Some nonlinear differential inequalities and an application to Hölder continuous almost complex structures

Adam Coffman ${ }^{\text {a,* }}$, Yifei Pan ${ }^{\text {b,a }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Indiana University - Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA
${ }^{\text {b }}$ School of Sciences, Nanchang University, Nanchang 330022, PR China

Received 22 July 2009; received in revised form 2 October 2009; accepted 14 October 2009
Available online 2 February 2011

Abstract

We consider some second order quasilinear partial differential inequalities for real-valued functions on the unit ball and find conditions under which there is a lower bound for the supremum of nonnegative solutions that do not vanish at the origin. As a consequence, for complex-valued functions $f(z)$ satisfying $\partial f / \partial \bar{z}=|f|^{\alpha}, 0<\alpha<1$, and $f(0) \neq 0$, there is also a lower bound for $\sup |f|$ on the unit disk. For each α, we construct a manifold with an α-Hölder continuous almost complex structure where the Kobayashi-Royden pseudonorm is not upper semicontinuous.

© 2011 Elsevier Masson SAS. All rights reserved.
MSC: primary 35R45; secondary 32F45, 32Q60, 32Q65, 35B05
Keywords: Differential inequality; Almost complex manifold

1. Introduction

We begin with an analysis of a second order quasilinear partial differential inequality for real-valued functions of n real variables,

$$
\begin{equation*}
\Delta u-B|u|^{\varepsilon} \geqslant 0 \tag{1}
\end{equation*}
$$

where $B>0$ and $\varepsilon \in[0,1)$ are constants. In Section 2, we use a Comparison Principle argument to show that (1) has "no small solutions," in the sense that there is a uniform lower bound $M>0$ for the supremum of solutions u which are nonnegative on the unit ball and nonzero at the origin.

We also consider a generalization of (1):

$$
\begin{equation*}
u \Delta u-B|u|^{1+\varepsilon}-C|\vec{\nabla} u|^{2} \geqslant 0, \tag{2}
\end{equation*}
$$

and find conditions under which there is a similar property of no small solutions, in Theorem 2.4.

[^0]As an application of the results on the inequality (1), we show failure of upper semicontinuity of the KobayashiRoyden pseudonorm for a family of 4-dimensional manifolds with almost complex structures of regularity $\mathcal{C}^{0, \alpha}$, $0<\alpha<1$. This generalizes the $\alpha=\frac{1}{2}$ example of [5]; it is known [6] that the Kobayashi-Royden pseudonorm is upper semicontinuous for almost complex structures with regularity $\mathcal{C}^{1, \alpha}$.

Our construction of the almost complex manifolds in Section 4 is very similar to that of [5]; we give the details for the convenience of the reader, and to show how the argument breaks down as $\alpha \rightarrow 1^{-}$, due to a shrinking radius of the domain. We also take the opportunity in Section 3 to state some lemmas which allow for a more quantitative description than that of [5].

One of the steps in [5] is a Maximum Principle argument applied to a complex-valued function $h(z)$ satisfying the equation $\partial h / \partial \bar{z}=|h|^{1 / 2}$, to get the property of no small solutions. The main difference between our paper and [5] is the use of a Comparison Principle in Section 2 instead of the Maximum Principle, and we arrive at this result:

Theorem 1.1. For any $\alpha \in(0,1)$, suppose $h(z)$ is a continuous complex-valued function on the closed unit disk, and on the set $\{z:|z|<1, h(z) \neq 0\}$, h has continuous partial derivatives and satisfies

$$
\begin{equation*}
\frac{\partial h}{\partial \bar{z}}=|h|^{\alpha} . \tag{3}
\end{equation*}
$$

If $h(0) \neq 0$ then $\sup |h|>S_{\alpha}$, where the constant $S_{\alpha}>0$ is defined by:

$$
\begin{equation*}
S_{\alpha}=\left(\frac{2(1-\alpha)}{2-\alpha}\right)^{1 /(1-\alpha)} \tag{4}
\end{equation*}
$$

2. Some differential inequalities

Let D_{R} denote the open ball in \mathbb{R}^{n} centered at $\overrightarrow{0}$ with radius $R>0$, and let \bar{D}_{R} denote the closed ball.
Lemma 2.1. Given constants $B>0$ and $0 \leqslant \varepsilon<1$, let

$$
M=\left(\frac{B(1-\varepsilon)^{2}}{2(2 \varepsilon+n(1-\varepsilon))}\right)^{\frac{1}{1-\varepsilon}}>0
$$

Suppose the function $u: \bar{D}_{1} \rightarrow \mathbb{R}$ satisfies:

- u is continuous on \bar{D}_{1},
- $u(\vec{x}) \geqslant 0$ for $\vec{x} \in D_{1}$,
- on the open set $\omega=\left\{\vec{x} \in D_{1}: u(\vec{x}) \neq 0\right\}, u \in \mathcal{C}^{2}(\omega)$,
- for $\vec{x} \in \omega$:

$$
\begin{equation*}
\Delta u(\vec{x})-B(u(\vec{x}))^{\varepsilon} \geqslant 0 . \tag{5}
\end{equation*}
$$

