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In the current investigation, both unforced and forced Du�ng–Van der Pol oscillator (DVdPV) oscillators with a strong
nonlinearity and external periodic excitations are analyzed and investigated analytically and numerically using some new and
improved approaches.  e new approach is constructed based on Krylov–Bogoliubov–Metroolsky method (KBMM). One of the
most important features of this approach is that we do not need to solve a system of di�erential equations, but only solve a system
of algebraic equations. Moreover, the ease and faster of applying this method gives high-accurate results and this approach is
better than many approaches in the literature.  is approach is applied for analyzing (un)forced DVdP oscillators. Also, some
improvements are made to He’s frequency-amplitude formulation in order to solve unforced DVdP oscillator to obtain high-
accurate results. Furthermore, the He’s homotopy perturbation method (He’s HPM) is employed for analyzing unforced DVdP
oscillator. e comparison between all mentioned approaches is carried out. e application of our approach is not limited to (un)
forced DVdPV oscillators only but can be applied to analyze many higher-order nonlinearity oscillators for any odd power and it
gives more accurate results than other approaches. Both usedmethods and obtained approximations will help many researchers in
general and plasma physicists in particular in the interpretation of their results.

1. Introduction

 e study of the dynamics of nonlinear oscillators is one of
the topics of great importance for many researchers due to
its many important applications in various areas of physics,
applied mathematics, and practical engineering [1–17].
Di�erential equations are one of the best andmost successful
models in modeling many nonlinear dynamical systems. For
instance, Du�ng-type equation is one of the most famous
and successful equations that has been used for modeling
and interpreting many nonlinear oscillations in many dif-
ferent dynamical systems such as electrical circuit, optical

stability, the buckled beam, and di�erent oscillations in a
plasma [16–19]. In plasma physics, there are many evolution
equations that can be reduced to Du�ng-type equation,
Helmholtz-type equation, Du�ng–Helmhlotz equation, and
Mathieu equation in order to investigate the various os-
cillations that occur within complicated plasma systems
[20–23].  ere is another type of equation of motion that
was used for modeling the nonlinear oscillations in biology,
electronics, engineering, plasma physics, and chemistry
which is called Van der Pol–Du�ng (VdPD) (sometimes
called Du�ng–Van der Pol (DVdP)) equation and its family
[24, 25]. For example, a forced modi¡ed VdPD (mVdPD)
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equation was adopted for investigating the strong nonlinear
oscillations in plasma [26]. Also, a mVdPD equation with
asymmetric potential was used for modeling the nonlinear
chemical dynamics [27]. Many numerical and analytical
approaches were applied for solving the second-order
nonlinear oscillator equations. For example, both HBM and
MTSs techniques were devoted for analyzing a forced Van
der Pol (VdP) generalized oscillator to obtain the amplitudes
of the forced harmonic, superharmonic, and subharmonic
oscillatory states [26]. Melnikov’s method was used for
analyzing a mVdPD equation to derive analytical criteria for
the appearance of horseshoe chaos in chemical oscillations
[27]. He et al. [16] used the Poincare ´–Lindstedt technique
(PLT) for solving and analyzing the Hybrid Rayleigh–van
der pol–Duffing equation. Also, the homotopy analysis
method (HAM)was used for analyzing DVdP oscillator [28].
Both methods of differentiable dynamics and Lie symmetry
reduction method were devoted for analyzing the DVdP-
type oscillator [29]. Moreover, DVdP oscillator was solved
numerically via Adomian’s decomposition method (ADM)
[30]. Based on this approach, the equation of motion is
converted to a system of first-order differential equations
and then was solved to obtain a numerical approximation.
Moreover, the authors made a comparison with Lindsted’s
method (LM) approximation. +ey found that the obtained
approximation using ADM is better than LM. However, in
the two approaches, the approximations become conver-
gence and more accurate only in the short time domain but
these approximations become dis-convergence and not
accurate for long time domain. Most methods in the liter-
ature lead to complicated formulas for the obtained ap-
proximations and the analysis of such solutions are much
difficult or not convergence for a long time. However, the
Krylov–Bogoliubov–Mitropolsky method (KBMM) was
adopted for deriving the periodic steady-state solutions to
the following DVdP driven oscillator [6].

€x − ε 1 − x
2

􏼐 􏼑 _x + ω2
0x + βx

3
� f cos(Ωt),

x(0) � x0,

x′(0) � _x0,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where the overdot indicates the derivative with respect to “t”.
Recently, Salas et al. [11] applied the ansatz method, HBM,
PLT, and KBMM for analyzing the forced VdP oscillator and
found that KBMM gives more accurate approximations.
Motivated by the investigations in Ref. [6, 11], we proceed to
analyze the DVdP oscillator using a new effective and
simplification technique based on KBMM. In our approach,
we will prove that the new approach does not demand to
solve any ordinary differential equations (odes). Moreover,
we will prove that the new suggested approach gives high-
accurate and convergence approximations in the whole time
domain. Note that for ε � 0, i.v.p. (1) reduces to the forced
Duffing oscillator whose general solution is well known [11].
Moreover, in this investigation, we try to improve He’s
frequency-amplitude formulation to be suitable for ana-
lyzing the DVdP oscillator. Also, the He’s homotopy per-
turbation method (He’s HPM) will apply for analyzing and
investigating the DVdP oscillator.

