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INTRODUCTION

The investigation of the exact solutions for
nonlinear evolution equations plays an important role in 
the study of soliton theory. In recent years, searching 
for explicit solutions of nonlinear evolution equations 
by using various methods has become the main goal for 
many authors and many powerful methods to construct 
exact solutions of nonlinear evolution equations have 
been established and developed such as the tanh-
function expansion and its various extension [8, 9] the 
Jacobi elliptic function expansion [10, 11]. Very
recently, Wang et al. [1] introduced a new method 
called the (G′/G)-expansion method to look for
travelling wave solutions of nonlinear evolution
equations [2, 7]. The (G′/G)-expansion method is based 
on the assumptions that the travelling wave solutions 
can be expressed by a polynomial in (G′/G) and that G 
= G(ξ) satisfies a second order linear ordinary
differential equation(ODE). Recently modified (G′/G)-
expansion method is presented to derive traveling wave 
solutions for a class of nonlinear partial differential
equations called Whitham-Broer-Kaup-Like equations. 
The paper is arranged as follows. In Section 2, we
describe briefly the (G′/G)-expansion method. In
Sections 3-4, we apply the method to thecombined 
Kdv-MKdv equation,the Shorma-Tasso-Olver equation, 
respectively.   In   Section   5   we   apply   the   method
for the (2+1)-dimensional Konopelchenko-Dubrovsky
equation. In section 6 some conclusions are given.

DESCRIPTION OF THE
(G∼ /G)-EXPANSION METHOD

Considering the nonlinear partial differential
equation in the form

x t tt xt xxP(u,u , u , u , u ,u ,....) 0= (1)

where u = u(x,t) is an unknown function, P is a
polynomial in u = u(x,t) and its various partial
derivatives, in which the highest order derivatives and 
nonlinear terms are involved. In the following we give 
the main steps of the (G′/G)-expansion method.

Step 1: Combining the independent variables x and t 
into one variable ξ = x-vt, we suppose that

u(x,t) u( ), x vt= ξ ξ = − (2)

The travelling wave variable (2) permits us to
reduce Eq(1) to an ODE for G = G(ξ), namely

2P(u, vu , u , v u , vu ,u,... .) 0′ ′ ′′ ′′ ′′− − = (3)

Step 2: Suppose that the solution of ODE (3) can be 
expressed by a polynomial in (G′/G) as follows

m
G

u( ) ( ) ....
G
′

ξ = α + (4)

where G = G(ξ) satisfies the second order LODE in the 
form

G G G 0′′ ′+ λ + µ = (5)

αm,…,λ and µ are constants to be determined later
αm≠0, the unwritten part in 4 is also a polynomial in 
(G′/G), but the degree of which is generally equal to or 
less than m-1, the positive integer m can be determined 
by  considering  the  homogeneous balance between the
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highest order derivatives and nonlinear terms appearing 
in ODE (3).

Step 3: By substituting (4) into Eq. (3) and using the 
second order linear ODE (5), collecting all terms with 
the  same  order  (G′/G) together, the left-hand side of 
Eq. (3) is converted into another polynomial in (G′/G).
Equating each coefficient of this polynomial to zero 
yields a set of algebraic equations for αm,…,λ and µ.

Step 4:Assuming that the constants αm,…,λ and µ can 
be obtained by solving the algebraic equations in Step 
3, since the general solutions of the second order LODE 
(5) have been well known for us, then substituting 
αm,…,v and the general solutions of Eq. (5) into (4) we 
have more travelling wave solutions of the nonlinear 
evolution equation (1).

COMBINED Kdv-MKdv EQUATION

In order we consider the combined Kdv-MKdv
equation in the form

2
t x xx xxxu puu qu u u 0+ + + = (6)

The travelling wave variable below

u(x,t) u( ), x vt= ξ ξ = − (7)

Permits us converting Eq.(7) into an ODE for 

2 31 1
G G( ) vu p(u ) q(u ) u 0

2 3
′ ′ ′ ′′′= ξ − + + + =

Integrating it with respect to ξ once yields

2 31 1
c vu p(u ) q(u ) u 0

2 3
′′− + + + = (8)

where c is an integration constant that is to be
determined later. Suppose that the solution of ODE (8) 
can be expressed by a polynomial in (G′/G) as follows:

m
G

u( ) ( ) ....
G
′

ξ = α + (9)

where G = G(ξ) satisfies the second order LODE in the 
form

G G G 0′′ ′+ λ + µ = (10)

α1, α0, v and µ are to be determined later.