If $u(\overrightarrow{0}) \neq 0$, then $\sup _{\vec{x} \in D_{1}} u(\vec{x})>M$.
Proof. Define a comparison function

$$
v(\vec{x})=M|\vec{x}|^{\frac{2}{1-\varepsilon}}
$$

so $v \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ since $0 \leqslant \varepsilon<1$. By construction of M, it can be checked that v is a solution of this nonlinear Poisson equation on the domain \mathbb{R}^{n} :

$$
\Delta v(\vec{x})-B|v(\vec{x})|^{\varepsilon} \equiv 0 .
$$

Suppose, toward a contradiction, that $u(\vec{x}) \leqslant M$ for all $\vec{x} \in D_{1}$. For a point \vec{x}_{0} on the boundary of $\omega \subseteq \mathbb{R}^{n}$, either $\left|\vec{x}_{0}\right|=1$, in which case by continuity, $u\left(\vec{x}_{0}\right) \leqslant M=v\left(\vec{x}_{0}\right)$, or $0<\left|\vec{x}_{0}\right|<1$ and $u\left(\vec{x}_{0}\right)=0$, so $u\left(\vec{x}_{0}\right) \leqslant v\left(\vec{x}_{0}\right)$. Since $u \leqslant v$ on the boundary of ω, the Comparison Principle [4, Theorem 10.1] applies to the subsolution u and the solution v on the domain ω. The relevant hypothesis for the Comparison Principle in this case is that the second term expression
of (5), $-B X^{\varepsilon}$, is weakly decreasing, which uses $B>0$ and $\varepsilon \geqslant 0$. (To satisfy this technical condition for all $X \in \mathbb{R}$, we define a function $c: \mathbb{R} \rightarrow \mathbb{R}$ by $c(X)=-B X^{\varepsilon}$ for $X \geqslant 0$, and $c(X)=0$ for $X \leqslant 0$. Then c is weakly decreasing in X, v satisfies $\Delta v(\vec{x})+c(v(\vec{x})) \equiv 0$ and u satisfies $\Delta u(\vec{x})+c(u(\vec{x})) \geqslant 0$.)

The conclusion of the Comparison Principle is that $u \leqslant v$ on ω, however $\overrightarrow{0} \in \omega$ and $u(\overrightarrow{0})>v(\overrightarrow{0})$, a contradiction.

Of course, the constant function $u \equiv 0$ satisfies the inequality (5), and so does the radial comparison function v, so the initial condition $u(\overrightarrow{0}) \neq 0$ is necessary.

Example 2.2. In the $n=1$ case, $M=\left(\frac{B(1-\varepsilon)^{2}}{2(1+\varepsilon)}\right)^{\frac{1}{1-\varepsilon}}$. For points $c_{1}, c_{2} \in \mathbb{R}, c_{1}<c_{2}$, define a function

$$
u(x)= \begin{cases}M\left(x-c_{2}\right)^{\frac{2}{1-\varepsilon}} & \text { if } x \geqslant c_{2} \\ 0 & \text { if } c_{1} \leqslant x \leqslant c_{2} \\ M\left(c_{1}-x\right)^{\frac{2}{1-\varepsilon}} & \text { if } x \leqslant c_{1}\end{cases}
$$

Then $u \in \mathcal{C}^{2}(\mathbb{R})$, and it is nonnegative and satisfies $u^{\prime \prime}=B|u|^{\varepsilon}$ (the case of equality in the $n=1$ version of (5)). For $c_{1}<0<c_{2}$, this gives an infinite collection of solutions of the ODE $u^{\prime \prime}=B|u|^{\varepsilon}$ which are identically zero in a neighborhood of 0 , so the ODE does not have a unique continuation property. For $c_{1}>0$ or $c_{2}<0$, the function u satisfies $u(0) \neq 0$ and the other hypotheses of Lemma 2.1, and its supremum on $(-1,1)$ exceeds M even though it can be identically zero on an interval not containing 0 .

Example 2.3. In the case $n=2, B=1, \varepsilon=0$, (5) becomes the linear inequality $\Delta u \geqslant 1$ and the number $M=\frac{1}{4}$ agrees with Lemma 2 of [5], which was proved there using a Maximum Principle argument.

By applying Lemma 2.1 to the Laplacian of a power of u, we get the following generalization.
Theorem 2.4. Given constants $B>0, C \in \mathbb{R}$, and $\varepsilon<1$, let

$$
M= \begin{cases}\left(\frac{B(1-\varepsilon)^{2}}{2(2(\varepsilon-C)+n(1-\varepsilon))}\right)^{\frac{1}{1-\varepsilon}} & \text { if } C \leqslant \varepsilon, \\ \left(\frac{B(1-\varepsilon)}{2 n}\right)^{1-\varepsilon} & \text { if } C \geqslant \varepsilon .\end{cases}
$$

Suppose the function $u: \bar{D}_{1} \rightarrow \mathbb{R}$ satisfies:

- u is continuous on \bar{D}_{1},
- $u(\vec{x}) \geqslant 0$ for $\vec{x} \in D_{1}$,
- on the open set $\omega=\left\{\vec{x} \in D_{1}: u(\vec{x}) \neq 0\right\}, u \in \mathcal{C}^{2}(\omega)$,
- for $\vec{x} \in \omega$:

$$
u(\vec{x}) \Delta u(\vec{x}) \geqslant B|u(\vec{x})|^{1+\varepsilon}+C|\vec{\nabla} u(\vec{x})|^{2} .
$$

If $u(\overrightarrow{0}) \neq 0$, then $\sup _{\vec{x} \in D_{1}} u(\vec{x})>M$.
Proof. Let $\mu=\min \{\varepsilon, C\}$, so $\mu \leqslant \varepsilon<1$, and on the set ω,

$$
u(\vec{x}) \Delta u(\vec{x}) \geqslant B|u(\vec{x})|^{1+\varepsilon}+\mu|\vec{\nabla} u(\vec{x})|^{2} .
$$

Consider the function $u^{1-\mu}$ on \bar{D}_{1}, so $u^{1-\mu} \in \mathcal{C}^{0}\left(\bar{D}_{1}\right) \cap \mathcal{C}^{2}(\omega)$, and on the set ω,

$$
\begin{aligned}
\Delta\left(u^{1-\mu}\right) & =(1-\mu) u^{-\mu-1}\left(u \Delta u-\mu|\vec{\nabla} u|^{2}\right) \\
& \geqslant(1-\mu) u^{-\mu-1} B u^{1+\varepsilon} \\
& =(1-\mu) B\left(u^{1-\mu}\right)^{(\varepsilon-\mu) /(1-\mu)} .
\end{aligned}
$$

Since $(1-\mu) B>0$, and $\mu \leqslant \varepsilon<1 \Rightarrow 0 \leqslant \frac{\varepsilon-\mu}{1-\mu}<1$, Lemma 2.1 applies to $u^{1-\mu}$. If $(u(\overrightarrow{0}))^{1-\mu} \neq 0$, then

$$
\sup u^{1-\mu}>\left(\frac{(1-\mu) B\left(1-\frac{\varepsilon-\mu}{1-\mu}\right)^{2}}{2\left(2 \frac{\varepsilon-\mu}{1-\mu}+n\left(1-\frac{\varepsilon-\mu}{1-\mu}\right)\right)}\right)^{\frac{1}{1-\frac{\varepsilon-\mu}{1-\mu}}} \Rightarrow \sup u>\left(\frac{B(1-\varepsilon)^{2}}{2(2(\varepsilon-\mu)+n(1-\varepsilon))}\right)^{\frac{1}{1-\varepsilon}}
$$

Functions satisfying a differential inequality of the form (1) or (2) also satisfy a Strong Maximum Principle; the only condition is $B>0$.

Theorem 2.5. Given any open set $\Omega \subseteq \mathbb{R}^{n}$, and any constants $B>0, C, \varepsilon \in \mathbb{R}$, suppose the function $u: \Omega \rightarrow \mathbb{R}$ satisfies:

- u is continuous on Ω,
- on the set $\omega=\{\vec{x} \in \Omega: u(\vec{x})>0\}, u \in \mathcal{C}^{2}(\omega)$,
- on the set ω, u satisfies

$$
u \Delta u-B|u|^{1+\varepsilon}-C|\vec{\nabla} u|^{2} \geqslant 0
$$

If $u\left(\vec{x}_{0}\right)>0$ for some $\vec{x}_{0} \in \Omega$, then u does not attain a maximum value on Ω.
Proof. Note that the constant function $u \equiv 0$ is the only locally constant solution of the inequality for $B>0$. If $B=0$ then obviously any constant function would be a solution.

Given a function u satisfying the hypotheses, ω is a nonempty open subset of Ω. Suppose, toward a contradiction, that there is some $\vec{x}_{1} \in \Omega$ with $u(\vec{x}) \leqslant u\left(\vec{x}_{1}\right)$ for all $x \in \Omega$. In particular, $u\left(\vec{x}_{1}\right) \geqslant u\left(\vec{x}_{0}\right)>0$, so $\vec{x}_{1} \in \omega$. Let ω_{1} be the connected component of ω containing \vec{x}_{1}.

For $\vec{x} \in \omega_{1}, u$ satisfies the linear, uniformly elliptic inequality

$$
\Delta u(\vec{x})+\left(-B(u(\vec{x}))^{\varepsilon-1}\right) u(\vec{x})+\left(-C \frac{\vec{\nabla} u(\vec{x})}{u(\vec{x})}\right) \cdot \vec{\nabla} u(\vec{x}) \geqslant 0,
$$

where the coefficients (defined in terms of the given u) are locally bounded functions of \vec{x}, and $\left(-B(u(\vec{x}))^{\varepsilon-1}\right)$ is negative for all $\vec{x} \in \omega$. It follows from the Strong Maximum Principle [4, Theorem 3.5] that since u attains a maximum value at \vec{x}_{1}, then u is constant on ω_{1}. Since the only constant solution is 0 , it follows that $u\left(\vec{x}_{1}\right)=0$, a contradiction.

The next lemma shows how an inequality like (5) with $n=2$ can arise from a first order PDE for a complex-valued function.