+e rest of this paper is introduced in the following
fashion: in Section 2, the new suggested approach is
introduced. +e analytical approximations to the un-
forced DVdP oscillator is reported in Section 3 using the
new mentioned approach, the He’s HPM, and improved
He’s frequency-amplitude formulation. Moreover, in
Section 4, the new mentioned approach is devoted
for getting an analytical approximation to the forced
DVdP oscillator. +e obtained results are summarized in
Section 5.

2. New Approach Based on KBM for Solving
Strongly Nonlinear Oscillators

Let us consider the following general form to the second-
order i.v.p.:

€x + ω2
0x + F(x, _x) � 0,

x(0) � x0,

x′(0) � _x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where the expression F(x, 0) is an odd polynomial of x.
To introduce a p-parameter solution to i.v.p. (2), we

rewrite this problem in the following new form:

Rp(x) ≡ €x + ω2
0x + pF(x, _x) � 0,

x(0) � x0,

x′(0) � _x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where xp ≡ xp(t) ≡ x(p, t) indicates the solution to i.v.p.
(3), we can call a p-parameter solution. +en, the solution to
the original i.v.p. (2) can be obtained for p � 1.

Assuming the solution to i.v.p. (3) is given by the fol-
lowing ansatz form:

xp � a cos(ψ) + 􏽘
N

k�1
p

k
􏽘

k

j�1
a
2j+1

􏽘

j

i�1

· r2i+1,j,k cos[(2i + 1)ψ] + s2i+1,j,k sin[(2i + 1)ψ]􏽮 􏽯,

(4)

where the functions a ≡ a(t) and ψ ≡ ψ(t) are assumed to
vary with time according to the following ordinary differ-
ential equations (odes):

_a �
da

dt
≡ a′(t) � 􏽘

N

k�1
p

k
􏽘

k+1

j�k

Bk,ja
2j− 1

s, (5)

_ψ �
dψ
dt
≡ ψ′(t) � ω0 + pC1,0a

2
+ 􏽘

N

k�2
p

k
􏽘

k

j�0
Ck,ja

2j
. (6)

We plug the ansatz (4) with the relations (5) and (6) into
Rp(x) given in equation (3) and equating the coefficients of
pn (n � 1, 2, 3, . . . ,) a2j+1(t), cos ((2i + 1)ψ(t)), and sin
((2i + 1)ψ(t)) (i, j � 1, 2, 3, . . . , N) to zero, then we can get
a system of algebraic equations. By solving this system, we
can determine the unknown coefficients r2i+1,j,k, s2i+1,j,k, Bk,j,
and Ck,j.
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Remark 1. We can obtain another method by replacing (6)
with

_ψ �

�������������������������

ω2
0 + pC1,0a

2
+ 􏽘

N

k�2
p

k
􏽘

k

j�0
Ck,ja

2j

􏽶
􏽴

. (7)

In the below section, we will use this method for ana-
lyzing both the unforced DVdP oscillator, i.e., i.v.p. (1) for
f � 0 and the forced DVdP oscillator (1).

3. Analytical Approximations to the Unforced
Duffing–Van Der Pol Oscillator

Here, we can analyze the unforced DVdP oscillator, i.e., i.v.p.
(1) for f � 0 using three different approaches, namely:

(i) Our new approach mentioned in the above section
(ii) +e He’s HPM
(iii) Improved He’s frequency-amplitude formulation

(He’s FAF)

3.1.OurNewApproach. By using N � 2 in solution (4), then
the solution to the following unforced problem (3)

€x + ω2
0x + p − ε 1 − x

2
􏼐 􏼑 _x + βx

3
􏽨 􏽩 � 0, (8)

can be introduced in following form:

xp � a cos(ψ) + 􏽘
2

k�1
a
2k+1

p
k

􏽘

k

j�1

· r2j+1,k cos((2j + 1)ψ) + s2j+1,k sin((2j + 1)ψ)􏽨 􏽩.

