inverse image of the point pi in Ȳ for i = 1, 2. By abuse of
nation, the points π(Fi) in Ē is also denoted by pi for i = 1, 2.

The curve C̄ does not meet Ē and (C̄, F ) = 3 for any fiber F. This curve is called a
trigonal curve. LetX′ = Ȳ\(Ē∪C̄). ThenX′ is no longer homeomorphic toX. In Degtyarev’s
theory, the fundamental group ofX can still be computed by braid monodromies in (Ȳ , C̄∪Ē).
Here we briefly explain a restrictive version of the algorithm without proof. For details and
the full version, see [3].

A general fiber F of Ȳ over a point z ∈ Ē meets C̄ ∪ Ē at four distinct points. Let j (z)
be the j -invariant of these four points. Then j gives a rational map from P 1 ∼= Ē to A1,

which determines a morphism j : P 1 → P 1 = C ∪ {∞}. We always assume that j is not a
constant map, i.e., the trigonal curve C̄ is not isotrivial. Let [0, 1] denote the closed interval
from 0 to 1 on the complex plane. The graph Sk = j−1([0, 1]) on P 1 is called the skeleton
of the trigonal curve C̄. The points in j−1(0) are called •-vertices while those in j−1(1) are
called ◦-vertices.

For our purpose we restrict the discussion to the case that C̄ satisfies the following con-
ditions:

(1) all singularities of C̄ are of type An and the intersection number (C̄, F )q is at most
2 for any fiber F and any point q ∈ Ȳ ;

(2) the map j has no critical values other than 0, 1,∞;
(3) the pull-back j∗(0) of 0 as a divisor on P 1 is 3(D1 +· · ·+Dm),whereD1, . . . ,Dm

are distinct points;
(4) the pull-back j∗(1) of 1 is 2(E1 + · · · +Er), where E1, . . . , Er are distinct points.
Such a trigonal curve is a maximal trigonal curve in the sense of [3].
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Under this assumption, the skeleton Sk (called generic skeleton in [3]) satisfies the fol-
lowing conditions:

(1) every edge of Sk is smooth;
(2) every •-vertex has valency 3, i.e., there are exactly three edges issuing from it;
(3) every ◦-vertex has valency 2.
Due to the last condition, in the drawing of skeleton the ◦-vertices can be omitted. It is

understood that such a vertex is hidden in the middle of every edge connecting two •-vertices.
This makes Sk look like an ordinary graph.

The skeleton Sk is a connected closed graph in P 1, of which each open region contains
exactly one point z such that j (z) = ∞ and the intersection number of π−1(z) with C̄ at one
point q is equal to two. The type of this point is Ar and r + 1 happens to be the number of
corners of the corresponding closed region. It should be understood that q is a smooth point
of C̄ if r = 0. The type of this region is defined to be Ar too. A region containing p1 or p2 is
called a distinguished region.

For any •-vertex u, label the three edges issuing from it by u1, u2, u3 in counterclockwise
orientation. An edge connecting vertices u and v is denoted by [ui, vj ] where ui and vj are
the labels of this edge at u and v, respectively.

Assume that all vertices have been labeled in such a way that each region has two adja-
cent edges on its boundary whose labels at their common vertex u are ui, ui+1 with u = 1
or 2. We use 〈ui, ui+1〉 to denote this region. Since there may be several vertices on the
boundary of a region, there are many choices of the representation 〈ui, ui+1〉 of the region.
Since a change of the choice does not change the result, the choice of 〈ui, ui+1〉 can be made
arbitrarily.

Choose a nerve N of Sk, which is a subtree of the graph Sk containing all •-vertices.
Let G be the free group generated by all labels u1, u2, u3, where u runs over all •-vertices of
Sk.

The fundamental group of the complement of the original sextic curve is isomorphic to
G modulo the following sets of relations:

(1) (translation relations) For every edge [ui, vj ] of the nerve N , as elements in G,
u1, u2, u3 are related to v1, v2, v3 by fixed rules determined by i and j. For example

v1 = u2, v2 = u−1
2 u1u2, v3 = u3, if i = 1, j = 2.

v1 = u1u2u
−1
1 , v2 = u1, v3 = u3, if i = 2, j = 1.

v1 = u1u2u3u
−1
2 u−1

1 , v2 = u2, v3 = u−1
2 u1u2, if i = 1, j = 3.

(2) (monodromy relations) For each non-distinguished region 〈ui, ui+1〉 of type Am,
the monodromy relation is

(uiui+1)
r = (ui+1ui)

r if m = 2r − 1

and

(uiui+1)
rui = ui+1(uiui+1)

r if m = 2r .
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FIGURE 2. Skeleton of the sextic curves with D7 +A11 + A1.

For the distinguished region 〈ui, ui+1〉 containing p1, the monodromy relation is

u1u2u3 = u3u1u2 if i = 1

and

u1u2u3 = u2u3u1 if i = 2 .