Lemma 2.6. Consider constants $\alpha, \gamma \in \mathbb{R}$ with $0<\alpha<1$. Let $\omega \subseteq \mathbb{C}$ be an open set, and suppose $h: \omega \rightarrow \mathbb{C}$ satisfies:

- $h \in \mathcal{C}^{1}(\omega)$,
- $h(z) \neq 0$ for all $z \in \omega$,
- $\frac{\partial h}{\partial \bar{z}}=|h|^{\alpha}$ on ω.

Then, the following inequality is satisfied on ω :

$$
\begin{equation*}
\Delta\left(|h|^{(1-\alpha) \gamma}\right) \geqslant\left(4(1-\alpha) \gamma-(2-\alpha)^{2}\right)|h|^{(1-\alpha)(\gamma-2)} . \tag{6}
\end{equation*}
$$

Remark. The special case $\alpha=\frac{1}{2}, \gamma=\frac{3}{2}$ is Lemma 1 of [5]; its proof there is a long calculation in polar coordinates, which can be generalized to some other values of α by an analogous argument. However, using z, \bar{z} coordinates allows for a shorter calculation.

Proof of Lemma 2.6. We first want to show that h is smooth on ω, applying the regularity and bootstrapping technique of PDE to the equation $\partial h / \partial \bar{z}=|h|^{\alpha}$. We recall the following fact (for a more general statement, see

Theorem 15.6.2 of [1]): for a nonnegative integer ℓ, and $0<\beta<1$, if $\varphi \in \mathcal{C}_{l o c}^{\ell, \beta}(\omega)$ and $g: \omega \rightarrow \mathbb{C}$ has first derivatives in $L_{l o c}^{2}(\omega)$ and is a solution of $\partial g / \partial \bar{z}=\varphi$, then $g \in \mathcal{C}_{l o c}^{\ell+1, \beta}(\omega)$. In our case, $\varphi=|h|^{\alpha} \in \mathcal{C}^{1}(\omega) \subseteq \mathcal{C}_{l o c}^{0, \beta}(\omega)$ (since $h \in \mathcal{C}^{1}(\omega)$ and is nonvanishing), and $g=h$ has continuous first derivatives, so we can conclude that $g=h \in \mathcal{C}_{\text {loc }}^{1, \beta}(\omega)$. Repeating gives that $h \in \mathcal{C}_{l o c}^{2, \beta}(\omega)$, etc.

Since the conclusion is a local statement, it is enough to express ω as a union of open subsets ω_{k} and establish the conclusion on each subset. For each $z_{k} \in \omega$, there is a sufficiently small disk ω_{k} containing z_{k}, where real exponentiation of $h(z)$ is well defined on ω_{k}, by choosing a single-valued branch of \log to define $h^{r}=\exp (r \log (h))$.

The condition $\frac{\partial h}{\partial \bar{z}}=|h|^{\alpha}$ can be re-written

$$
h_{\bar{z}}=(\bar{h})_{z}=|h|^{\alpha}=h^{\alpha / 2} \bar{h}^{\alpha / 2} .
$$

This leads to

$$
\begin{aligned}
h_{z \bar{z}} & =\left(h_{\bar{z}}\right)_{z}=\left(h^{\alpha / 2} \bar{h}^{\alpha / 2}\right)_{z} \\
& =\frac{\alpha}{2}\left(h^{(\alpha / 2)-1} \bar{h}^{\alpha / 2} h_{z}+h^{\alpha} \bar{h}^{\alpha-1}\right) \\
& =\overline{\left.(\bar{h})_{z \bar{z}}\right)},
\end{aligned}
$$

which is used in a line of the next step. For an arbitrary exponent $m \in \mathbb{R}$,

$$
\begin{aligned}
\left(|h|^{m}\right)_{z \bar{z}}= & \left(h^{m / 2} \bar{h}^{m / 2}\right)_{z \bar{z}} \\
= & \frac{\partial}{\partial z}\left(\frac{m}{2} h^{\frac{m}{2}-1} h_{\bar{z}} \bar{h}^{\frac{m}{2}}+h^{\frac{m}{2}} \frac{m}{2} \bar{h}^{\frac{m}{2}-1}(\bar{h})_{\bar{z}}\right) \\
= & \frac{m}{2} \frac{\partial}{\partial z}\left(h^{\frac{m}{2}-1+\frac{\alpha}{2}} \bar{h}^{\frac{m}{2}+\frac{\alpha}{2}}+h^{\frac{m}{2}} \bar{h}^{\frac{m}{2}-1}(\bar{h})_{\bar{z}}\right) \\
= & \frac{m}{2}\left[\left(\frac{m}{2}+\frac{\alpha}{2}-1\right) h^{\frac{m}{2}+\frac{\alpha}{2}-2} h_{z} \bar{h}^{\frac{m}{2}+\frac{\alpha}{2}}+h^{\frac{m}{2}+\frac{\alpha}{2}-1}\left(\frac{m}{2}+\frac{\alpha}{2}\right) \bar{h}^{\frac{m}{2}+\frac{\alpha}{2}-1}(\bar{h})_{z}\right. \\
& \left.+\frac{m}{2} h^{\frac{m}{2}-1} h_{z} \bar{h}^{\frac{m}{2}-1}(\bar{h})_{\bar{z}}+h^{\frac{m}{2}}\left(\frac{m}{2}-1\right) \bar{h}^{\frac{m}{2}-2}(\bar{h})_{z}(\bar{h})_{\bar{z}}+h^{\frac{m}{2}} \bar{h}^{\frac{m}{2}-1}(\bar{h})_{z \bar{z}}\right] . \\
= & \frac{m}{2}\left[\operatorname{Re}\left((m+\alpha-2)|h|^{m+\alpha-4} \bar{h}^{2} h_{z}\right)+\left(\frac{m}{2}+\alpha\right)|h|^{m+2 \alpha-2}+\frac{m}{2}|h|^{m-2}\left|h_{z}\right|^{2}\right] .
\end{aligned}
$$