(9)

Accordingly, we get

xp � a cos(ψ) + pa
3
A1(t) + p

2
a
3
A2(t) + a

5
A3(t)􏼐 􏼑, (10)

with

A1(t) � r3,1,1 cos(3ψ) + s3,1,1 sin(3ψ)􏼐 􏼑,

A2(t) � r3,1,2 cos(3ψ) + s3,1,2 sin(3ψ)􏼐 􏼑,

A3(t) � r3,2,2 cos(3ψ) + r5,2,2 cos(5ψ) + s3,2,2 sin(3ψ)

+ s5,2,2 sin(5ψ),

(11)

_a � p B1,2a(t)
3

+ B1,1a(t)􏼐 􏼑 + p
2

B2,3a(t)
5

+ B2,2a(t)
3

􏼐 􏼑,

_ψ � ω0 + pC1,0a(t)
2

+ p
2

C2,2a(t)
4

+ C2,1a(t)
2

+ C2,0􏽨 􏽩.

(12)

On the other hand

Rp � D1p + D2p
2

+ O p
3

􏼐 􏼑, (13)

with

D1 � S1a sin(ψ) + a
3

S2 sin(ψ) + S3 cos(ψ) + S4 cos(3ψ) + S5 sin(3ψ)( 􏼁,

D2 � a
5

S6 sin(ψ) + S7 cos(ψ) + S8 sin(3ψ) + S9 cos(3ψ) + S10 sin(5ψ) + S11 cos(5ψ)( 􏼁

+ a
3

S12 sin(ψ) + S13 cos(ψ) + S14 sin(3ψ) + S15 cos(3ψ)( 􏼁 + aS16 cos(ψ),

(14)

where the values of coefficients Si(i � 1, 2, . . . , 16) are de-
fined in Appendix (i).

Equating the coefficients of p and p2 to zero in

Rp � €x + ω2
0x + p − ε 1 − x

2
􏼐 􏼑 _x + βx

3
􏽨 􏽩, (15)

also, equating to zero the coefficients of a2j+1, cos((2i + 1)ψ),
and sin((2i + 1)ψ), where (i, j � 1, 2, 3, . . . , N), i.e., Si � 0,
we get an algebraic system. +e solution of this system
yields
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B1,1 �
ε
2
,

B1,2 � −
ε
8
,

B2,2 � −
3βε
16ω2

0
,

B2,3 �
βε

32ω2
0
,

C1,0 �
3β
8ω0

,

C2,0 � −
ε2

8ω0
,

C2,1 �
ε2

8ω0
,

C2,2 � −
15β2 + 7ε2ω2

0

256ω3
0

r3,1,1 �
β

32ω2
0
,

r3,1,2 � −
ε2

128ω2
0
,

r3,2,2 � −
21β2 + ε2ω2

0

1024ω4
0

,

r5,2,2 �
3β2 − 5ε2ω2

0

3072ω4
0

,

s3,1,1 � −
ε

32ω0
,

s3,1,2 � −
3βε

128ω3
0
,

s3,2,2 �
3βε

256ω3
0
,

s5,2,2 � −
βε

384ω3
0
.

(16)

From the above values in equation (11), we have

A1(t) �
1

32ω2
0

β cos(3ψ) − εω0 sin(3ψ)( 􏼁,

A2(t) � −
ε

128ω3
0

3β sin(3ψ) + εω0 cos(3ψ)( 􏼁,

A3(t) � −
1

3072ω4
0

􏼂3 21β2 + ε2ω2
0􏼐 􏼑cos(3ψ)

+ 5ε2ω2
0 − 3β2􏼐 􏼑cos(5ψ)

+ 4βεω0(2 sin(5ψ) − 9 sin(3ψ))􏼃.

(17)

Accordingly, the odes for determining the functions
(a,ψ) read

_a � p
1
2
εa(t) −

1
8
εa(t)

3
􏼒 􏼓

+ p
2

−
3βε
16ω2

0
a(t)

3
+

βε
32ω2

0
a(t)

5
􏼠 􏼡,

_ψ � ω0 + p
3β
8ω0

a(t)
2

+ p
2

−
ε2

8ω0
+

ε2

8ω0
a(t)

2
−
15β2 + 7ε2ω2

0

256ω3
0

a(t)
4

􏼠 􏼡.

(18)

For p � 1, the value of _a given in equation (18) reduces to

_a|p�1 �
1
2
εa −

1
8
εa3

􏼒 􏼓 + −
3βε
16ω2

0
a
3

+
βε

32ω2
0
a
5

􏼠 􏼡. (19)

+e amplitude for the limit cycle is obtained from the
condition _a|p�1 � 0:

1
2
εa −

1
8
εa3

􏼒 􏼓 + −
3βε
16ω2

0
a
3

+
βε

32ω2
0
a
5

􏼠 􏼡 � 0. (20)

Solving equation (20) gives

A �

������������������������������

ω2
0 2 −

������������������

β 9β − 4ω2
0􏼐 􏼑/ω4

0􏼐 􏼑 + 4
􏽱

􏼒 􏼓

β
+ 3

􏽶
􏽴

.
(21)

