SCISPACE
 formerly Typeset

〇 Open access • Journal Article • DOI:10.1007/BF01848147
Some notes on the upper and lower radicals - Source link
Trân Trong Huě, F. A. Szász
Published on: 01 Jun 1982 - Periodica Mathematica Hungarica (Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.)

Related papers:

- Subidempotent radical classes
- Characterizing the nil radical of a gamma ring
- A note on Brown-McCoy radicals of「-rings
- An upper radical property and an answer to a problem of L.C.A. van Leeuwen and G.A.P. Heyman
- On certain new radicals arising from a given radical

SOME NOTES ON THE UPPER AND LOWER RADICALS

by
TRÂN TRONG HUE (Hanoi) and F. A. SZÁSZ (Budapest)

§ 1. Introduction

In the following only associative rings are considered. A radical class or briefly a radical will mean a radical in the sense of Kuroš and Amitsur. For the basic concepts of the radical theory we refer to [2], [6] and [7].

For a given class M of rings, we denote the homomorphic closure of \mathbf{M} by $\boldsymbol{H}(\mathbf{M})$ and, the hereditary closure of \mathbf{M} by $J(\mathbf{M})$, these are,
$H(\mathbf{M})=\{A \mid A$ is a homomorphic image of some M-ring $\}$
$J(\mathbf{M})=\{A \mid A$ is an accessible subring of some \mathbf{M}-ring $\}$
$\mathscr{U}(\mathbf{M})$ denotes the upper radical class determined by \mathbf{M} and $\mathscr{L}(\mathbf{L})$ denotes the lower radical class determined by L.

The class \mathbf{M} is said to be regular if it satisfies the following condition:

$$
H(I) \cap \mathbf{M} \neq \varnothing, \text { for every } 0 \neq I \triangleleft A \in \mathbf{M}
$$

where $I \triangleleft A$ means I is an ideal of A. Note: we write I for the class $\{I\}$ containing I as its member.

A regular class may not contain the ring 0 , for the sake of short statement we shall assume that regular classes contain the ring 0 .

It is well-known that if the class \mathbf{M} is regular then

$$
\mathscr{U}(\mathbf{M})=\{A \mid H(A) \cap \mathbf{M}=0\}
$$

In [5] W. G. Leavitt and Yu-Lee Lee have shown that if \mathbf{L} is a homomorphically closed class of rings, then

$$
\mathfrak{L}(\mathbf{L})=\{A \mid J(A / I) \cap \mathbf{L} \neq 0 \text { for every } A \mid I \neq 0\}
$$

In 2 we shall consider conditions for classes $\mathbf{L}_{i}, \mathbf{M}_{I}, i=1,2$, such that the upper and lower radical classes determine the same radical, that is,

$$
\mathfrak{L}\left(\mathbf{L}_{i}\right)=\mathscr{U}\left(\mathbf{M}_{i}\right) \mathscr{U}\left(\mathbf{M}_{i}\right)=\mathscr{U}\left(\mathbf{M}_{j}\right) \text { and } \mathfrak{L}\left(\mathbf{L}_{i}\right)=\mathscr{L}\left(\mathbf{L}_{j}\right) .
$$

AMS (MOS) subject classification (1980). Primary 16A21.
Key words and phrases. Radical, upper radical, lower radical, homomorphic closure, hereditary closure, special radical, supernilpotent radical.

A class M of rings has been called special by V. A. Andrunakievič [1] if it is a hereditary class of prime rings with the property:

If $I \triangleleft A$ with $I \in M$ then $A \mid I^{*} \in \mathbf{M}$, where I^{*} is the two-sided annihilator of I in A.

A radical R is called special if R is an upper radical determined by some special class.

A problem concerning the notion of the special radical can be naturally raised:

Find conditions for classes \mathbf{M} and \mathbf{L} auch that the upper radical determined by \mathbf{M} and, the lower radical determined by \mathbf{L} are special. This problem will be solved in §3.

Andrunakievič [1] has shown that every special radical is supernilpotent. The following theorem will be neccessary later on.

THEOREM 1 (cf. [1], Theorem 6, pp. 198). Let R be a supernilpotent radical then the upper radical determined by the class of all prime R-semisimple rings is the smallest special radical containing R.

§ 2. The coincidence of upper radical classes and lower radical classes

$$
\text { 2.1 Criterion for } \mathfrak{L}(\mathbf{L})=\mathscr{U}(\mathbf{M})
$$

Lemma 2. Let \mathbf{L} be a homomorphically closed class. Then a ring A is $\mathfrak{L}(\mathbf{L})$ semisimple if and only if $J(A) \cap \mathbf{L}=0$ holds.

