212. Some Nonlinear Evolution Equations of Second Order

By Masayoshi TSUTSUMI

Department of Applied Physics, Waseda University, Tokyo

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 13, 1971)

1. Introduction. Let H and W be two real separable Hilbert spaces and V be a real separable reflexive Banach space with $V \subset W \subset H$. Let V be dense in W and in H and the natural injections of V into W and of W into H be respectively continuous and compact. We identify H with its dual:

$$V \subset W \subset H \subset W^* \subset V^*$$

where W^* and V^* are the duals of W and V, respectively. The pairing between V and V^* is denoted by (,) and that of W and W^* by \langle , \rangle .

We consider the following second order differential equation

(1.1) u'' + A(u) + Bu' = f

with initial conditions

(1.2) $u(0) = u_0, \quad u'(0) = u_1,$

where u=u(t), u'=du/dt, $u''=d^2u/dt^2$ and data u_0 , u_1 , f are given.

Assume that the nonlinear operator $A: V \rightarrow V^*$ has the following properties:

- 1) A is hemicontinuous and $||A(u)||_{V^*} \leq c ||u||_{V}^{p-1}$, p > 1, c > 0.
- 2) A is monotone, i.e., $(A(u) A(v), u v) \ge 0, \forall u, v \in V.$
- 3) $(A(u), u) = ||u||_{V}^{p}$.
- 4) A(u) is Fréchet differentiable at every $u \in V$.

5) A(u) is strongly homogeneous of degree p-1 in the sense of Dubinskii [1], i.e., for every $u, \eta \in V$

(1.3) $(A'(u)\eta, u) = (A'(u)u, \eta) = (p-1)(A(u), \eta)$ where A'(u) is a Fréchet derivative.

Let $B: W \to W^*$ be a bounded linear operator associated with a bounded symmetric bilinear form $b(\cdot, \cdot)$ on W, i.e.,

$$\begin{split} |b(u,v)| &\leq \|u\|_{W} \|v\|_{W}, \qquad b(u,v) = b(v,u), \\ b(u,v) &= \langle Bu,v \rangle, \qquad \forall u,v \in W, \end{split}$$

such that

(1.4) $b(u, u) \ge \alpha ||u||_{W}^{2} - \beta ||u||_{H}^{2}, \quad \alpha, \beta > 0,$ and that if $u_{n} \rightarrow u$ weakly in W as $n \rightarrow \infty$, (1.5) $\liminf b(u_{n}, u_{n}) \ge b(u, u).$

The main result of this note is the following theorem.

Theorem 1. Suppose that $u_0 \in V$, $u_1 \in H$ and $f \in L^2(0, T; H)$. Then there exists at least one function u such that

.] Some Nonlinear Evolution Equations

(1.6)
$$u(t) \in L^{\infty}(0, T; V),$$

(1.7) $u'(t) \in L^{\infty}(0, T; H) \cap L^{2}(0, T; W)$

(1.8) $u''(t) \in L^2(0, T; V^*)$

and satisfies (1.1) and (1.2).

The proof of Theorem 1 is stated in Section 2. In Section 3, as applications, the existence of the weak solutions of the initial-Dirichlet boundary value problem for the equation of the form

(1.9)
$$\frac{\partial^2 u}{\partial t^2} - \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_i} \right)^{2p-1} - \Delta \frac{\partial u}{\partial t} = f,$$
$$\Delta v = \sum_{i=1}^n \frac{\partial^2 v}{\partial x_i^2}, \qquad p > \mathbf{1},$$

will be established. When n=1, the equation (1.9) was studied by Greenberg, MacCamy and Mizel [2] and Greenberg [3].

2. Proof of Theorem 1.

Lemma 1. For $u(t) \in C^1([0, T]; V)$, we have

(2.1)
$$\int_{0}^{t} (A(u(s)), u'(s)) ds = \frac{1}{p} (A(u(t)), u(t)) - \frac{1}{p} (A(u(0)), u(0))$$
$$= \frac{1}{p} ||u(t)||_{V}^{p} - \frac{1}{p} ||u(0)||_{V}^{p}.$$

Proof. By the chain rule, we have

$$\left(\frac{d}{dt}A(u(t)), u(t)\right) = (A'(u(t))u'(t), u(t))$$

= $(p-1)(A(u(t)), u'(t))$

since A(u) is strongly homogeneous of degree p-1. Then we get

$$\frac{d}{dt}(A(u(t)), u(t)) = p(A(u(t)), u'(t))$$

which implies (2.1).

The following lemma can be found in [4].

Lemma 2. Let X be a reflexive separable Banach space. Then there exists a separable Hilbert space Y, being dense in X, such that the injection of Y into X is continuous.

