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ABSTRACT 

We show that the STEINER TREE problem and 

TRAVELING SALESMAN problem for points in the plane 

are NP-complete when distances are measured either 

by the rectilinear (Manhattan) metric or by a 

natural discretized version of the Euclidean metric. 

Our proofs also indicate that the problems are 

NP-hard if the distance I~asure is the (unmodified) 

Euclidean metric. However, for reasons we discuss, 

there is some question as to whether these problems, 

or even the well-solved MINIMUM SPANNING TREE 

problem, are in NP when the distance measure is 

the Euclidean metric. 

INTRODUCTION 

Geometric optimization problems are both 

practically and theoretically intriguing. They are 

practically intriguing because, for instance, 

Euclidean space is the domain of the everyday world, 

the space in which problems actually arise and in 

which the solutions are to be applied. They are 

theoretically intriguing because, despite the 

attention paid to geometric problems since ancient 

times, little is known about their computational 

complexity. 

It is only recently that results in what might 

be called "computational geometry' have begun to 

appear. Much of this work is due to M. I. Shamos 

[18,19], who has developed efficient algorithms 

for solving a great variety of geometric construc- 

tion problems, and has pointed out the rich class 

of geometric problems th~ still remain open. 

Some of these open problems can be thought of 

as special cases of well-.studied graph problems. 

Whereas the general problems deal with abstract 

points joined by edges having arbitrarily specified 

lengths, the corresponding geometric problems deal 

with points in the plane or in B-space, with the 

edge lengths being the actual interpoint distances 

under one of the standard metrics. 

Three such problems are the Minimum Spanning 

Tree problem, the Steiner Tree problem, and the 

Traveling Salesman problem. Shamos and Hoey have 

shown [19] that a minimtml spanning tree for n 

points in the plane, under the usual Euclidean 

metric, can be found usir~ O(n log n) comparisons, 

whereas the best algorit~ known for finding a 

minimum spanning tree in an n-vertex graph requires 
2 m on the order of n compa~'isons. This might see to 

offer some hope that although the other two 

problems are NP-complete for arbitrary graphs 

Ill, 12], we might be able to find polynomial-time 

algorithms for the corresponding geometric problems 

dealing with points in the plane. 

The two metrics under which such results 

would be most valuable are probably the L 1 

(rectilinear or "Manhattan") metric and the L 2 

(Euclidean) metric. For two points x = (Xl, X2) 

and y = (Yl, Y2) in the plane, the L 1 distance 

dl(X,y ) between them is 

d1(x,y) ~ IXl-Ylf + Ix2-y21, 

and the L 2 distance d2(x,y) between them is 

d2(x,y) = ((Xl-Yl)2+(x2-Y2)2) I/2. 

The L 2 distance is, of course, the length of the 

straight line segment joining x to y, whereas the 

L 1 distance is the length of the shortest "pat~' 

joining x to y, which is composed solely of 

horizontal and vertical line segments. The L 1 

distance is frequently of interest for circuit 

layout problems where conductor paths are made up 

of only horizontal and vertical line segments. 

The main results of this paper say that the 

Steiner Tree and Traveling Salesman problems, for 

points in the plane under these two metrics, are 

both at least as hard as the corresponding problems 

for arbitrary graphs and distances. However, before 

we can provide a more precise statement of our 

results, we must first examine some technical 

difficulties involved with the L 2 metric. 

Note that, even when we impose the standard 

restriction that only points with integer coordi- 

nates be allowed in the inputs, we can still have 

irrational interpoint distances under the L 2 metric. 

This in itself may not pose difficulties, since in 

the course of a computation it may be possible to 

deal with such distances merely as symbolic square 

roots, as is in fact done in the algorithm for 

finding minimum spanning trees under the L 2 metric. 

However, consider the Minimum Spanning Tree problem 

for points in the plane, phrased as a language 

recognition problem, i.e., "Does there exist a 

spanning tree with length L or less?" Generally 

one would expect such a recognition problem to be 

no harder than the corresponding optimization 
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problem. However, it is not at all apparent that 

this recognition problem is even in NP, although 

we can find a minimum spanning tree in low order 

polynomial time. The symbolic expression for the 

length of a given spanning tree on n points may 

involve as many as n-1 square roots. An attempt to 

compare this to an integer L by repeated squaring 

to eliminate all the square roots can take expo- 

nential time. There is more hope for the alternate 

approach of evaluating all the square roots with 

sufficient accuracy that their sum can be compared 

to L. However, the best upper bound we can 

currently give on the number of places of accuracy 

required for the comparison is O(m2n), where m is 

the number of digits in the original symbolic 

expression [15]. To reach this amount of accuracy 

will clearly also take exponential time. 

