212. Some Nonlinear Evolution Equations of Second Order

By Masayoshi Tsutsumi
Department of Applied Physics, Waseda University, Tokyo

(Comm. by Kinjirô Kunugr, m. J. A., Sept. 13, 1971)

1. Introduction. Let H and W be two real separable Hilbert spaces and V be a real separable reflexive Banach space with $V \subset W \subset H$. Let V be dense in W and in H and the natural injections of V into W and of W into H be respectively continuous and compact. We identify H with its dual:

$$
V \subset W \subset H \subset W^{*} \subset V^{*}
$$

where W^{*} and V^{*} are the duals of W and V, respectively. The pairing between V and V^{*} is denoted by (,) and that of W and W^{*} by \langle,$\rangle .$

We consider the following second order differential equation

$$
\begin{equation*}
u^{\prime \prime}+A(u)+B u^{\prime}=f \tag{1.1}
\end{equation*}
$$

with initial conditions
(1.2) $\quad u(0)=u_{0}, \quad u^{\prime}(0)=u_{1}$, where $u=u(t), u^{\prime}=d u / d t, u^{\prime \prime}=d^{2} u / d t^{2}$ and data u_{0}, u_{1}, f are given.

Assume that the nonlinear operator $A: V \rightarrow V^{*}$ has the following properties:

1) A is hemicontinuous and $\|A(u)\|_{V^{*}} \leqq c\|u\|_{V}^{p-1}, p>1, c>0$.
2) A is monotone, i.e., $(A(u)-A(v), u-v) \geqq 0, \forall u, v \in V$.
3) $\quad(A(u), u)=\|u\|_{v}^{p}$.
4) $A(u)$ is Fréchet differentiable at every $u \in V$.
5) $A(u)$ is strongly homogeneous of degree $p-1$ in the sense of Dubinskii [1], i.e., for every $u, \eta \in V$

$$
\begin{equation*}
\left(A^{\prime}(u) \eta, u\right)=\left(A^{\prime}(u) u, \eta\right)=(p-1)(A(u), \eta) \tag{1.3}
\end{equation*}
$$

where $A^{\prime}(u)$ is a Fréchet derivative.
Let $B: W \rightarrow W^{*}$ be a bounded linear operator associated with a bounded symmetric bilinear form $b(\cdot, \cdot)$ on W, i.e.,

$$
\begin{aligned}
|b(u, v)| \leqq\|u\|_{W}\|v\|_{W}, & b(u, v)=b(v, u) \\
b(u, v)=\langle B u, v\rangle, & \forall u, v \in W
\end{aligned}
$$

such that

$$
\begin{equation*}
b(u, u) \geqq \alpha\|u\|_{W}^{2}-\beta\|u\|_{H}^{2}, \quad \alpha, \beta>0 \tag{1.4}
\end{equation*}
$$

and that if $u_{n} \rightarrow u$ weakly in W as $n \rightarrow \infty$,

$$
\begin{equation*}
\liminf b\left(u_{n}, u_{n}\right) \geqq b(u, u) . \tag{1.5}
\end{equation*}
$$

The main result of this note is the following theorem.
Theorem 1. Suppose that $u_{0} \in V, u_{1} \in H$ and $f \in L^{2}(0, T ; H)$. Then there exists at least one function u such that

$$
\begin{align*}
u(t) & \in L^{\infty}(0, T ; V) \tag{1.6}\\
u^{\prime}(t) & \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; W) \tag{1.7}\\
u^{\prime \prime}(t) & \in L^{2}\left(0, T ; V^{*}\right)
\end{align*}
$$

and satisfies (1.1) and (1.2).
The proof of Theorem 1 is stated in Section 2. In Section 3, as applications, the existence of the weak solutions of the initial-Dirichlet boundary value problem for the equation of the form

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2 p-1}-\Delta \frac{\partial u}{\partial t}=f \tag{1.9}\\
\Delta v=\sum_{i=1}^{n} \frac{\partial^{2} v}{\partial x_{i}^{2}}, \quad p>1
\end{gather*}
$$

will be established. When $n=1$, the equation (1.9) was studied by Greenberg, MacCamy and Mizel [2] and Greenberg [3].
2. Proof of Theorem 1.