Observe that

lim
β⟶0

A � 2, (22)

this is called the cycle amplitude for the VdP oscillator.
We can use the following Chebyshev approximation in

order to facilitate the solution to the ode system (18):
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_a|p�1 �
1
2
εa −

1
8
εa3

􏼒 􏼓 + −
3βε
16ω2

0
a
3

+
βε

32ω2
0
a
5

􏼠 􏼡

≈
1
16

ε 8 −
β
ω2
0

􏼠 􏼡a −
1
16

ε 2 +
β
ω2
0

􏼠 􏼡a
3
,

� κa − μa
3
,

(23)

with

κ �
1
16

ε 8 −
β
ω2
0

􏼠 􏼡, μ �
1
16

ε 2 +
β
ω2
0

􏼠 􏼡. (24)

By solving equation (23), we get

a �
c0

�
κ

√
e
κt

��������������
c
2
0μ e

2κt
− 1􏼐 􏼑 + κ

􏽱 . (25)

Also, the expression for determining ψ can be obtained
from the second equation in (18) for p � 1 whose solution
reads

ψ � 􏽘
4

i�1
Wi + c1, (26)

where the values ofWi(i � 1, 2, 3, 4) are defined in Appendix
(ii). +e constants c0 and c1 are determined from the initial
conditions (ICs) x(0) � x0 and x′(0) � _x0.

In all above expressions, for p � 1, the approximation to
the following i.v.p. can be obtained:

€x − ε 1 − x
2

􏼐 􏼑 _x + ω2
0x + βx

3
� 0,

x(0) � x0 andx′(0) � _x0,

⎧⎪⎨

⎪⎩
(27)

3.2. He’s Homotopy Perturbation Method. Moreover, the
approximate solution to the DVdP i.v.p. (1) using He’s HPM
is obtained. Briefly, He’s HPM can be used for a series of
nonlinear oscillators differential equations which many
classical perturbation methods failed to solve them or to give
some accurate solutions. +is method suggests the solution
in the following ansatz:

xLP � 􏽘
∞

i�0
p

i
xi(ωt), (28)

with

ω2
� ω2

0 + 􏽘
∞

i�1
p

iωi. (29)

Substitute equations (28) and (29) into i.v.p. (1), and by
collecting the coefficients of same powers of p, we finally
obtain some reduced equations. We have

RF � x0(τ) + x0″(τ)( 􏼁ω0

+ 􏼠βx0(τ)
3

+ ω2
0x1(τ) +

1
2

− 2εω0 + τω1( 􏼁x0′(τ)

+ εω0x0(τ)
2
x0′(τ) + ω1x0″(τ) + ω2

0x1″(τ)

+
1
2
τω1x

(3)
0 (τ) − F cos

τΩ
ω0

􏼠 􏼡􏼡p + O p
2

􏼐 􏼑,

(30)

where τ � tω.
Equating to zero the coefficients of pj and solving the

resulting odes gives

x0(τ) � A cos(τ),

x1(τ) �
A
3

32ω2
0
β cos(3τ) − εω0 sin(3τ)( 􏼁

+
− − A

3εω0 +16c2ω
2
0 + 8Aω1 − 6A

3β􏼐 􏼑τ

16ω2
0

sin(τ)

+
8Aω1 +16c1ω

2
0 − 5A

3β+ 8Aεω0 − 2A
3εω0􏼐 􏼑τ

16ω2
0

cos(τ)

+
F

ω2
0 − Ω2

cos
Ω
ω0

τ􏼠 􏼡,

(31)

where A represents the amplitude of the oscillator.
Secularity terms in the last expression are not allowed so

that the coefficients of cos(t) and sin(t) must be equal to
zero which lead to

− 5A
3β + 8Aω1 + 16c1ω

2
0 � 0,

− 2A A
2

− 4􏼐 􏼑εω0 � 0,

ω0 16c2ω0 − A
3ε􏼐 􏼑 � 0,

8Aω1 − 6A
3β � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

Solving the last system gives

A � 2,

c1 � −
β

2ω2
0
,

c2 �
ε

2ω0
,

ω1 � 3β.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

+en, the following solution to O(p2) and for p � 1 is
obtained:
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xLP � 2 cos(ωt) +
1

4ω2
0

β cos(3ωt) − εω0 sin(3ωt)( 􏼁

+
F

ω2
0 − Ω2

cos
Ωω
ω0

t􏼠 􏼡,

(34)

where ω �

��������

(3β + ω2
0)

􏽱

and ω2
0 ≠Ω

2. +is solution is ob-
tained under the initial conditions (ICs)

x0 � 2 +
β
4ω2

0
+

F

ω2
0 − Ω2

,

_x0 � −
3ε

��
Θ

√

4ω0
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

Solution (34) recovers the unforced case for F � 0.