Proof. Assume a ring A be $\mathscr{L}(\mathbf{L})$-semisimple since every semisimple class of a associative rings is hereditary, so every accessible non-zero subrings of A is $\mathscr{L}(\mathbf{L})$-semisimple. This implies $J(A) \cap \mathbf{L}=0$.

Conversely, suppose that a ring A satisfies the condition $J(A) \cap \mathbf{L}=0$. Assume B be a $\mathfrak{L}(\mathbf{L})$-ideal of the ring A. of $B \neq 0$ then every non-zero homomorphic image of B contains a non-zero accessible \mathbf{L}-subring. In particular, B has a non-zero accessible L-subring. From this it follows $J(A) \cap \mathbf{L} \neq 0$, a contradiction. Thus $B=0$ and the ring A is $\mathfrak{L}(\mathbf{L})$-semisimple.

Theorem 3. Suppose that the class M is regular and the class \mathbf{L} is homomorphically closed. Then $\mathscr{L}(\mathbf{L})=\mathscr{\ell}(\mathbf{M})$ if and only if the following conditions are satisfied:
(1) $\mathbf{L} \cap \mathbf{M}=0$,
(2) For every non-zero $\operatorname{ring} A$, if $J(A) \cap \mathbf{L}=0$ then $H(A) \cap \mathbf{M} \neq 0$.

Proof. In view of Lemma 2, the necessity is straightforward,
Conversely, assume that the conditions of the theorem are satisfied. Since \mathbf{L} is homomorphically closed, so from the first condition follows that no ring of L can be mapped homomorphically onto any non-zero M-ring. Hence the inclusion $L \subseteq \mathscr{U}(\mathbf{M})$ holds. By the minimality of the lower radical we have $\mathscr{L}(\mathbf{L}) \subseteq \mathscr{U}(\mathbf{M})$. Now, suppose that a ring A does not belong to the class $\mathscr{L}(\mathbf{L})$. By Lemma 2 the non-zero $\mathscr{L}(\mathbf{L})$-semisimple ring $A / \mathscr{L}(\mathbf{L})(A)$ has no non-zero accessible L-subrings. By the second condition the ring $A / \mathscr{L}(\mathrm{L})(A)$ can be mapped homomorphically onto some non-zero M-ring. This implies $H(A) \cap$ $\cap \mathbf{M} \neq 0$ and so the ring A is not in $\mathscr{U}(\mathbf{M})$. Thus we have $\mathfrak{S}(\mathbf{L})=\mathscr{U}(\mathbf{M})$.

2.2. Criterion for $\mathscr{U}\left(\mathbf{M}_{1}\right)=\mathscr{U}\left(\mathbf{M}_{2}\right)$

Theorem 4. Suppose $\mathbf{M}_{i}(i=1,2)$ are regular classes of rings. Then $\vartheta\left(\mathbf{M}_{1}\right)=\vartheta\left(\mathbf{M}_{2}\right)$ if and only if

$$
H(A) \cap \mathbf{M}_{j} \neq 0
$$

for every ring A in $\mathbf{M}_{i}(i=1,2)$.
Proof. The necessity is obvious.
Now assume that the conditions of theorem are valid. We have to show that $\mathscr{U}\left(\mathbf{M}_{1}\right)=\mathscr{U}\left(\mathbf{M}_{2}\right)$. Let A be an arbitrary ring in \mathbf{M}_{1} and, B any non-zero ideal of A. Since the class \mathbf{M}_{1} is regular so B can be mapped homomorphically onto some non-zero \mathbf{M}_{1}-ring C. By the hypothesis the ring C can be mapped homomorphically onto some non-zero \mathbf{M}_{2}-ring. This implies that every nonzero ideal of A can be mapped onto some non-zero \mathbf{M}_{2}-ring.

Thus the ring A is $\mathscr{U}\left(\mathbf{M}_{2}\right)$-semisimple, and so each ring A in \mathbf{M}_{1} is $\mathfrak{U}\left(\mathbf{M}_{2}\right)$ semisimle. Since $\mathscr{U}\left(\mathbf{M}_{1}\right)$ is the largest radical for which every ring in \mathbf{M}_{2} is semisimple, we must have $\mathfrak{U}\left(\mathbf{M}_{2}\right) \leq \mathcal{U}\left(\mathbf{M}_{1}\right)$. Similarly, also $\mathfrak{U}\left(\mathbf{M}_{1}\right) \leq \mathcal{U}\left(\mathbf{M}_{2}\right)$ holds.