For the distinguished region 〈ui, ui+1〉 containing p2, the monodromy relations are

u1 = u3u2u
−1
3 , u1u2u

−1
1 = u3u1u

−1
3 if i = 1

and

u2 = u1u3u
−1
1 , u2u3u

−1
2 = u1u2u

−1
1 if i = 2 .

(3) (relation at infinity) Assume that the distinguished regions containing p1 and p2

are 〈ui, ui+1〉 and 〈vj , vj+1〉, respectively. The relation is

(w1w2w3)
3 = uiui+1v3 if j = 1

and

(w1w2w3)
3 = uiui+1v1 if j = 2

where w can be any •-vertex of Sk.
These relations are not independent. Any one of the monodromy relations corresponding

to a non-distinguished region can be omitted.
Now we use this algorithm to compute the fundamental groups of the curves C1 and

C2 in Theorem 2.1. After the blowing-up of the D7 point and elementary transformations,
we obtain trigonal curves satisfying all conditions of the above algorithm. The skeletons
of trigonal curves for both C1 and C2 are the same, which is illustrated in Figure 2. The
difference is the positions of the distinguished regions. For C2 the two distinguished regions
are adjacent, in the sense that they are connected by a single edge, but not for C1.

Assign letters α, β, γ, δ, ε, η to the vertices of Sk of C1 and label all edges as shown
in Figure 3. There are five regions I through V. The distinguished regions are II and IV. The
chosen nerve consists of the edges [η3, ε1], [ε2, δ1], [δ2, α1], [α2, β1], [β2, γ1], as shown by
the thickened path.

The edges [α2, β1] and [β2, γ1] yield the translation relations

β1 = α1α2α
−1
1 , β2 = α1, β3 = α3
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FIGURE 3. Labeling of the skeleton of C1.

and
γ1 = α1α2α1α

−1
2 α−1

1 , γ2 = α1α2α
−1
1 , γ3 = α3 .

The monodromy relation of the region I is

(9) α3 = α1α2α
−1
1 .

The monodromy relation of the distinguished region II is α1α2α3 = α2α3α1, which is
equivalent to

(10) α1α2α1α2 = α2α1α2α1

by (9).
The edges [δ2, α1] and [ε2, δ1] yield the translation relations

δ1 = α2, δ2 = α−1
2 α1α2, δ3 = α3

and
ε1 = α−1

2 α1α2, ε2 = α−1
2 α−1

1 α2α1α2, ε3 = α3 .

The region III yields the relation ε2ε3 = ε3ε2, which is redundant.
The edge [η3, ε1] yields the translation relations

η1 = α1α2α3α
−1
2 α−1

1 = α2, η2 = α1α2α
−1
1 , η3 = α1α

−1
2 α−1

1 α−1
2 α1α2α1α2α

−1
1 = α1 .

The distinguished region IV yields two monodromy relations

η1 = η3η2η
−1
3

and
η1η2η

−1
1 = η3η1η

−1
3 ,

of which both are equivalent to

(11) α2
1α2 = α2α

2
1 .

Finally, the relation at infinity is

(α1α2α3)
3 = α1α2α3 ,

which is equivalent to

(12) (α2
2α1)

2 = 1 .

In summary, the fundamental group of the complement of C1 is isomorphic to

〈α1, α2; α1α2α1α2 = α2α1α2α1, α
2
1α2 = α2α

2
1 , (α

2
2α1)

2 = 1〉.
Thus we obtain
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FIGURE 4. Labeling of the skeleton of C2.

(13) π1(P \C1) ∼= 〈a, b; abab = baba, b2 = 1〉
due to the following lemma.

LEMMA 3.1. There are isomorphisms

〈a, b; abab = baba, b2a = ab2, a2ba2b = 1〉 ∼= 〈a, b; abab = baba, a2ba2b = 1〉
∼= 〈a, b; abab = baba, b2 = 1〉.

PROOF. Assume that abab = baba, a2ba2b = 1. It follows from

a2ba2b = 1 ⇒ aba2ba = 1 ⇒ aba2bab = b ⇒ abababa = b

⇒ a2bab2a = a2ba2b2 ⇒ b2a = ab2

that

〈a, b; abab = baba, b2a = ab2, a2ba2b = 1〉 ∼= 〈a, b; abab = baba, a2ba2b = 1〉.
Let α = a−1, β = a2b. Then a = α−1, b = α2β. Hence 〈a, b; abab = baba, a2ba2b =

1〉 is generated by α, β. Since

abab = baba ⇔ αβαβ = α2βαβα−1 ⇔ βαβα = αβαβ

and
a2ba2b = 1 ⇔ β2 = 1 ,

we have 〈a, b; abab = baba, a2ba2b = 1〉 ∼= 〈a, b; abab = baba, b2 = 1〉. �

For the second curve C2, we change the labels as shown in Figure 3 and take the same
nerve as before. The distinguished regions are I and II.

The region I yields two relations

α3 = α−1
1 α2α1

and

(14) α2α
−1
1 α2α1α

−1
2 = α1α2α

−1
1 .