Lemma 1. For $u(t) \in C^{1}([0, T] ; V)$, we have

$$
\begin{align*}
\int_{0}^{t}\left(A(u(s)), u^{\prime}(s)\right) d s & =\frac{1}{p}(A(u(t)), u(t))-\frac{1}{p}(A(u(0)), u(0)) \\
& =\frac{1}{p}\|u(t)\|_{V}^{p}-\frac{1}{p}\|u(0)\|_{V}^{p} . \tag{2.1}
\end{align*}
$$

Proof. By the chain rule, we have

$$
\begin{aligned}
\left(\frac{d}{d t} A(u(t)), u(t)\right) & =\left(A^{\prime}(u(t)) u^{\prime}(t), u(t)\right) \\
& =(p-1)\left(A(u(t)), u^{\prime}(t)\right)
\end{aligned}
$$

since $A(u)$ is strongly homogeneous of degree $p-1$. Then we get

$$
\frac{d}{d t}(A(u(t)), u(t))=p\left(A(u(t)), u^{\prime}(t)\right)
$$

which implies (2.1).
q.e.d.

The following lemma can be found in [4].
Lemma 2. Let X be a reflexive separable Banach space. Then there exists a separable Hilbert space Y, being dense in X, such that the injection of Y into X is continuous.

Hence, we can construct a separable Hilbert space $\tilde{H} \subset W$, being dense in V, such that the injection of \tilde{H} into V is continuous. Then the injection of \tilde{H} into H is compact. Therefore we have

Lemma 3. The spectral problem:

$$
\begin{equation*}
(w, v)_{\tilde{H}}=\lambda(w, v)_{H}, \quad \forall v \in \tilde{H}, \tag{2.2}
\end{equation*}
$$

has the sequence of non zero solutions w_{j} corresponding to the sequence of eigenvalues λ_{j} :

$$
\begin{equation*}
\left(w_{j}, v\right)_{\tilde{H}}=\lambda_{j}\left(w_{j}, v\right)_{H}, \quad \forall v \in \tilde{H}, \quad \lambda_{j}>0, \tag{2.3}
\end{equation*}
$$

where $(,)_{H}$ and $(,)_{\tilde{H}}$ are the scalar products in H and \tilde{H}, respectively.
In order to prove Theorem 1, we shall employ the Galerkin's method. We use the sequence of the functions w_{j} as the basis of \tilde{H}.

We look for an approximate solution $u_{m}(t)$ in the form:

$$
u_{m}(t)=\sum_{i=1}^{m} g_{i m}(t) w_{i}, \quad g_{i m}(t) \in C^{\infty}[0, T],
$$

where the unknown functions $g_{i m}$ are determined by the following system of ordinary differential equations:
(2.4) $\quad\left(u_{m}^{\prime \prime}(t), w_{j}\right)+\left(A\left(u_{m}(t)\right), w_{j}\right)+b\left(u_{m}^{\prime}(t), w_{j}\right)=\left(f(t), w_{j}\right) \quad 1 \leqq j \leqq m$, with initial conditions:

$$
\begin{array}{ll}
u_{m}(0)=u_{0 m}, & u_{0 m}=\sum_{i=1}^{m} \alpha_{i m} w_{i} \rightarrow u_{0} \text { in } V \text { strongly as } m \rightarrow \infty \\
u_{m}^{\prime}(0)=u_{1 m}, & u_{1 m}=\sum_{i=1}^{m} \beta_{i m} w_{i} \rightarrow u_{1} \text { in } H \text { strongly as } m \rightarrow \infty \tag{2.6}
\end{array}
$$

Then we have
Lemma 4. There exists a constant c independent of m, such that

$$
\begin{gather*}
\left\|u_{m}\right\|_{L^{\infty}(0, T ; V)} \leqq c, \tag{2.7}\\
\left\|u_{m}^{\prime}\right\|_{L^{\infty}(0, T ; H) \cap L^{2}(0, \pi ; W)} \leqq c \tag{2.8}\\
\left\|A\left(u_{m}\right)\right\|_{L^{\infty}\left(0, T ; T^{*}\right)} \leqq c \tag{2.9}\\
\left\|B u_{m}^{\prime}\right\|_{L^{2}\left(0, T^{\prime} ; W^{*}\right)} \leqq c \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|u_{m}^{\prime \prime}\right\|_{L^{2}\left(0, T ; \tilde{H}^{*}\right)} \leqq c . \tag{2.11}
\end{equation*}
$$