Corollary. Let \mathbf{N} be a subclass of a regular class \mathbf{M}. Then $\mathfrak{\ell}(\mathbf{N})=\mathfrak{U}(\mathbf{M})$ if the following condition is satisfied:

For every non-zero ring $A \in \mathbf{M}$,

$$
H(A) \cap \mathbf{N} \neq 0
$$

Proof. It is easy to see that if the condition (α) is valid then the subclass N is regular. So the conditions of Theorem 3 are satisfied.

Remark. In general, the converse is not true. For instance, let A be a non-zero simple ring. We take $\mathbf{M}=\{A, A+A\}$ and $\mathbf{N}=\{A+A\}$. Clearly, the class M is regular and $\mathscr{U}(\mathbf{N})=\mathscr{U}(\mathbf{M})$ but the condition (α) is not valid.

2.3. Criterion for $\mathscr{L}\left(\mathbf{L}_{1}\right)=\mathscr{L}\left(\mathbf{L}_{2}\right)$

Theorem 2. Let $\mathbf{L}_{i}, i=1,2$, be homomorphically closed classes. Then $\mathfrak{L}\left(\mathbf{L}_{1}\right)=\mathfrak{L}\left(\mathbf{L}_{2}\right)$ if and only if the following condition is satisfied:
(β) For every non-zero ring $A \in \mathbf{L}_{i}, J(A) \cap \mathbf{L}_{j} \neq 0 \quad(i, j=1,2)$.
Proof. Suppose $\mathscr{L}\left(\mathbf{L}_{1}\right)=\mathscr{L}\left(\mathbf{L}_{2}\right)$. Then every ring A in \mathbf{L}_{i} is a $\mathscr{L}\left(\mathbf{L}_{j}\right)$-radical and by Lemma 2 it follows $J(A) \cap \mathbf{L}_{j} \neq 0$.

Conversely, assume that the classes $\mathbf{L}_{i}, i=1,2$, satisfy the condition of theorem. Let A be an arbitrary ring in \mathbf{L}_{1}. Since the class \mathbf{L}_{1} is homomorphically closed, so every homomorphic image of A is in $\mathbf{L}_{\mathbf{1}}$. Therefore, by the condition (β) every homomorphic image of A has a non-zero accessible \mathbf{L}_{2} subring. Hence the ring A is in $\mathscr{L}\left(\mathbf{L}_{2}\right)$. From that follows $\mathscr{L}\left(\mathbf{L}_{1}\right) \subseteq \mathscr{L}\left(\mathbf{L}_{2}\right)$. Similarly, also $\mathfrak{L}\left(\mathbf{L}_{2}\right) \subseteq \mathscr{L}\left(\mathbf{L}_{1}\right)$ holds.

Corollary. Let \mathbf{L}_{0} be a subclass of a homomorphically closed class \mathbf{L}. If $J(A) \cap \mathbf{L}_{0} \neq 0$ holds for every non-zero ring A in \mathbf{L}, then $\mathbf{L}\left(L_{0}\right)=\mathbf{L}(L)$, provided that \mathbf{L}_{0} is homomorphically closed.

§ 3. Criterion for the upper and lower radical to be special

Lemma 6. Let \mathbf{L} be a homomorphically closed class of rings such that the lower radical $\mathscr{L}(\mathbf{L})$ determined by \mathbf{L} is supernilpotent. Then the radical $\mathscr{L}(\mathbf{L})$ is special if and only if the following condition is satisfied:
(γ) For a non-zero ring A if $J(A) \cap \mathbf{L}=0$ then

$$
H(A) \cap P(\mathbf{L}) \neq 0
$$

where

$$
P(\mathbf{L})=\{A \mid A \text { is a prime ring and } J(A) \cap \mathbf{L}=0 .
$$

Proof. Let \mathbf{L} be a homomorphically closed class of rings such that $\mathscr{L}(\mathbf{L})$ is supernilpotent. By Lemma 2 every ring in $P(\mathbf{L})$ is prime $\mathscr{L}(\mathbf{L})$-semisimple. By Theorem 1 the radical $\mathfrak{L}(\mathbf{L})$ is special if and only if $\mathscr{L}(\mathbf{L})=\mathscr{U}(P(\mathbf{L}))$.

Clearly, the relation $\mathbf{L} \cap P(\mathbf{L})=0$ always holds. Thus, by Theorem 3 $\mathscr{L}(\mathbf{L})=\mathscr{U}(P(\mathbf{L}))$ if and only if condition (γ) is valid.

Theorem 7. If \mathbf{L} is a hereditary and homomorphically closed class containing all zero-rings then the lower radical $\mathscr{L}(\mathbf{L})$ is special if and only if the property (γ) is valid.

Proof. In [4] Hoffman and Leavitt have shown that if L is hereditary, then the lower radical $\mathscr{S}(\mathbf{L})$ is hereditary. Hence, by the hypothesis, the radical $\mathscr{L}(\mathbf{L})$ is supernilpotent. Thus the theorem is an immediate consequence of Lemma 6.