By using (9) and (10) and considering the
homogeneous  balance  between  u″  and  u3  in  Eq. (8) 
we  required  that  3m = m+2 then m = 1. So we can 
write (9) as:

1 0
G

u( ) ( )
G
′

ξ = α + α (11)
Therefore

3 3 3 2 2 2 3
1 1 0 1 0 0

G G G
u ( ) 3 ( ) 3 ( )

G G G
′ ′ ′

= α + α α + α α + α (12)

2 2 2
1 1 0 0

G G
u ( ) 2 ( )

G G
′ ′

= α + α α + α (13)

By using (11) and (10) it is derived that

3 2
1 1

2
1 1 1

G Gu 2 ( ) 3 ( )
G G

G
( 2 )( )

G

′ ′
′′ = α + α λ

′
+ α λ + α µ +αλµ

(14)

By substituting (11)-(14) into Eq. (8) and collecting 
all terms with the same power of (G′/G) together, the 
left-hand side of Eq. (8) is converted into another
polynomial in (G′/G). Equating each coefficient of this 
polynomial to zero, yields a set of simultaneous
algebraic equations for α1, α0, v, λ, µ and c as follows:

2 3
0 0 0 1

1 1
c v p q 0

2 3
− α + α + α + α λ µ = (15)

2 2
1 1 0 1 0 1 1v p q 2 0− α + α α + α α + α λ + α µ =

2 2
1 1 0 1

1
p q 3 0

2
α + α α + α λ =

3
1 1

1
q 2 0

3
α + α =

By solving the algebraic equations above, yields

1 0

6
p i 6

q6
i,

q 62q i
q

− ± λ
α = ± α = (16)

2 2pv 2
4q 2
− λ= − + µ

3 2 3 3

2

p p 6 p 6 6 i i 6c
24q 4q q1 1 1 14q i q i 4q i q

q q q q

λ λ µ µλ λ µλ
= + ± − ± + + (17)

By using (16), expression (11) can be written as
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6
p i 6

q6 G
u( ) i( )

q G 62q i
q

− ± λ
′

ξ = ± + (18)

And
2 2px ( 2 )t

4q 2
− λξ = − − + µ

Eq (18) is the formula of a solution of Eq (8), provided that the integration constant c in Eq. (8) is taken as that 
in (17). Substituting the general solutions of Eq. (10) into (18) we have three types of travelling wave solutions of 
the Kdv-MKdv equation (6) as follows:
When 2 4 0λ − µ 

2 2
2 1 2

2 2
1 2

61 1 i 6C sinh 4 C cosh 4 q6( 4 ) 2 2u( ) i( )1 1q 26C cosh 4 C sinh 4 2q i2 2 q

− ± λλ − µξ+ λ − µξλ − µ λ
ξ = ± + −

λ − µξ+ λ − µξ

Where
2 2px ( 2 )t

4q 2
− λξ = − − + µ

C1 and C2, are arbitrary constants. When 2 4 0λ − µ 

2 2
2 1 2

2 2
1 2

61 1 p i 6Cs in 4 C cos 4 q6(4 ) 2 2u( ) i( )1 1q 26C cos 4 C sin 4 2q i2 2 q

− ± λ− µ − λ ξ + µ − λ ξµ − λ λ
ξ = ± + −

µ − λ ξ + µ − λ ξ

When 2 4 0λ − µ =

2

1 2

6
iC

q
u( )

C C

±
ξ =

+ ξ

Where C1 and C2 are arbitrary constants.

SHORMA-TASSO-OLVER EQUATION

Now we consider the Shorma-Tasso-Olver Eq in 
the form

3 2
t x xx xxx

3
u (u ) (u ) u 0

2
+ α + α + α = (19)

and look for the travelling wave solution of Eq. (19) in 
the form

u(x,t) u( ), x vt= ξ ξ = − (20)

where the speed v of the travelling waves is to be 
determined later.

By using the travelling wave variable (20), Eq. (19) 
is converted into an ODE for u = u(ξ)

3 23
vu (u ) (u ) u 0

2
′ ′ ′′ ′′′− + α + α + α = (21)

Integrating it with respect to ξ once yields

3 23
c vu (u ) (u ) u 0

2
′ ′′− + α + α + α = (22)

where c is an integration constant that is to be
determined later.Considering the homogeneous balance 
between u″ and u3 in Eq. (22) 3m = m+2→m = 1 we 
can suppose that the solution of Eq. (22) is of the form

1 0
G

u( ) ( )
G
′

ξ = α + α (23)

where G = G(ξ) satisfies the second order LODE in the 
form

G G G 0′′ ′+ λ + µ = (24)
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α1, α0, λ and µ are to be determined later. Therefore

3 3 3 2 2 2 3
1 1 0 1 0 0

G G G
u ( ) 3 ( ) 3 ( )

G G G
′ ′ ′

= α + α α + α α + α (25)

By using (23) and (24) it is derived that

3 2 2
1 1 1 1 1

G G G
u 2 ( ) 3 ( ) ( 2 )( )

G G G
′ ′ ′′′ = α + α λ + α λ + α µ +αλµ (26)

2 3 2 2
1 1 1 0

2
1 1 0 1 0

G G(u ) 2 ( ) ( 2 2 )( )
G G

G
( 2 2 )( ) 2

G

′ ′
′ = − α + − α λ − α α

′
+ − α µ − α α λ − α α µ

(27)

Substituting the expressions (23) and (25)-(27) into 
Eq. (22) and collecting all terms  with the same power 
of (G′/G) together, the left hand sides of Eq.(22) are 
which is the solitary wave solution of the Shorma-
Tasso-Olver Equation.
When 2 4 0λ − µ 

2 2
1 2

2

2 2
1 2

1 1C sin 4 C cos 4
2 2u( ) 2 4 ( )1 1 2C cos 4 C sin 4
2 2

− µ − λ ξ + µ − λ ξ λ
ξ = λ − µ +

µ − λ ξ + µ − λ ξ

When 2 4 0λ − µ =

2

1 2

2C
u( )

C C
ξ =

+ ξ

2x (29 8 9 )t
2
α

ξ = − λ − µ − λ

Where C1 and C2 are arbitrary constants.