Hence, we can construct a separable Hilbert space $\tilde{H} \subset W$, being dense in V, such that the injection of \tilde{H} into V is continuous. Then the injection of \tilde{H} into H is compact. Therefore we have

Lemma 3. The spectral problem: (2.2) $(w, v)_{\tilde{H}} = \lambda(w, v)_{H}, \quad \forall v \in \tilde{H},$ has the sequence of non zero solutions w_{j} corresponding to the sequence of eigenvalues λ_{j} :

(2.3) $(w_j, v)_{\tilde{H}} = \lambda_j (w_j, v)_H, \quad \forall v \in \tilde{H}, \quad \lambda_j > 0,$ where $(,)_H$ and $(,)_{\tilde{H}}$ are the scalar products in H and \tilde{H} , respectively.

In order to prove Theorem 1, we shall employ the Galerkin's method. We use the sequence of the functions w_j as the basis of \tilde{H} .

q.e.d.

Suppl.]

We look for an approximate solution $u_m(t)$ in the form:

$$u_m(t) = \sum_{i=1}^m g_{im}(t) w_i, \qquad g_{im}(t) \in C^{\infty}[0, T],$$

where the unknown functions g_{im} are determined by the following system of ordinary differential equations:

 $(u''_{m}(t), w_{i}) + (A(u_{m}(t)), w_{i}) + b(u'_{m}(t), w_{i}) = (f(t), w_{i})$ (2.4) $1 \leq j \leq m$, with initial conditions:

(2.5)
$$u_m(0) = u_{0m}, \quad u_{0m} = \sum_{i=1}^m \alpha_{im} w_i \rightarrow u_0 \text{ in } V \text{ strongly as } m \rightarrow \infty,$$

(2.6)
$$u'_m(0) = u_{1m}, \quad u_{1m} = \sum_{i=1}^m \beta_{im} w_i \to u_1 \text{ in } H \text{ strongly as } m \to \infty.$$

Then we have

Lemma 4. There exists a constant c independent of m, such that

$$\|u_m\|_{L^{\infty}(0,T;V)} \leq c,$$

(2.8)

$$\begin{aligned} \|u'_m\|_{L^{\infty}(0,T;H)\cap L^2(0,\pi;W)} &\leq c, \\ (2.9) \\ \|A(u_m)\|_{L^{\infty}(0,T;Y)} &\leq c, \end{aligned}$$

$$(2.0) \qquad || T(w_m) ||_{L^{\infty}(0,T;V^*)} \leq 0$$

$$\|Du_m\|_{L^2(0,T;W^*)} \ge 0$$
and

(2.11)

 $||u_m''||_{L^{2}(0,T;\tilde{H}^*)} \leq c.$ **Proof.** Multiplication of the *i*-th equation in (2.4) by g'_{im} , summation over *i* from 1 to *m*, integration with respect to *t* and Lemma 1 give

$$(2.12) \qquad \frac{1}{2} \|u'_m(t)\|_{H}^2 + \frac{1}{p} \|u_m(t)\|_{V}^p + \int_0^t b(u'_m(s), u'_m(s))ds \\ = \frac{1}{2} \|u'_m(0)\|_{H}^2 + \frac{1}{p} \|u_m(0)\|_{V}^p + \int_0^t (f(s), u'_m(s))ds$$

from which it follows that

(2.13)
$$\frac{1}{2} \|u'_{m}(t)\|_{H}^{2} + \frac{1}{p} \|u_{m}(t)\|_{V}^{p} + \alpha \int_{0}^{t} \|u'_{m}(s)\|_{W}^{2} ds$$
$$\leq c \left(1 + \int_{0}^{t} \|u'_{m}(s)\|_{H}^{2} ds\right).$$

The inequality (2.13) and our hypotheses on A and B yield (2.7)-(2.10).

Let P_m be the projection of $H \rightarrow [w_1, \dots, w_m]$ (=the space spanned

by w_1, \dots, w_m : $P_m h = \sum_{i=1}^m (h, w_i)_H w_i$.

Then we have $P_m \in \mathcal{L}(\tilde{H}, \tilde{H}); ||P_m||_{\mathcal{L}(\tilde{H}, \tilde{H})} \leq c.$ Since $\tilde{H} \subset V \subset W$, we get

 $\|P_m\|_{\mathcal{L}(\tilde{H},V)} \leq c \text{ and } \|P_m\|_{\mathcal{L}(\tilde{H},W)} \leq c$

which imply

 $\|P_m^*\|_{\mathcal{L}^{(V^*,\widetilde{H}^*)}} \leq c \text{ and } \|P_m^*\|_{\mathcal{L}^{(W^*,\widetilde{H}^*)}} \leq c.$ The equation (2.4) may be written as

$$u''_{m} = -P_{m}^{*}A(u_{m}) - P_{m}^{*}Bu'_{m} + P_{m}^{*}f$$

which assures (2.11).

q.e.d.