Lemma 8. Let \mathbf{M} be a regular class of rings such that the upper radical $\mathfrak{l l}(\mathbf{M})$ is supernilpotent. Then the radical $\mathfrak{U}(\mathbf{M})$ is special if the following condition is satisfied:
(x) for every non-zero $\operatorname{ring} A \in \mathbf{M}$,

$$
H(A) \cap \mathbf{M} \cap \mathbf{P} \neq 0
$$

where \mathbf{P} is the class of all prime rings.

Proof. Let \mathbf{M} be a regular class satisfying the conditions of the lemma. Consider the class $\mathbf{N}=\mathbf{M} \cap \mathbf{P}$. By the Corollary of Theorem 4 we have $\mathscr{U}(\mathbf{M})=\mathscr{U}(\mathbf{N})$ if condition (α) is satisfied. Next, we denote the class of prime $\mathfrak{\ell}(\mathbf{M})$-semisimple ring by N_{1} that is, $\mathbf{N}_{1}=\overline{\mathbf{M}} \cap \mathbf{P}$, where

$$
\begin{equation*}
\overline{\mathbf{M}}=\{A \mid H(I) \cap \mathbf{M} \neq 0, \text { for every } 0 \neq I \triangleleft A\} \tag{*}
\end{equation*}
$$

Clearly $\mathbf{N} \subseteq \mathbf{N}_{1}$. Since class of prime rings and semisimple class are hereditary so the class \mathbf{N}_{1} is hereditary.

Let a ring A be in $\mathbf{N}_{\mathbf{1}}$. By ($*$) the ring A can be mapped homomorphically onto some non-zero ring A in M. By condition (χ) the ring A has some nonzero homomorphic image A_{2} in \mathbf{N}. From this it follows that, for every ring A in $\mathbf{N}_{1}, H(A) \cap \mathbf{N} \neq 0$ holds. By the corollary of Theorem 4 we have $\mathscr{U}\left(\mathbf{N}_{1}\right)=$ $=\mathscr{U}(\mathbf{N})=\mathscr{U}(\mathbf{M})$. Thus, by Theorem 1 the radical $\mathscr{U}(\mathbf{M})$ is special.

Theorem 9. Let M be a regular class of rings. Then the upper radical $\mathscr{Q}(\mathbf{M})$ is special if the following three conditions are satisfied:
(i) \mathbf{M} does not contain non-zero zero-rings.
(ii) For each ring A, if $0 \neq I \triangleleft A$ and $H(I) \cap \mathbf{M} \neq 0$, then $H(A) \cap \mathbf{M} \neq 0$.
(iii) For every non-zero ring $A \in \mathbf{M}$,

$$
H(A) \cap \mathbf{M} \cap \mathbf{P} \neq 0
$$

Proof. In [3] Enersen and Leavitt have shown that if the class \mathbf{N} satisfies the conditions (i) and (ii), then the upper radical $\mathscr{U}(\mathbf{M})$ is supernilpotent. Thus, the theorem is an immediate consequence of Lemma 8.

REFERENCES

[1] V. A. Andrunakievič, Radikaly associativnyh kolec, I (Radicals of associative rings, I), Mat. Sab. 44 (1958), 179-212. $M R 20$ \# 5220
[2] N. J. Divinsky, Rings and radicals, University of Toronto Press, Toronto, 1965. $M R 33$ \# 5654
[3] P. O. Einersen and W. G. Leavitt, The upper radical construction, Publ. Math. (Debrecen) 20 (1973), 219-222. MR 48 \# 8579
[4] A. E. Hofrman and W. G. Leavitt, Properties inherited by the lower radical, Portugal. Math. 27 (1968), 63-68. MR 41 \# 6888
[5] W. G. Leavitt and Yu-Lee Lee, A radical coinciding with the lower radical in associative and alternative rings, Pacific J. Math. 30 (1969), 459-462. MR 40 \# 1437
[6] F. Szász, Radikale der Ringe, Akadémiai Kiadó, Budapest, and VEB Deutscher Verlag der Wissenschaften, Berlin, 1975. MR 55 \# 8086
[7] R. Wiegandt, Radical and semisimple classes of rings, Queen's University, Kingston (Ontario), 1974. MR 50 \# 2227
(Received December 31, 1979)

```
DEPARTMENT OE MATHEMATICS
UNIVERSITY OF HANOI
HANOI
VIETNAM
```

mTA MATEMATIKAI KUTATÓ INTEZET
H-1053 BUDAPEST
REALTANODA U. 13-15.
hUNGARY