(2+1)-DIMENSIONAL
KONOPELCHENKO-DUBROVSKY EQUATION

In this section we consider the (2 + 1)-dimensional
Konopelchenko-Dubrovsky equation. in the form

2
2

t xxx x x y x y x
3a

u u 6buu u u 3v 3avu 0, u v
2

− − + − + = = (30)

Using the wave solutions

u(x,t) u( ), kx ly vt= ξ ξ= + + (31)

and after integration with respect to ξ, we obtaine the 
second order differential equation

2 2
3 2 33l 3al a

c (v )u k u ( 3bk)u ku 0
k 2 2

′′+ − − + − + = (32)

where c is an integration constant that is to be
determined  later. Considering the homogeneous
balance  between  u″  and  u3 in  Eq. (32) 3m = 
m+2→m = 1 we  can  suppose  that  the  solution  of
Eq. (32) is of the form

1 0
G

u( ) ( )
G
′

ξ = α + α (33)

where G = G(ξ) satisfies the second order LODE in the 
form

G G G 0′′ ′+ λ + µ = (34)

α1, α0, λ and µ are to be determined later. On
substituting (33) into (32), collecting all terms with the 
same powers of (G′/G) and setting each coefficient to 
zero, we obtain the following system of algebraic
equations:

2 2 3
2 2 1

0 1 0
3l 3al ka

c (v ) k ( 3bk) 0
k 2 2

α
+ − α − λµα + − α + = (35)

2
3 2

1 1 1

2 0
1 0

0 1

3l
(v ) k ( 2 )

k
3al 3ka

2( 3bk) 0
2 2

− α − α λ + α µ

α α
+ − α α + =

2 2
3 2 1 0

1 1
3al 3ka

3k ( 3bk) 0
2 2

α α
− α λ + − α + =

2 3
3 1

1
ka

2k 0
2
α

− α + =

On solving the above algebraic by using the Maple,
we get

1 0 2

2k 1 2b
,

a a ka a
λ

α = ± α = ± − + (36)
And for 

1 0 2

2k 1 2b
,

a a ka a
λ

α = α = − +

we obtain

2
2 2 2

2

2 2

2

9l 1 2b
v k 2k 3al( )

k a ka a
12k b 12bl 18kb 3k 3 l

a a a 2

λ
= + λ + µ − − +

λ λ+ − + + − λ
(37)

Substituting Eqs. (36), (37) into the Eq.(35), we
obtain the integration constant c. Substituting (36) into 
(33) yields:

2

2k G 1 2b
u( ) ( )

a G a ka a
′ λ

ξ = ± ± − +
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On substituting the general solutions of the second order LODE (34) into formulae, we deduce the following 
traveling wave solutions

Case 1: If 2 4 0λ − µ   then we have

2 2
1 2

2
2

2 2
1 2

1 1
C sinh 4 C cosh 42k 1 2b2 2u( ) 4 ( )

1 1a a ka a 2C cosh 4 C sinh 4
2 2

λ − µξ+ λ − µξ λ λξ = ± λ − µ ± − + −
λ − µξ+ λ − µξ

Case 2: If 2 4 0λ − µ   then we have

2 2
1 2

2
2

2 2
1 2

1 1
Cs in 4 C cos 42k 1 2b2 2u( ) 4 ( )

1 1a a ka a 2C cos 4 C sin 4
2 2

− µ − λ ξ + µ − λ ξ λ λξ = ± µ − λ ± − + −
µ − λ ξ + µ − λ ξ

Case 3: When 2 4 0λ − µ =

2

1 2

2k C
au( )

C C

±
ξ =

+ ξ

2 2 2
2 2 2

2 2

9l 1 2b 12k b 12bl 18kb 3k
x ( k 2k 3al( ) 3 l)t

k a ka a a a a 2
λ λ λ

ξ = − + λ + µ − − + + − + + − λ

Where C1 and C2 are arbitrary constants.

CONCLUSIONS

The (G′/G)-expansion method has its own
advantages: direct, concise, elementary that the general 
solutions of the second order LODE have been well 
known for many researchers and effective that it can be 
used for many other nonlinear evolution equations, for 
instance the Burgers equation [2], the Kdv equation [3], 
the MKdv equation [3], the Boussinesq equation [3], 
the Kdv-Burgers equation [6], the Gardner equation [4] 
and various variant Boussinesq equations [5, 7] and so 
on. The researching results of these equations
mentioned will be appeared elsewhere. We have noted 
that the (G′/G)-expansion method changes the given 
difficult problems into simple problems which can be 
solved easily.
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