With the aim of applying Lemma 2.1 to the function $|h|^{m}$, we consider the expression (8), with real constants B, ε, and $m \neq 0$. In line (9), we assign

$$
\begin{equation*}
\varepsilon=\frac{1}{m}(m+2 \alpha-2) \tag{7}
\end{equation*}
$$

to be able to combine like terms, and in line (10), we choose $B=4 m-(2-\alpha)^{2}$ to complete the square.

$$
\begin{align*}
& \Delta\left(|h|^{m}\right)-B\left(|h|^{m}\right)^{\varepsilon} \tag{8}\\
&= 4\left(|h|^{m}\right)_{z \bar{z}}-B|h|^{m \varepsilon} \\
&= 2 m\left[\operatorname{Re}\left((m+\alpha-2)|h|^{m+\alpha-4} \bar{h}^{2} h_{z}\right)+\left(\frac{m}{2}+\alpha\right)|h|^{m+2 \alpha-2}+\frac{m}{2}|h|^{m-2}\left|h_{z}\right|^{2}\right]-B|h|^{m \varepsilon} \\
&=(m(m+2 \alpha)-B)|h|^{m+2 \alpha-2} \tag{9}\\
&+\operatorname{Re}\left(2 m(m+\alpha-2)|h|^{m+\alpha-4} \bar{h}^{2} h_{z}\right)+m^{2}|h|^{m-2}\left|h_{z}\right|^{2} \\
& \geqslant|h|^{m-2}\left(\left(m^{2}+2 \alpha m-B\right)|h|^{2 \alpha}-2|m||m+\alpha-2||h|^{\alpha}\left|h_{z}\right|+m^{2}\left|h_{z}\right|^{2}\right) \\
&=|h|^{m-2}\left(|m+\alpha-2||h|^{\alpha}-|m|\left|h_{z}\right|\right)^{2} \geqslant 0 . \tag{10}
\end{align*}
$$

Considering the form of (7), it is convenient to choose $m=(1-\alpha) \gamma$ for some constant $\gamma \neq 0$. The claim of the lemma follows; the $\gamma=0$ case can be checked separately.

The parameter γ can be chosen arbitrarily large; to apply Lemma 2.1 to get the "no small solutions" result of Theorem 1.1, we need the RHS coefficient in (6) to be positive, so $\gamma>\frac{(2-\alpha)^{2}}{4(1-\alpha)}$, and also the RHS exponent ($1-$ $\alpha)(\gamma-2)$ to be nonnegative, so $\gamma \geqslant 2$. In contrast, the $\alpha=\frac{1}{2}, \gamma=\frac{3}{2}$ case appearing in Lemma 1 of [5] has RHS exponent $-\frac{1}{4}$. The approach of Theorem 2 of [5] is to use the negative exponent together with the result of Example 2.3 to show that assuming h has a small solution leads to a contradiction. As claimed, their method can be generalized to apply to other nonpositive exponents, but $\frac{(2-\alpha)^{2}}{4(1-\alpha)}<\gamma \leqslant 2$ holds only for $\alpha<2(\sqrt{2}-1) \approx 0.8284$.

Proof of Theorem 1.1. Given a continuous $h: \bar{D}_{1} \rightarrow \mathbb{C}$ satisfying the hypotheses of Theorem 1.1, on the set $\omega=$ $\left\{z \in D_{1}: h(z) \neq 0\right\}, h \in \mathcal{C}^{1}(\omega)$, and the conclusion of Lemma 2.6 can be re-written:

$$
\begin{equation*}
\Delta\left(|h|^{(1-\alpha) \gamma}\right) \geqslant\left(4(1-\alpha) \gamma-(2-\alpha)^{2}\right)\left(|h|^{(1-\alpha) \gamma}\right)^{1-\frac{2}{\gamma}} . \tag{11}
\end{equation*}
$$