From Lemma 4 we see that there exist a function u and a sub-

sequence	u.	of	u_m	such	that
		-	111.		

(2.1)	4) $u_{\mu} \rightarrow u$	in $L^{\infty}(0, T; V)$ weakly star,
(2.1)	5) $u'_{\mu} \rightarrow u'$	in $L^{\infty}(0, T; H)$ weakly star and in $L^{2}(0, T; W)$
		weakly,
(2.1)	$6) \qquad u''_{\mu} \rightarrow u''$	in $L^2(0,T; ilde{H}^*)$ weakly,
(2.1)	7) $u_{\mu}(T) \rightarrow u(T)$	in W weakly,
(2.1)	8) $u'_{\mu}(T) \rightarrow u'(T)$	in H weakly,
(2.1)	9) $A(u_{\mu}) \rightarrow \chi$	in $L^{\infty}(0, T; V^*)$ weakly star,
and		
(2.2)	$0) \qquad Bu'_{\mu} \rightarrow Bu'$	in $L^2(0, T; W^*)$ weakly.
	Since the injections	of V into H and of W into H are compact, we

can fur	thermore assume	e that
(2.21)		in $I^{2}(0, T \cdot H)$ strongly
(2.21)	$u_{\mu} \rightarrow u$	$\lim L(0, 1, \Pi) \text{ strongly},$
(2.22)	$\mathcal{U}_{\mu}(T) \rightarrow \mathcal{U}(T)$	in H strongly
and		

(2.23) $u'_{\mu} \rightarrow u'$ in $L^2(0, T; H)$ strongly. To show that the function u(t) is a solution of (

To show that the function u(t) is a solution of (1.1), (1.2), it is sufficient to prove that

$$\chi = A(u).$$

Multiplying (2.4) by an arbitrary smooth function $\alpha(t)$, integrating over [0, T] and integrating the first term by parts, we have

$$(2.24) \qquad -\int_{0}^{T} (u'_{m}(t), \, \alpha'(t)w_{j})dt + \int_{0}^{T} (A(u_{m}(t)), \, \alpha(t)w_{j})dt \\ + \int_{0}^{T} b(u'_{m}(t), \, \alpha(t)w_{j})dt \\ = \int_{0}^{T} (f(t), \, \alpha(t)w_{j})dt + (u'_{m}(0), \, \alpha(0)w_{j}) - (u'_{m}(T), \, \alpha(T)w_{j})dt$$

Taking the limit of both sides with $m = \mu$, j fixed, we get

$$-\int_{0}^{T} (u'(t), \, \alpha'(t)w_{j})dt + \int_{0}^{T} (\chi, \, \alpha(t)w_{j})dt + \int_{0}^{T} b(u'(t), \, \alpha(t)w_{j})dt$$
$$= \int_{0}^{T} (f(t), \, \alpha(t)w_{j})dt + (u_{1}, \, \alpha(0)w_{j}) - (u'(T), \, \alpha(T)w_{j}), \, \forall j,$$

which implies

(2.25)
$$-\int_{0}^{T} (u'(t), \psi'(t))dt + \int_{0}^{T} (\chi, \psi(t))dt + \int_{0}^{T} b(u'(t), \psi(t))dt \\ = \int_{0}^{T} (f(t), \psi(t))dt + (u_{1}, \psi(0)) - (u'(T), \psi(T))$$

for any $\psi \in G$, where G denotes a family of functions defined by $G = \{\psi | \psi \in L^2(0, T; V), \psi' \in L^2(0, T; H)\}.$

In particular, setting $\psi = u$, we have

(2.26)
$$\begin{aligned} -\int_{0}^{T} \|u'\|_{H}^{2} dt + \int_{0}^{T} (\chi, u) dt + \frac{1}{2} b(u(T), u(T)) - \frac{1}{2} b(u_{0}, u_{0}) \\ = \int_{0}^{T} (f, u) dt + (u_{1}, u_{0}) - (u'(T), u(T)). \end{aligned}$$

The monotonicity of A gives

(2.27)
$$X_{\mu} = \int_{0}^{T} (A(u_{\mu}) - A(v), u_{\mu} - v) dt \ge 0, \quad \forall v \in L^{\infty}(0 \cdot T; V).$$

From (2.4) we have
$$\int_{0}^{T} (A(u_{\mu}), u_{\mu}) dt = \int_{0}^{T} ||u'||_{H}^{2} dt - \frac{1}{2} b(u_{\mu}(T), u_{\mu}(T)) + \frac{1}{2} b(u_{\mu}(0), u_{\mu}(0)) + \int_{0}^{T} (f, u_{\mu}) dt$$

from which it follows that

$$\begin{split} X_{\mu} = & \int_{0}^{T} \|u_{\mu}'\|_{H}^{2} dt - \frac{1}{2} b(u_{\mu}(T), u_{\mu}(T)) + \frac{1}{2} b(u_{\mu}(0), u_{\mu}(0)) \\ & + \int_{0}^{T} (f, u_{\mu}) dt + (u_{\mu}'(0), u_{\mu}(0)) - (u_{\mu}'(T), u_{\mu}(T)) \\ & - \int_{0}^{T} (A(v), u_{\mu} - v) dt - \int_{0}^{T} (A(u_{\mu}), v) dt. \end{split}$$