3.3. Improved He’s Frequency-Amplitude Formulation. To
demonstrate the general idea of He’s frequency-amplitude
formulation [31–35], let us consider the following oscillator:

€x + f(x) � 0, (36)

where f(x) indicates the nonlinear restoring force. +e
following conditions are hold: f(0) � 0 and f(x)/x> 0 .

He considered Duffing oscillator

€x + x + εx3
� 0,

x(0) � A,

_x(0) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

where A represents the amplitude of the oscillator. Based on
He’s principle, we have

f(x) � x + εx3

_ψ
2

� ω2
�

f(x)

x
|x�(

�
3

√
/2)A � 1 + 3

A

2
􏼒 􏼓

2
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

where ω denotes the frequency of oscillator.
Now, by considering the following DVdP oscillator:

€x − ε 1 − x
2

􏼐 􏼑 _x + ω2
0x + βx

3
� 0, (39)

in this case, the function f(x) reads

f(x) � ω2
0x + βx

3
, (40)

which leads to

_ψ
2

� ω2
�

f(x)

x
|x�(

�
3

√
/2)A � ω2

0 +
3
4
βA

2
. (41)

Since the amplitude now depends on time, we will reason
heuristically to determine it

A � a(t),

_a �
εκ
2

a −
ε
8
a
3
,

⎧⎪⎪⎨

⎪⎪⎩
(42)

with

κ �
ω2
0 2 −

������������������

β 9β − 4ω2
0􏼐 􏼑/ω4

0􏼐 􏼑 + 4
􏽱

􏼒 􏼓 + 3β

4β
. (43)

Note that κ⟶ 1 as β⟶ 0.
+en, the improved He’s solution becomes

x(t) � a(t)cos(ω(t)), (44)

with

a(t) �
2

�
κ

√
e

(εκt/2)

��������������
4κ/c20􏼐 􏼑 + e

εκt
− 1

􏽱 ,

ω(t) � c1 + 􏽚
t

0

�������������

ω2
0 +

3
4
βa

2
(τ)dτ

􏽲

� W(t) − W(0) + c1,

(45)

where

W(t) �
1
εκ

􏼢2
�������

3βκ+ω2
0

􏽱

tanh− 1

·

�������������������������
3βκe

εκt/ 4κ/c20􏼐 􏼑 + e
εκt

− 1􏼐 􏼑 +ω2
0

􏽱

�������

3βκ+ω2
0

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

− 2ω0coth
− 1 ω0�������������������������

3βκe
εκt/ 4κ/c20􏼐 􏼑 + e

εκt
− 1􏼐 􏼑 +ω2

0

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠􏼣.

(46)

+e constants c0 and c1 are determined from the ICs
x(0) � x0 and x′(0) � _x0. +e amplitude for the limit cycle
reads

rβ � lim
t⟶+∞

a(t)

�

���������������������������������������

9β2 − 4βω2
0 + 4ω4

0

􏽱

+ 3β + 2ω2
0

􏽲

ω0
⟶ 2 asβ⟶ 0.

(47)

As a numerical example, we can use the same model and
data that were given in Ref. [36], which lead to the following
unforced DVdP i.v.p. (27):

€x − 0.1 1 − x
2

􏼐 􏼑 _x + x + 0.01x
3

� 0,

x(0) � 2,

x′(0) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(48)

Solution (10) and RK numerical approximation to i.v.p.
(48) are graphically mapped as shown in Figure 1. Moreover,
the approximation (34) using He’s HMP and the approxi-
mation (44) using the improved He’s FAF are compared
with the obtained analytical approximation (10) and RK
numerical approximation as illustrated in Figure 1. In ad-
dition, the maximum distance error in the whole time
domain (0≤ t≤ 50) with respect to RK numerical approx-
imation is estimated
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LR � max0≤t≤50 RK − xApprox
∣∣∣∣∣

∣∣∣∣∣ � 0.0108535,

LR � max0≤t≤50 RK − xHe′sHPM
∣∣∣∣

∣∣∣∣ � 0.125709,

LR � max0≤t≤50 RK − xHe′sFAF
∣∣∣∣

∣∣∣∣ � 0.164318.




(49)

It is clear that the analytical approximation (10) and RK
numerical approximation are very compatible with each
other. Also, they are more accurate than He’s FAF and He’s
HPM approximations.

4. Analytical Approximation to the Forced
Duffing–Van Der Pol Oscillator

Let us consider the following forced DVdP i.v.p.:

RF � €x − ε 1 − x2( ) _x + ω2
0x + βx3 − F cos(Ωt) � 0,

x(0) � x0,
x′(0) � _x0.