Since NP-completeness results must deal with 

language recognition problems, we encounter these 

same difficulties while treating the Steiner Tree 

and Traveling Salesman problems under the L 2 metric. 

However, it is not our intent to prove that these 

problems are hard merely because of the computa- 

tional drawbacks resulting from the presence of 

irrational square roots. We shall avoid these 

drawbacks by replacing the L 2 metric by one that 

approximates it and reflects the manner in which 

distances must be computed in practice, i.e., by 

rounding. To be precise, we use the metric ~, 

given by 

d2(x,y) = rd2(x,y)], 

(where [~] is the smallest integer not less than G). 

Arbitrary accuracy can still be obtained by appro- 

priate scaling, so that using this modified metric 

does not change the practical problems in any 

essential way. Moreover, our NP-completeness 

proofs using this metric can be converted to NP- 

hardness proofs using L2, thus eliminating any 

vagrant suspigion that it is perhaps the rounding 

involved in L 2 which makes the problems difficult. 

Having disposed of the technical issues 

posed by the metrics, let us now turn to the problem 

with which our results are concerned. The Steiner 

Tree problem, stated as an optimization problem, 

is basically the following: "Given a set S of 

points in the plane, find a set S t ~S such that 

the minimum spanning tree for S' is as short as 

possible". A minimum spanning tree for such an S t 

is called a minimum Steiner tree for S, and the 

points in SP-S are called Steiner points. This 

problem has been studied extensively in recent 

years, both for the L 1 [49] and L 2 [3, 4, 7,13] 

metrics, although no general polynomial time 

algorithm has been found in either case. 

The language recognition versions of this 

problem under the two metrics L 1 and ~ can be 

combined as follows: 

STEINER TREE PROBLEM: 

Given a set S of integer-coordinate 

points in the plane and an integer L > O, 

does there exist a set S t ~S of integer- 

coordinate points such that the minimum 

spanning tree for S r . with edge lengths 
t 

measured by L 1 (L~), has total length at 
most L? 0 

Note that we have not only restricted the points 

given in S to having integer coordinates, but also 

have put a similar restriction on the Steiner 

points. This is consonant with the practical 

necessities of rounding. Moreover, in the L 1 case 

it is actually no restriction at all, since a 

theorem of Hanan [9] tells us that there must exist 

a minimum Steiner tree, each of whose Steiner 

points has coordinate values chosen from those 

occuring in points of S. In the ~ case, allowing 

Steiner points with non-integer coordinates can 

yield slightly shorter trees, but again the poten- 

tial discrepancy can be made arbitrarily small by 

appropriate scaling. 

Moreover, it is now easy to show that both of 

these problems belong to NP, which is one half of 

a proof of NP-completeness [2,11,12 ]. The key 

fact is that both metrics obey the triangle 

inequality, so that no Steiner point of degree 2 or 

less is necessary. From this one can conclude, 

using well known and straightforward arguments [7 ], 

that there need be no more than I SI - 2 Steiner 

points. 

The second problem we consider is the Traveling 

Salesman problem: "Given a set S of points in the 

plane, find the shortest circuit that passes 

through all the points of S". This is a well- 

known and much-studied [10,17 ] problem, for which 

no polynomial time algorithm is known. The 

language recognition versions of this problem 

under our two metrics can be combined as follows 

(and are clearly in NP): 

TRAVELING SALESMAN PROBLEM: Given a set S of 

integer coordinate points in the plane and an 

integer L, does there exist a circuit passing 

through all the points of S which, with edge lengths 
l 

measured by L 1 (L2) has total length at most L? 

Our main results are that the four problem 

versions described above are not only in NP, but 

are also NP-complete. To prove this, we must show 

that known NP-complete problems can be polynomially 

transformed into each of them. The known NP- 

complete problem we use in all four cases is the 

following: 

EXACT COVER BY 3-SETS (X3C): Given a 

family ~ = IF1, F2, ...,Ft] of 3-element 

subsets of a set U of 3n elements (without 

loss of generality taken to be 

U = [1,2, 3,., ..~, 3n)), does there exist 

a subfamily ~i ~_~ of pairwise disjoint 

sets such that ~ J F = U? 

~TJ l 

This problem is known to be NP-complete as it 

contains the 3-DIMENSIONAL MATCHING problem of Ill] 

a s  a s u b c a s e .  