 $+(u'_{u}(0), u(0))-(u'_{u}(T), u_{u}(T))$

Hence, in virtue of (1.5) and (2.17) we get

$$\liminf_{\mu} X_{\mu} \leq \int_{0}^{T} ||u'||_{H}^{2} dt - \frac{1}{2} b(u(T), u(T)) + \frac{1}{2} b(u_{0}, u_{0})$$

(2.28)
$$+ \int_{0}^{T} (f, u) dt + (u_{1}, u_{0}) - (u'(T), u(T)) \\ - \int_{0}^{T} (A(v), u - v) dt - \int_{0}^{T} (\chi, v) dt.$$

Combining (2.26) with (2.28), we have

$$\int_0^T (\chi - A(v), u - v) dt \ge 0.$$

Then, a well-known argument of the theory of monotone operators gives

$$\chi = A(u).$$

From (1.1), we have

$$u'' = -A(u) - Bu' + f \in L^2(0, T; V^*).$$

This completes the proof of Theorem 1.

3. Some Examples. Let Ω be a bounded domain in \mathbb{R}^n with a sufficient smooth boundary $\partial \Omega$. Points in Ω are denoted by $x=(x_1, \cdots, x_n)$ and the time variable is denoted by t. We consider the following initial boundary value problem

(3.1)
$$\frac{\partial^2 u}{\partial t^2} - \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_i} \right)^{2p-1} - \Delta \frac{\partial u}{\partial t} = f,$$

(3.2)
$$u(x, 0) = u_0(x), \quad \partial u(x, 0) / \partial t = u_1(x),$$

(3.3) $u(x,t) \equiv 0$ on $\partial \Omega \times [0,T]$,

where f(x, t), $u_0(x)$ and $u_1(x)$ are given functions and T is an arbitrary positive number.

Put

Suppl.]

Some Nonlinear Evolution Equations

(3.4)
$$A(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_i} \right)^{2p-1}$$

and

(3.5)
$$b(u, v) = \sum_{i=1}^{n} \int_{a} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} dx.$$

If we take $H = L^2(\Omega)$, $W = W_0^{1,2}(\Omega)$ and $V = W_0^{1,2p}(\Omega)$, we easily see that our hypotheses on A and B are satisfied. Furthermore the well-known theorem of Sobolev tells us that if

$$r {>} 1 {+} rac{n}{2} {-} rac{n}{2p}$$

then

$$\tilde{H} = W_0^{r,2}(\Omega) \subset W_0^{1,2p}(\Omega)$$

and the injection of $W_0^{r,2}(\Omega)$ into $W_0^{1,2p}(\Omega)$ is continuous. Hence, we have

Theorem 2. For each $f \in L^2(0, T; L^2(\Omega))$, $u_0 \in W^{1,2p}(\Omega)$, $u_1 \in L^2(\Omega)$, the initial boundary value problem (3.1)–(3.3) has a solution u(x, t) $\in L^{\infty}(0, T; W_0^{1,2p}(\Omega))$ with

$$\partial u(x,t)/\partial t \in L^{\infty}(0,T;L^2(\Omega)) \cap L^2(0,T;W^{1,2}_0(\Omega))$$

and

$$\partial^2 u(x, t) / \partial t^2 \in L^2(0, T; W^{-1, 2p/2p-1}(\Omega)).$$

Acknowledgement. The author would like to express his gratitude to Professor R. Iino for his helpful discussions.

References

- Yu. A. Dubinskii: Quasilinear elliptic and parabolic equations of arbitrary order. Russian Math. Surveys, 23, 45-91 (1968).
- [2] J. M. Greenberg, R. C. MacCamy, and V. J. Mizel: On the existence, uniqueness, and stability of solutions of the equation $\sigma'(u_x)u_x + \lambda u_{xtx} = \rho_0 u_{tt}$. J. Math. Mech., **17**, 707–728 (1968).
- [3] J. M. Greenberg: On the existence, uniqueness, and stability of solutions of the equation $X_{tt} = E(X_x)X_{xxt} + \lambda X_{xxt}$. J. Math. Anal. Appl., 25, 575–591 (1969).
- [4] F. E. Browder and Bui An Ton: Nonlinear functional equations in Banach spaces and elliptic super-regularization. Math. Z., 105, 177-195 (1968).
- [5] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).

955