(50)

Assume that the solution to i.v.p. (50) is given by the
following ansatz:

x(t) � y(t) + d0 cos(Ωt) + d1 sin(Ωt), (51)

where y ≡ y(t) is a solution to the unforced DVdP oscillator

€y − ε 1 − x2( ) _y + ω2
0y + βy3 � 0,

y(0) � x0 − d0( ),

y′(0) � _x0 − d1Ω( ).




(52)

2

1

0

–1

X

–2
0

t
10 20 30

(ε, β, ω0, x0, x0) = (0.1, 0.01, 1, 2, 0).

40 50

RK4
Approx.

Error = 0.0108535

(a)

2

1

0

–1

X

–2

(ε, β, ω0, x0, x0) = (0.1, 0.01, 1, 2, 0).

0
t

10 20 30 40 50

RK4
He’s HPM

Error = 0.125709

(b)

2

1

0

–1

X

–2

(ε, β, ω0, x0, x0) = (0.1, 0.01, 1, 2, 0).

0
t

10 20 30 40 50

RK4
He’s FAF

Error = 0.164318

(c)

Figure 1: e approximate solutions to the unforced i.v.p. (48) using the analytical approximation (10) and RK numerical approximation as
well as He’s FAF, He’s HPM, and PLT approximations are plotted in the (x, t)− plane.
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Putting solution (51) into (50), we have

RF � R cos(Ωt) + S sin(Ωt) + h.o.t, (53)

with

R �
3βd30
4

+
3
4
βd21d0 +

1
4
d1d

2
0εΩ +

1
4
d31εΩ − d1εΩ + d0ω

2
0 − d0Ω

2 − F + y(t)2 3βd0 + d1εΩ( ) + 2d0εy′(t)y(t),

S �
3
4
βd1d

2
0 +

3βd31
4

−
1
4
d30εΩ −

1
4
d21d0εΩ + d0εΩ + d1ω

2
0 − d1Ω

2 − y(t)2 3βd1 + d0εΩ( ) + 2d1εy′(t)y(t),




(54)

where h.o.t. represents higher-order terms. By neglecting
y(t) and y′(t) from system (54) at (R, S) � (0, 0), then

the constants d0 and d1 can be determined from the
system

3βd30
4

+
3
4
βd21d0 +

1
4
d1d

2
0εΩ +

1
4
d31εΩ − d1εΩ + d0ω

2
0 − d0Ω

2 − F � 0,

3
4
βd1d

2
0 +

3βd31
4

−
1
4
d30εΩ −

1
4
d21d0εΩ + d0εΩ + d1ω

2
0 − d1Ω

2 � 0.




(55)

From this system, we get

Y0 + Y1d0 + Y2d
2
0 + Y3d

3
0 � 0, (56)

Z0 + Z1d1 + Z2d
2
1 + Z3d

3
1 � 0, (57)

where the values of Yi(i � 0, 1, 2, 3) and Zi(i � 0, 1, 2, 3) are
de¡ned in Appendix (iii). We choose the least in magnitude
real roots to cubics (56) and (57).

As a numerical example, the two approximations (51)
and (34) according to ICs (35) for i.v.p. (50) are displayed in
Figure 2 for (ε,ω0, β, F,Ω) � (0.1, 1, 0.01, 1, 5.2). Also, the

maximum distance error for the two approximations is
estimated as follows:

LR � max0≤t≤50 RK − xApprox
∣∣∣∣∣

∣∣∣∣∣ � 0.0227101,

LR � max0≤t≤50 RK − xHe′sHMP
∣∣∣∣

∣∣∣∣ � 0.106029.




(58)

On the other side, for arbitrary ICs, the analytical ap-
proximation (51) versus the RK numerical approximation is
presented in Figure 3 for (ω0, β, F,Ω, x0, _x0) �
(1, 0.01, 1, 5.2, 0, 0.183) and di�erent values to ε. Also, the
maximum distance error at the same values of the physical

2

1

0

–1

X

–2

(ε, β, ω0, F, Ω) = (0.1, 0.01, 1, 1, 5.2)

0
t

10 20 30 40

RK4
Approx.

Error = 0.02271

(a)

(ε, β, ω0, F, Ω) = (0.1, 0.01, 1, 1, 5.2)

2

1

0

–1

X

–2

0
t

10 20 30 40

RK4
He’s HPM

Error = 0.106029

(b)

Figure 2:  e two approximations (51) and (34) according to ICs (35) for the forced i.v.p. (50) are plotted in the (x, t)− plane.
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parameters and ICs mentioned in Figure 3 is estimated as
follows:

LR|ε�0.1 � max0≤t≤40 RK − xApprox
∣∣∣∣∣

∣∣∣∣∣ � 0.00178818,

LR|ε,�− 0.1 � max0≤t≤40 RK − xApprox
∣∣∣∣∣

∣∣∣∣∣ � 0.00005143.