The hypotheses of Lemma 2.1 are satisfied with $n=2, u(x, y)=|h(x+i y)|^{(1-\alpha) \gamma}$, and $u(\overrightarrow{0}) \neq 0$, when the RHS of (11) has a positive coefficient (so $\gamma>\frac{(2-\alpha)^{2}}{4(1-\alpha)}$) and the quantity $\varepsilon=1-\frac{2}{\gamma}$ is in $[0,1$) (for $\gamma \geqslant 2$). The conclusion of Lemma 2.1 is:

$$
\begin{aligned}
& \sup _{z \in D_{1}}|h(z)|^{(1-\alpha) \gamma}>M=\left(\frac{1}{4} \cdot\left(4(1-\alpha) \gamma-(2-\alpha)^{2}\right) \cdot\left(\frac{2}{\gamma}\right)^{2}\right)^{\gamma / 2} \\
& \quad \Rightarrow \sup _{z \in D_{1}}|h(z)|>\left(\frac{4(1-\alpha) \gamma-(2-\alpha)^{2}}{\gamma^{2}}\right)^{\frac{1}{2(1-\alpha)}} .
\end{aligned}
$$

We can optimize this lower bound, using elementary calculus to show that the maximum value of $\frac{4(1-\alpha) \gamma-(2-\alpha)^{2}}{\gamma^{2}}$ is achieved at the critical point $\gamma=\frac{(2-\alpha)^{2}}{2(1-\alpha)}>\max \left\{2, \frac{(2-\alpha)^{2}}{4(1-\alpha)}\right\}$, and the lower bound for the sup is S_{α} as appearing in (4).

Note that S_{α} is decreasing for $0<\alpha<1$, with $S_{1 / 2}=\frac{4}{9}, S_{2 / 3}=\frac{1}{8}$, and $S_{\alpha} \rightarrow 0$ as $\alpha \rightarrow 1^{-}$. This theorem is used in the proof of Theorem 4.3.

Example 2.7. As noted by [5], a 1-dimensional analogue of Eq. (3) in Theorem 1.1 is the well-known (for example, [2, §I.9]) ODE $u^{\prime}(x)=B|u(x)|^{\alpha}$ for $0<\alpha<1$ and $B>0$, which can be solved explicitly. By an elementary separation of variables calculation, the solution on an interval where $u \neq 0$ is $|u(x)|=(\pm(1-\alpha)(B x+C))^{\frac{1}{1-\alpha}}$. The general solution on the domain \mathbb{R} is, for $c_{1}<c_{2}$,

$$
u(x)= \begin{cases}(1-\alpha)^{\frac{1}{1-\alpha}}\left(B\left(x-c_{2}\right)\right)^{\frac{1}{1-\alpha}} & \text { if } x \geqslant c_{2}, \\ 0 & \text { if } c_{1} \leqslant x \leqslant c_{2}, \\ -(1-\alpha)^{\frac{1}{1-\alpha}}\left(B\left(c_{1}-x\right)\right)^{\frac{1}{1-\alpha}} & \text { if } x \leqslant c_{1} .\end{cases}
$$

So $u \in \mathcal{C}^{1}(\mathbb{R})$, and if $u(0) \neq 0$, then $\sup _{-1<x<1}|u(x)|>((1-\alpha) B)^{\frac{1}{1-\alpha}}$.

3. Lemmas for holomorphic maps

We continue with the D_{R} notation for the open disk in the complex plane centered at the origin. The following quantitative lemmas on inverses of holomorphic functions $D_{R} \rightarrow \mathbb{C}$ are used in a step of the proof of Theorem 4.3 where we put a map $D_{r} \rightarrow \mathbb{C}^{2}$ into a normal form, (14).

Lemma 3.1. (See [3, Exercise I.1].) Suppose $f: D_{1} \rightarrow D_{1}$ is holomorphic, with $f(0)=0,\left|f^{\prime}(0)\right|=\delta>0$. For any $\eta \in(0, \delta)$, let $s=\left(\frac{\delta-\eta}{1-\eta \delta}\right) \eta$; then the restricted function $f: D_{\eta} \rightarrow D_{1}$ takes on each value $w \in D_{s}$ exactly once.

The hypotheses imply $\delta \leqslant 1$ by the Schwarz Lemma.

Lemma 3.2. For a holomorphic map $Z_{1}: D_{r} \rightarrow D_{2}$ with $Z_{1}(0)=0, Z_{1}^{\prime}(0)=1$, if $r>\frac{4 \sqrt{2}}{3}$ then there exists a continuous function $\phi: \bar{D}_{1} \rightarrow D_{r}$ which is holomorphic on D_{1} and which satisfies $\left(Z_{1} \circ \phi\right)(z)=z$ for all $z \in \bar{D}_{1}$.

Remark. It follows from the Schwarz Lemma that $r \leqslant 2$, and it follows from the fact that ϕ is an inverse of Z_{1} that $\phi(0)=0$ and $\phi^{\prime}(0)=1$.