Proof. Multiplication of the i-th equation in (2.4) by $g_{i m}^{\prime}$, summation over i from 1 to m, integration with respect to t and Lemma 1 give

$$
\begin{align*}
& \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{H}^{2}+\frac{1}{p}\left\|u_{m}(t)\right\|_{V}^{p}+\int_{0}^{t} b\left(u_{m}^{\prime}(s), u_{m}^{\prime}(s)\right) d s \tag{2.12}\\
& \quad=\frac{1}{2}\left\|u_{m}^{\prime}(0)\right\|_{H}^{2}+\frac{1}{p}\left\|u_{m}(0)\right\|_{V}^{p}+\int_{0}^{t}\left(f(s), u_{m}^{\prime}(s)\right) d s
\end{align*}
$$

from which it follows that

$$
\begin{align*}
& \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{H}^{2}+\frac{1}{p}\left\|u_{m}(t)\right\|_{V}^{p}+\alpha \int_{0}^{t}\left\|u_{m}^{\prime}(s)\right\|_{W}^{2} d s \tag{2.13}\\
& \leqq c\left(1+\int_{0}^{t}\left\|u_{m}^{\prime}(s)\right\|_{H}^{2} d s\right) .
\end{align*}
$$

The inequality (2.13) and our hypotheses on A and B yield (2.7)-(2.10).
Let P_{m} be the projection of $H \rightarrow\left[w_{1}, \cdots, w_{m}\right]$ (=the space spanned by $\left.w_{1}, \cdots, w_{m}\right): \quad P_{m} h=\sum_{i=1}^{m}\left(h, w_{i}\right)_{H} w_{i}$.

Then we have $P_{m} \in \mathcal{L}(\tilde{H}, \tilde{H}) ; \quad\left\|P_{m}\right\|_{\mathcal{L}(\tilde{H}, \tilde{H})} \leqq c$.
Since $\tilde{H} \subset V \subset W$, we get

$$
\left\|P_{m}\right\|_{\mathcal{L}(\tilde{H}, V)} \leqq c \quad \text { and } \quad\left\|P_{m}\right\|_{\mathcal{L}(\tilde{H}, W)} \leqq c
$$

which imply

$$
\left\|P_{m}^{*}\right\|_{\mathcal{L}\left(V^{*}, \tilde{H}^{*}\right)} \leqq c \quad \text { and } \quad\left\|P_{m}^{*}\right\|_{\mathcal{L}\left(W^{*}, \tilde{\tilde{H}}^{*}\right)} \leqq c .
$$

The equation (2.4) may be written as

$$
u_{m}^{\prime \prime}=-P_{m}^{*} A\left(u_{m}\right)-P_{m}^{*} B u_{m}^{\prime}+P_{m}^{*} f,
$$

which assures (2.11).
q.e.d.

From Lemma 4 we see that there exist a function u and a sub-
sequence u_{μ} of u_{m} such that
(2.14)
(2.19) $\quad A\left(u_{\mu}\right) \rightarrow \chi \quad$ in $L^{\infty}\left(0, T ; V^{*}\right)$ weakly star, and
(2.20) $B u_{\mu}^{\prime} \rightarrow B u^{\prime} \quad$ in $L^{2}\left(0, T ; W^{*}\right)$ weakly.

Since the injections of V into H and of W into H are compact, we can furthermore assume that

$$
\begin{array}{ll}
u_{\mu} \rightarrow u & \text { in } L^{2}(0, T ; H) \text { strongly }, \\
u_{\mu}(T) \rightarrow u(T) & \text { in } H \text { strongly } \tag{2.21}
\end{array}
$$

(2.22) $\quad u_{\mu}(T) \rightarrow u(T)$
and
(2.23) $\quad u_{\mu}^{\prime} \rightarrow u^{\prime} \quad$ in $L^{2}(0, T ; H)$ strongly.