 (59)

We can conclude that in all cases, both two analytical
approximations (10) and (51) for the unforced and forced
DVdP oscillators are more accurate and convergence as
compared to He’s FAF and He’s HPM.

5. Conclusion

Both higher-order nonlinearity unforced Du�ng–Van
der Pol (DVdP) oscillator and forced DVdP oscillator
having linear and cubic nonlinear terms have been ana-
lyzed using some e�ectiveness and more accurate ap-
proaches.  e new approach was constructed based on the
Krylov–Bogoliubov–Metroolsky method (KBMM).  e
new approach was discussed in detail for the two issues. In
our analysis, we only stopped at the ¡rst approximation
because it is su�cient in all cases. Also, this new approach
can be used for analyzing many strongly nonlinear os-
cillators. Moreover, the new approach does not demand to
solve any ordinary di�erential equations (odes) because

we only simply equate the coe�cients of the trigonometric
functions a(t) and p to zero in order to get a simple system
of algebraic equations.  en, this system becomes very
easy to solve it to determine the undetermined coe�-
cients. Also, this new method is also characterized by
being direct and fast. Moreover, it is characterized by
high-accuracy if it is compared with other methods in the
literature. Also, we improved He’s frequency-amplitude
formulation technique in order to solve unforced DVdP
oscillator to obtain high-accurate results. Furthermore,
the unforced DVdP oscillator was analyzed via He’s
homotopy perturbation method.  e maximum distance
error in the whole time domain with respect to Run-
ge–Kutta numerical approach has been estimated. It was
found that our new approach is better than all method
approaches. Moreover, the new approach can be devoted
for analyzing many strong nonlinearity oscillators with
any odd power. Also, the new approach can be applied for
arbitrary initial conditions.

Future work: the ansatz that has been used in this paper
is called the KBM ¡rst-Variant.  is approach cannot re-
cover He’s amplitude formula. On the other side, we will use
another new ansatz which maybe called the KBM second-
Variant, in this case, He’s amplitude formula can be
recovered.

(ε, β, ω0, x0, x0, F, Ω) = (0.1, 0.01, 1, 0, 0.183, 1, 5.2).

1.0

0.5

0.0

–0.5

X

–1.0
0

t
10 20 30 40

RK4
Approx.

Error = 0.00178818

(a)

(ε, β, ω0, x0, x0, F, Ω) = (–0.1, 0.01, 1, 0, 0.183, 1, 5.2).

0.2

0.1

0.0X

–0.1

0
t

10 20 30 40

RK4
Approx.

Error = 0.00005143

(b)

Figure 3: Both analytical approximation (51) and RK numerical approximation to the forced i.v.p. (50) for di�erent values of ε are plotted in
the (x, t)− plane.
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Appendix

(i) +e coefficients S1 − S16 of solution (13)

S1 �
1
4

4εω0 − 8ω0B1,1􏼐 􏼑,

S2 �
1
4

− εω0 − 8ω0B1,2􏼐 􏼑,

S3 �
1
4

3β − 8ω0C1,0􏼐 􏼑,

S4 �
1
4

β − 32ω2
0r3,1,1􏼐 􏼑,

S5 �
1
4

− εω0 − 32ω2
0s3,1,1􏼐 􏼑,

S6 � − 4B1,2C1,0 − 2ω0B2,3 −
1
4
εC1,0 −

1
4
εω0r3,1,1 +

3
4
βs3,1,1􏼒 􏼓,

S7 �
3
4
εB1,2 + 3B

2
1,2 − 2ω0C2,2 − C

2
1,0 +

3
4
βr3,1,1 +

1
4
εω0s3,1,1􏼒 􏼓,

S8 � − 18ω0B1,2r3,1,1 −
1
4
εC1,0 − 18ω0C1,0s3,1,1 −

3
2
εω0r3,1,1 +

3
2
βs3,1,1 − 8ω2

0s3,2,2􏼒 􏼓,

S9 �
1
4
εB1,2 + 18ω0B1,2s3,1,1 − 18ω0C1,0r3,1,1 +

3
2
βr3,1,1 − 8ω2

0r3,2,2 +
3
2
εω0s3,1,1􏼒 􏼓,

S10 � −
5
4
εω0r3,1,1 +

3
4
βs3,1,1 − 24ω2

0s5,2,2􏼒 􏼓,

S11 �
3
4
βr3,1,1 − 24ω2

0r5,2,2 +
5
4
εω0s3,1,1􏼒 􏼓,

S12 � − 4B1,1C1,0 − 2ω0B2,2 + εC1,0􏼐 􏼑,

S13 �
3
4
εB1,1 − εB1,2 + 4B1,2B1,1 − 2ω0C2,1􏼒 􏼓,

S14 � − 18ω0B1,1r3,1,1 + 3εω0r3,1,1 − 8ω2
0s3,1,2􏼐 􏼑,

S15 �
1
4
εB1,1 + 18ω0B1,1s3,1,1 − 8ω2

0r3,1,2 − 3εω0s3,1,1􏼒 􏼓,

S16 � − εB1,1 + B
2
1,1 − 2ω0C2,0􏼐 􏼑.