Proof of Lemma 3.2. Define a new holomorphic function $f: D_{1} \rightarrow D_{1}$ by

$$
f(z)=\frac{1}{2} \cdot Z_{1}(r \cdot z)
$$

so $f(0)=0, f^{\prime}(0)=\frac{r}{2}$, and Lemma 3.1 applies with $\delta=\frac{r}{2}$. If we choose $\eta=\frac{3 r}{8}$, then $s=\frac{3 r^{2}}{64-12 r^{2}}$, and the assumption $r>\frac{4 \sqrt{2}}{3}$ implies $s>\frac{1}{2}$. It follows from Lemma 3.1 that there exists a function $\psi: D_{s} \rightarrow D_{\eta}$ such that $(f \circ \psi)(z)=z$ for all $z \in \bar{D}_{1 / 2} \subseteq D_{s}$; this inverse function ψ is holomorphic on $D_{1 / 2}$. The claimed function $\phi: \bar{D}_{1} \rightarrow D_{r \eta} \subseteq D_{r}$ is defined by $\phi(z)=r \cdot \psi\left(\frac{1}{2} \cdot z\right)$, so for $z \in \bar{D}_{1}$,

$$
Z_{1}(\phi(z))=Z_{1}\left(r \cdot \psi\left(\frac{1}{2} \cdot z\right)\right)=2 \cdot f\left(\psi\left(\frac{1}{2} \cdot z\right)\right)=2 \cdot \frac{1}{2} \cdot z=z .
$$

4. J-holomorphic disks

For $S>0$, consider the bidisk $\Omega_{S}=D_{2} \times D_{S} \subseteq \mathbb{C}^{2}$, as an open subset of \mathbb{R}^{4}, with coordinates $\vec{x}=$ $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left(z_{1}, z_{2}\right)$ and the trivial tangent bundle $T \Omega_{S} \subseteq T \mathbb{R}^{4}$. Consider an almost complex structure J on Ω_{S} given by a complex structure operator on $T_{\bar{x}} \Omega_{S}$ of the following form:

$$
J(\vec{x})=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \tag{12}\\
1 & 0 & 0 & 0 \\
0 & \lambda & 0 & -1 \\
\lambda & 0 & 1 & 0
\end{array}\right),
$$

where $\lambda: \Omega_{S} \rightarrow \mathbb{R}$ is any function.
A differentiable map $Z: D_{r} \rightarrow \Omega_{S}$ is a J-holomorphic disk if $d Z \circ J_{s t d}=J \circ d Z$, where $J_{s t d}$ is the standard complex structure on $D_{r} \subseteq \mathbb{C}$. Let $z=x+i y$ be the coordinate on D_{r}. For J of the form (12), if $Z(z)$ is defined by complex-valued component functions,

$$
\begin{equation*}
Z: D_{r} \rightarrow \Omega_{S}: Z(z)=\left(Z_{1}(z), Z_{2}(z)\right) \tag{13}
\end{equation*}
$$

then the J-holomorphic property implies that $Z_{1}: D_{r} \rightarrow D_{2}$ is holomorphic in the standard way.
Example 4.1. If the function $\lambda\left(z_{1}, z_{2}\right)$ satisfies $\lambda\left(z_{1}, 0\right)=0$ for all $z_{1} \in D_{2}$, then the map $Z: D_{2} \rightarrow \Omega_{S}: Z(z)=(z, 0)$ is a J-holomorphic disk.

Definition 4.2. The Kobayashi-Royden pseudonorm on Ω_{S} is a function $T \Omega_{S} \rightarrow \mathbb{R}:(\vec{x}, \vec{v}) \mapsto\|(\vec{x}, \vec{v})\|_{K}$, defined on tangent vectors $\vec{v} \in T_{\vec{x}} \Omega_{S}$ to be the number

$$
\operatorname{glb}\left\{\frac{1}{r}: \exists \text { a } J \text {-holomorphic } Z: D_{r} \rightarrow \Omega_{S}, Z(0)=\vec{x}, d Z(0)\left(\frac{\partial}{\partial x}\right)=\vec{v}\right\} .
$$

Under the assumption that $\lambda \in \mathcal{C}^{0, \alpha}\left(\Omega_{S}\right), 0<\alpha<1$, it is shown by [6] and [7] that there is a nonempty set of J holomorphic disks through \vec{x} with tangent vector \vec{v} as in the definition, so the pseudonorm is a well-defined function. Further, each such disk satisfies $Z \in \mathcal{C}^{1}\left(D_{r}\right)$.

At this point we pick $\alpha \in(0,1)$ and set $\lambda\left(z_{1}, z_{2}\right)=-2\left|z_{2}\right|^{\alpha}$. Let $S=S_{\alpha}>0$ be the constant defined by formula (4) from Theorem 1.1. Then, $\left(\Omega_{S}, J\right)$ is an almost complex manifold with the following property:

Theorem 4.3. If $0 \neq b \in D_{S}$ then $\|(0, b),(1,0)\|_{K} \geqslant \frac{3}{4 \sqrt{2}}$.
Remark. Since $\frac{3}{4 \sqrt{2}} \approx 0.53$, and $\|(0,0),(1,0)\|_{K} \leqslant \frac{1}{2}$ by Example 4.1, the theorem shows that the KobayashiRoyden pseudonorm is not upper semicontinuous on $T \Omega_{S}$.

Proof. Consider a J-holomorphic map $Z: D_{r} \rightarrow \Omega_{S}$ of the form (13), and suppose $Z(0)=(0, b) \in \Omega_{S}$ and $d Z(0)\left(\frac{\partial}{\partial x}\right)=(1,0)$. Then the holomorphic function $Z_{1}: D_{r} \rightarrow D_{2}$ satisfies $Z_{1}(0)=0, Z_{1}^{\prime}(0)=1$, and $Z_{2} \in \mathcal{C}^{1}\left(D_{r}\right)$ satisfies $Z_{2}(0)=b$.