The translation relations are

β1 = α2, β2 = α−1
2 α1α2 ,

γ1 = β2, γ2 = β−1
2 β1β2 ,



424 B. WU AND J.-G. YANG

δ1 = γ2, δ2 = γ−1
2 γ1γ2 ,

ε1 = δ2, ε2 = δ−1
2 δ1δ2 ,

η1 = ε2, η2 = ε−1
2 ε1ε2

and

η3 = ε3 = δ3 = γ3 = β3 = α3 .

The monodromy relation of the distinguished region II are γ1γ2γ3 = γ2γ3γ1, which by
(14) is equivalent to

(15) α1α2α
2
1α2 = α2α

2
1α2α1 .

The monodromy relation of the region III is ε2ε3 = ε3ε2,which is reduced to the relation

(16) α2α
2
1 = α2

1α2

by using (14) and (15). Then (15) is equivalent to

(17) α1α
2
2 = α2

2α1 .

The relation at infinity is

(α1α2α3)
3 = α1α

−1
2 α−1

1 α2α1α2α
−1
1 α2α1 ,

which is equivalent to

(18) α3
2α1α2α1 = 1 .

Obviously all relations are generated by (16), (17) and (18). Therefore the fundamental
group of the complement of C2 is isomorphic to

〈α1, α2; α2α
2
1 = α2

1α2, α1α
2
2 = α2

2α1, α
3
2α1α2α1 = 1〉.

Thus we obtain

(19) π1(P \C2) ∼= 〈a, b; ab2 = b2a, a2baba = 1〉
due to the following lemma.

LEMMA 3.2. Let a, b be two elements in a group G such that a2baba = 1. Then
abab = baba and a2b = ba2 hold.

PROOF. The relation a2baba = 1 implies ababa = a−1. So ababa2 = 1. Therefore
baba = a−2 = abab.

The relation a2baba = 1 implies a2b = (aba)−1. Since ababa2 = 1, we have ba2 =
(aba)−1. Hence a2b = ba2. �

THEOREM 3.3. The pair C1, C2 in Theorem 2.1 is a strong Zariski pair.
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PROOF. LetG1 = 〈a, b; abab = baba, b2 = 1〉 and let Γ1 be the subgroup of GL2(Q)

generated by

A =
(

2 0
0 1

)
, B =

(
0 1
1 0

)
.

Since

ABAB =
(

2 0
0 2

)
= BABA,B2 =

(
1 0
0 1

)
,

there is a unique homomorphism f1 : G1 → Γ1 such that f1(a) = A and f1(b) = B.

It is easy to see that

Γ1 =
{(

2n 0
0 2m

)
;m,n ∈ Z

}
∪

{(
0 2n

2m 0

)
;m,n ∈ Z

}
.

Define the map g1 : Γ1 → G1 by

g1

(
2n 0
0 2m

)
= anbamb, g1

(
0 2n

2m 0

)
= anbam .

By using the equality (bab)ra = a(bab)r, it can be verified that g1 is a homomorphism.
It is obvious that f1 ◦ g1 = 1 and g1 ◦ f1 = 1. Hence G1 is isomorphic to Γ1.

Since {(
2n 0
0 2n

)
; n ∈ Z

}

is the center of Γ1, the center of π(P 2\C1) is isomorphic to Z by (13).
Let G2 = 〈a, b; a2b = ba2, b2abab = 1〉 and let Γ2 be the subgroup of GL2(Q)

generated by

A =
(

0 −1/4
1/4 0

)
, B =

(
2 0
0 −2

)
.

Since

A2B =
(−1/8 0

0 1/8

)
= BA2, B2ABAB =

(
1 0
0 1

)
,

there is a unique homomorphism f2 : G2 → Γ2 such that f2(a) = A and f2(b) = B.

Since A2, B2 are in the center and BA = −AB, every element in Γ2 can be written
uniquely as

±
(

4n 0
0 4n

)
ApBq ,

where p, q ∈ {0, 1}. Define the map g2 : Γ2 → G2 by

g2

((
4n 0
0 4n

)
ApBq

)
= apbq+2n, g2

(
−

(
4n 0
0 4n

)
ApBq

)
= ap+2bq+2n+4 .

It can be verified that g2 is a homomorphism. It is obvious that f2 ◦ g2 = 1 and g2 ◦ f2 = 1.
Hence G2 is isomorphic to Γ2. Since{

±
(

4n 0
0 4n

)
; n ∈ Z

}
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is the center of Γ2, the center of π(P 2\C2) is isomorphic to Z ⊕ Z2 by (19). Therefore the
centers of π(P 2\C1) and π(P 2\C2) are not isomorphic. �

REMARK 3.4. The fundamental groups can also be distinguished by their subgroups
of commutators, as observed by the referee. In fact, [G1,G1] ∼= Z and [G2,G2] ∼= Z2.

REMARK 3.5. The fundamental groups of the curves ofD7 +A11 defined by the equa-
tions (5) and (6) for generic value of a are also isomorphic to (13) and (19), respectively, as
we have computed by numerical method.
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