To show that the function $u(t)$ is a solution of (1.1), (1.2), it is sufficient to prove that

$$
\chi=A(u) .
$$

Multiplying (2.4) by an arbitrary smooth function $\alpha(t)$, integrating over $[0, T]$ and integrating the first term by parts, we have

$$
\begin{align*}
&-\int_{0}^{T}\left(u_{m}^{\prime}(t), \alpha^{\prime}(t) w_{j}\right) d t+\int_{0}^{T}\left(A\left(u_{m}(t)\right), \alpha(t) w_{j}\right) d t \\
& \quad \quad+\int_{0}^{T} b\left(u_{m}^{\prime}(t), \alpha(t) w_{j}\right) d t \tag{2.24}\\
& \quad= \int_{0}^{T}\left(f(t), \alpha(t) w_{j}\right) d t+\left(u_{m}^{\prime}(0), \alpha(0) w_{j}\right)-\left(u_{m}^{\prime}(T), \alpha(T) w_{j}\right) .
\end{align*}
$$

Taking the limit of both sides with $m=\mu, j$ fixed, we get

$$
\begin{aligned}
& -\int_{0}^{T}\left(u^{\prime}(t), \alpha^{\prime}(t) w_{j}\right) d t+\int_{0}^{T}\left(\chi, \alpha(t) w_{j}\right) d t+\int_{0}^{T} b\left(u^{\prime}(t), \alpha(t) w_{j}\right) d t \\
& \quad=\int_{0}^{T}\left(f(t), \alpha(t) w_{j}\right) d t+\left(u_{1}, \alpha(0) w_{j}\right)-\left(u^{\prime}(T), \alpha(T) w_{j}\right), \forall j,
\end{aligned}
$$

which implies

$$
\begin{gather*}
-\int_{0}^{T}\left(u^{\prime}(t), \psi^{\prime}(t)\right) d t+\int_{0}^{T}(\chi, \psi(t)) d t+\int_{0}^{T} b\left(u^{\prime}(t), \psi(t)\right) d t \\
=\int_{0}^{T}(f(t), \psi(t)) d t+\left(u_{1}, \psi(0)\right)-\left(u^{\prime}(T), \psi(T)\right) \tag{2.25}
\end{gather*}
$$

for any $\psi \in G$, where G denotes a family of functions defined by

$$
G=\left\{\psi \mid \psi \in L^{2}(0, T ; V), \psi^{\prime} \in L^{2}(0, T ; H)\right\} .
$$

In particular, setting $\psi=u$, we have

$$
\begin{gather*}
-\int_{0}^{T}\left\|u^{\prime}\right\|_{H}^{2} d t+\int_{0}^{T}(\chi, u) d t+\frac{1}{2} b(u(T), u(T))-\frac{1}{2} b\left(u_{0}, u_{0}\right) \\
=\int_{0}^{T}(f, u) d t+\left(u_{1}, u_{0}\right)-\left(u^{\prime}(T), u(T)\right) . \tag{2.26}
\end{gather*}
$$

The monotonicity of A gives

$$
\begin{equation*}
X_{\mu}=\int_{0}^{T}\left(A\left(u_{\mu}\right)-A(v), u_{\mu}-v\right) d t \geqq 0, \quad \forall v \in L^{\infty}(0 \cdot T ; V) . \tag{2.27}
\end{equation*}
$$

From (2.4) we have

$$
\begin{aligned}
\int_{0}^{T}\left(A\left(u_{\mu}\right), u_{\mu}\right) d t= & \int_{0}^{T}\left\|u^{\prime}\right\|_{H}^{2} d t-\frac{1}{2} b\left(u_{\mu}(T), u_{\mu}(T)\right) \\
+ & \frac{1}{2} b\left(u_{\mu}(0), u_{\mu}(0)\right)+\int_{0}^{T}\left(f, u_{\mu}\right) d t \\
& +\left(u_{\mu}^{\prime}(0), u(0)\right)-\left(u_{\mu}^{\prime}(T), u_{\mu}(T)\right)
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
X_{\mu}= & \int_{0}^{T}\left\|u_{\mu}^{\prime}\right\|_{H}^{2} d t-\frac{1}{2} b\left(u_{\mu}(T), u_{\mu}(T)\right)+\frac{1}{2} b\left(u_{\mu}(0), u_{\mu}(0)\right) \\
& +\int_{0}^{T}\left(f, u_{\mu}\right) d t+\left(u_{\mu}^{\prime}(0), u_{\mu}(0)\right)-\left(u_{\mu}^{\prime}(T), u_{\mu}(T)\right) \\
& -\int_{0}^{T}\left(A(v), u_{\mu}-v\right) d t-\int_{0}^{T}\left(A\left(u_{\mu}\right), v\right) d t .
\end{aligned}
$$