Suppose, toward a contradiction, that there exists such a map Z with $b \neq 0$ and $r>\frac{4 \sqrt{2}}{3}$. Then Lemma 3.2 applies to Z_{1} : there is a re-parametrization ϕ which puts Z into the following normal form:

$$
\begin{align*}
& (Z \circ \phi): \bar{D}_{1} \rightarrow \Omega_{S}, \\
& z \mapsto\left(Z_{1}(\phi(z)), Z_{2}(\phi(z))\right)=(z, f(z)), \tag{14}
\end{align*}
$$

where $f=Z_{2} \circ \phi: \bar{D}_{1} \rightarrow D_{S}$ satisfies $f \in \mathcal{C}^{0}\left(\bar{D}_{1}\right) \cap \mathcal{C}^{1}\left(D_{1}\right)$. From the fact that $Z \circ \phi$ is J-holomorphic on D_{1}, it follows from the form (12) of J that if $f(z)=u(x, y)+i v(x, y)$, then f satisfies this system of nonlinear CauchyRiemann equations on D_{1} :

$$
\begin{equation*}
\frac{d u}{d y}=-\frac{d v}{d x} \quad \text { and } \quad \frac{d u}{d x}+\lambda(z, f(z))=\frac{d v}{d y} \tag{15}
\end{equation*}
$$

with the initial conditions $f(0)=b, u_{x}(0)=u_{y}(0)=v_{x}(0)=0$ and $v_{y}(0)=\lambda(0, b)=-2|b|^{\alpha}$. The system of equations implies

$$
\begin{align*}
\frac{\partial f}{\partial \bar{z}} & =\frac{1}{2}\left(\frac{\partial}{\partial x}(u+i v)+i \frac{\partial}{\partial y}(u+i v)\right) \\
& =\frac{1}{2}\left(u_{x}-v_{y}+i\left(v_{x}+u_{y}\right)\right) \\
& =-\frac{1}{2} \lambda(z, f(z))=|f|^{\alpha} . \tag{16}
\end{align*}
$$

So, Theorem 1.1 applies, with $f=h$. The conclusion is that

$$
\sup _{z \in D_{1}}|f(z)|>S_{\alpha}
$$

but this contradicts $|f(z)|<S=S_{\alpha}$.
The previously mentioned existence theory for J-holomorphic disks shows there are interesting solutions of Eq. (16), and therefore also the inequality (11).

Example 4.4. For $0<\alpha<1,\left(\Omega_{S}, J\right), \lambda\left(z_{1}, z_{2}\right)=-2\left|z_{2}\right|^{\alpha}$ as above, a map $Z: D_{r} \rightarrow \Omega_{S}$ of the form $Z(z)=$ $(z, f(z))$ is J-holomorphic if $f(x, y)=u(x, y)+i v(x, y)$ is a solution of (15). Again generalizing the $\alpha=\frac{1}{2}$ case of [5], examples of such solutions can be constructed (for small r) by assuming $v \equiv 0$ and u depends only on x, so (15) becomes the ODE $u^{\prime}(x)-2|u(x)|^{\alpha}=0$. This is the equation from Example 2.7; we can conclude that J-holomorphic disks in Ω_{S} do not have a unique continuation property.

Acknowledgement

The authors acknowledge the insightful remarks of the referee, whose suggestions led to a shorter proof of Lemma 2.6 and an improvement of Theorem 2.4.

References

[1] K. Astala, T. Iwaniec, G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., vol. 48, Princeton University Press, Princeton, 2009, MR 2472875 (2010j:30040), Zbl 1182.30001.
[2] G. Birkhoff, G.-C. Rota, Ordinary Differential Equations, Ginn \& Co., 1962, MR 0138810 (25 \#2253), Zbl 0102.29901.
[3] J. Garnett, Bounded Analytic Functions, rev. first ed., Grad. Texts in Math., vol. 236, Springer, 2007, MR 2261424 (2007e:30049), Zbl 1106.30001.
[4] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer CIM, 2001, MR 1814364 (2001k:35004), Zbl 1042.35002.
[5] S. Ivashkovich, S. Pinchuk, J.-P. Rosay, Upper semi-continuity of the Kobayashi-Royden pseudo-norm, a counterexample for Hölderian almost complex structures, Ark. Mat. (2) 43 (2005) 395-401, MR 2173959 (2006g:32038), Zbl 1091.32009.
[6] S. Ivashkovich, J.-P. Rosay, Schwarz-type lemmas for solutions of $\bar{\partial}$-inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier (Grenoble) 54 (7) (2004) 2387-2435, MR 2139698 (2006a:32032), Zbl 1072.32007.
[7] A. Nijenhuis, W. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. (2) 77 (1963) 424-489, MR 0149505 (26 \#6992), Zbl 0115.16103.

[^0]: * Corresponding author.

 E-mail addresses: CoffmanA@ipfw.edu (A. Coffman), Pan@ipfw.edu (Y. Pan).