(A.1)

(ii) +e values of W1(i � 1, 2, 3, 4) for equation (26)
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W1 � ω0 −
ε2

8ω0
􏼠 􏼡t,

W2 �
− 1

512μ2ω3
0 c

2
0μ e

2κt
− 1􏼐 􏼑 + κ􏼐 􏼑

c
4
0μ

2
e
2κt

− 1􏼐 􏼑 15β2 + 7ε2ω2
0􏼐 􏼑,

W3 �
− c

2
0μ e

2κt
− 1􏼐 􏼑

512μ2ω3
0 c

2
0μ e

2κt
− 1􏼐 􏼑 + κ􏼐 􏼑

⎛⎝ω2
0 7ε2κ − 32μ 3β + ε2􏼐 􏼑􏼐 􏼑log

c
2
0μ e

2κt
− 1􏼐 􏼑

κ
+ 1⎛⎝ ⎞⎠ − 7ε2κ⎛⎝ ⎞⎠

− 15β2κ 1 − log
c
2
0μ e

2κt
− 1􏼐 􏼑

κ
+ 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎞⎠,

W4 � −
κ 15β2κ + ω2

0 7ε2κ − 32μ 3β + ε2􏼐 􏼑􏼐 􏼑􏼐 􏼑log c
2
0μ e

2κt
− 1􏼐 􏼑/κ􏼐 􏼑 + 1􏼐 􏼑

512μ2ω3
0 c

2
0μ e

2κt
− 1􏼐 􏼑 + κ􏼐 􏼑

.

(B.1)

(iii) +e values of Yi (i � 0, 1, 2, 3) and Zi (i � 0, 1, 2, 3)

for equations (56) and (57)

Y0 � 4F
27F

2β3 − 36β2ε2Ω4 + 24βε2Ω6 − 4ε2Ω8 + 36β2ε2Ω2ω2
0 − 48βε2Ω4ω2

0

+12ε2Ω6ω2
0 + 24βε2Ω2ω4

0 − 12ε2Ω4ω4
0 + 4ε2Ω2ω6

0

⎛⎝ ⎞⎠,

Y1 � 4

27F
2β3Ω2 + 36F

2β2ε2Ω2 − 9F
2βε2Ω4 − 36β2ε4Ω4 − 36β2ε2Ω6 + 24βε4Ω6

+24βε2Ω8 − 4ε4Ω8 − 4ε2Ω10 − 27F
2β3ω2

0 + 9F
2βε2Ω2ω2

0 + 72β2ε2Ω4ω2
0 − 24βε4Ω4ω2

0

− 72βε2Ω6ω2
0 + 8ε4Ω6ω2

0 + 16ε2Ω8ω2
0 − 36β2ε2Ω2ω4

0 + 72βε2Ω4ω4
0 − 4ε4Ω4ω4

0

− 24ε2Ω6ω4
0 − 24βε2Ω2ω6

0 + 16ε2Ω4ω6
0 − 4ε2Ω2ω8

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Y2 � − 8Fε2Ω2 3β − Ω2 + ω2
0􏼐 􏼑 9β2 − 6βΩ2 − ε2Ω2 + 6βω2

0􏼐 􏼑,

Y3 � − F
2 9β2 + ε2Ω2􏼐 􏼑

2
,

Z0 � − 4Fε3Ω3 F − 6β + 2Ω2 − 2ω2
0􏼐 􏼑 F + 6β − 2Ω2 + 2ω2

0􏼐 􏼑,

Z1 � 4ε2Ω2
27F

2β2 − 12F
2βΩ2 − F

2ε2Ω2 + 36β2ε2Ω2 + 36β2Ω4 − 24βε2Ω4 − 24βΩ6 + 4ε2Ω6 + 4Ω8 + 12F
2βω2

0

− 72β2Ω2ω2
0 + 24βε2Ω2ω2

0 + 72βΩ4ω2
0 − 8ε2Ω4ω2

0 − 16Ω6ω2
0 + 36β2ω4

0 − 72βΩ2ω4
0 + 4ε2Ω2ω4

0

+24Ω4ω4
0 + 24βω6

0 − 16Ω2ω6
0 + 4ω8

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Z2 � 8FεΩ 3β − Ω2 + ω2
0􏼐 􏼑 9β2Ω2 + 6βε2Ω2 − ε2Ω4 − 9β2ω2

0 + ε2Ω2ω2
0􏼐 􏼑,

Z3 � F
2 9β2 + ε2Ω2􏼐 􏼑

2
.

(C.1)
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