Hence, in virtue of (1.5) and (2.17) we get

$$
\begin{aligned}
\liminf _{\mu} X_{\mu} \leqq & \int_{0}^{T}\left\|u^{\prime}\right\|_{H}^{2} d t-\frac{1}{2} b(u(T), u(T))+\frac{1}{2} b\left(u_{0}, u_{0}\right) \\
& +\int_{0}^{T}(f, u) d t+\left(u_{1}, u_{0}\right)-\left(u^{\prime}(T), u(T)\right) \\
& -\int_{0}^{T}(A(v), u-v) d t-\int_{0}^{T}(\chi, v) d t .
\end{aligned}
$$

Combining (2.26) with (2.28), we have

$$
\int_{0}^{T}(\chi-A(v), u-v) d t \geqq 0 .
$$

Then, a well-known argument of the theory of monotone operators gives

$$
\chi=A(u) .
$$

From (1.1), we have

$$
u^{\prime \prime}=-A(u)-B u^{\prime}+f \in L^{2}\left(0, T ; V^{*}\right)
$$

This completes the proof of Theorem 1.
3. Some Examples. Let Ω be a bounded domain in R^{n} with a sufficient smooth boundary $\partial \Omega$. Points in Ω are denoted by $x=\left(x_{1}, \cdots\right.$, x_{n}) and the time variable is denoted by t. We consider the following initial boundary value problem

$$
\begin{array}{cl}
\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{j}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2 p-1}-\Delta \frac{\partial u}{\partial t}=f, \\
u(x, 0)=u_{0}(x), & \partial u(x, 0) / \partial t=u_{1}(x), \\
u(x, t) \equiv 0 & \text { on } \partial \Omega \times[0, T] \tag{3.3}
\end{array}
$$

where $f(x, t), u_{0}(x)$ and $u_{1}(x)$ are given functions and T is an arbitrary positive number.

Put

$$
\begin{equation*}
A(u)=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2 p-1} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
b(u, v)=\sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x \tag{3.5}
\end{equation*}
$$

If we take $H=L^{2}(\Omega), W=W_{0}^{1,2}(\Omega)$ and $V=W_{0}^{1,2 p}(\Omega)$, we easily see that our hypotheses on A and B are satisfied. Furthermore the wellknown theorem of Sobolev tells us that if

$$
r>1+\frac{n}{2}-\frac{n}{2 p}
$$

then

$$
\tilde{H}=W_{0}^{r, 2}(\Omega) \subset W_{0}^{1,2 p}(\Omega)
$$

and the injection of $W_{0}^{r, 2}(\Omega)$ into $W_{0}^{1,2 p}(\Omega)$ is continuous. Hence, we have

Theorem 2. For each $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right), u_{0} \in W^{1,2 p}(\Omega), u_{1} \in L^{2}(\Omega)$, the initial boundary value problem (3.1)-(3.3) has a solution $u(x, t)$ $\in L^{\infty}\left(0, T ; W_{0}^{1,2 p}(\Omega)\right)$ with

$$
\partial u(x, t) / \partial t \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)
$$

and

$$
\partial^{2} u(x, t) / \partial t^{2} \in L^{2}\left(0, T ; W^{-1,2 p / 2 p-1}(\Omega)\right)
$$

Acknowledgement. The author would like to express his gratitude to Professor R. Iino for his helpful discussions.

References

[1] Yu. A. Dubinskii: Quasilinear elliptic and parabolic equations of arbitrary order. Russian Math. Surveys, 23, 45-91 (1968).
[2] J. M. Greenberg, R. C. MacCamy, and V. J. Mizel: On the existence, uniqueness, and stability of solutions of the equation $\sigma^{\prime}\left(u_{x}\right) u_{x}+\lambda u_{x t x}=\rho_{0} u_{t t}$. J. Math. Mech., 17, 707-728 (1968).
[3] J. M. Greenberg: On the existence, uniqueness, and stability of solutions of the equation $X_{t t}=E\left(X_{x}\right) X_{x x}+\lambda X_{x x t}$. J. Math. Anal. Appl., 25, 575-591 (1969).
[4] F. E. Browder and Bui An Ton: Nonlinear functional equations in Banach spaces and elliptic super-regularization. Math. Z., 105, 177-195 (1968).
[5] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).