All our transformations involve the same 

basic scheme of construction. In Section 2 we 

present a fairly detailed view of this scheme and 

how it works, while proving NP-completeness for 

Li-STEINER TREE. The construction of this section 

then serves as a model for the other proofs, which 
are given in less detail. In Section 3 an NP- 

completeness proof for ~-STEINER TREE is sketched, 

and Section 4 is devoted to the two TRAVELING 

SALESMAN results. 
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These four NP completeness results are the 

first we know to have been proved about geometric 

problems. An alternate NP-completeness proof for 

the L2-TRAVELING SALESMAN problem (with distances 

rounded in a slightly different way) has, however, 

been obtained independently by Papidimitriou [16]. 

An alternate proof for Li-STEINER TREE using a 

series of NODE COVER problems as intermediaries, 

will be presented by two of the current authors in 

[6]. 

2. THE L1-STEINER TREE PROBLEM IS NP-COMPLETE 

t 

Let 5 = [Fi, F2,...,Yt] , ~ F i = [1,2,...,3n], 

be an input to the X3C problem. We shall construct 

a set of points S and a bound L such that a 

minimum Steiner tree for S under the L I metric has 

length L or less if and only if ~ has an exact 

cover. The construction will be clearly polyno- 

mially bounded, so this will prove the Li-STEINER 

TREE problem to be NP-coEplete. 

We build S in stages, starting with two basic 

units. Figure i shows a junction and a symbolic 

abbreviation for it. We follow the convention 

that a line segment stands for the set of all 

integer coordinate points it contains. The value 

of K is given by 

K = 162n2t 2 + 96n2t + fOnt (2.1) 

The area enclosed by the dotted line in Fig. i 

will be called the active region for the junction. 

It consists of all points within Ll-distance K of 

the central point (0,0) in the junction. 

The second basic unit is the crossover, of 

which there are two forms: st~dea~d and warped. 

Figure 2 presents both fc~ms and their abbreviations. 

They differ as to the value of o~ and the 

coordinate of the topmost point. Each has two 

active regions. The upper active region consists 

of all points within distance K of (0,2K); the 

lower active region consists of all points within 

distance K of (O,-2K). 

S is built up from these basic components as 

follows. A crossover stack of height k is a 

vertical sequence of k crossovers, each crossover 

having its top point coincide with the bottom 

point of the one above it. The topmost crossover 

is a warped one and all others are standard ones. 

A crossover stack of height 3 is illustrated 

symbolically in Figure 3. 

Each set F i = [ai~bi, ci] e ~ will be represen- 

ted by a set structure consisting of one junction 

and three crossover stacks, of heights ai, bi, and 

e. respectively. These sme joined by making the 

three top points of the junction coincide with the 

bottom points of the crossover stacks, as in 

Figure 4. 

The set representations are then put together 

to form the set S as follows. The backbone of the 

construction is pictured in Figure 5, with t+l 

prongs in sequence as shown. The representation 

for each set Fi, 1 < i < t, is placed so that its 

bottom point coincides wfith the top point of prong 

i of the backbone. We complete the construction 

by adding additional points as follows. 

All crossovers which are bottom crossovers in 

their stack will be called level 0 crossovers. In 

general, if a crossover is above j crossovers in 

its stack, it will be called a level j crossover, 

0 < j < 3n-l. Let yj be the y-coordinate of the 

leftmost points of t~e crossovers at level j and 

let Y3n be the coordinate of the top point in all 

level 3n-i crossovers (that is, yj = iOK+SjK). 

Observe that prong 0 of the backbone has y- 

coordinate YO, and that in a warped crossover at 

level j the top point has y-coordinate Yj+i" To 

complete our construction of S, add all integer- 

coordinate points whose y-coordinate is yj for some 

j, 0 < j < 3n, whose x-coordinate is the same as 

that for some point in the backbone (O<x<3OK(t+l)), 

and which is not "inside" any crossover. Figure 6 

represents the final construction for 

~= [ [i, 2, 3, ], [2, ~ 5], [i, 2, 6]]. 

We now construct the bound L on the size of 

the desired minimum Li-Steiner tree. Let T O be the 

set of all edges between pairs of points in S whose 

Ll-distance is i (our representation of sequences 

of integer-coordinate points by straight lines 

corresponds to drawing in all the T O edges between 

them). Let q be the number of crossovers in S. 

(Note that q < 3nt.) Then 

L = IToI + 54qnt + 96n2t - 9n (2.2) 

We claim that a minimum Li-Steiner tree for S has 

length L or less if and only if ~ has an exact 

cover. 

(Remark: S has been designed for ease of 

description, rather than for minimality of ISI.) 

Let T be a minimum Li-Steiner tree which has 

length L or less and contains a maximum number of 

edges from T O . We shall see that T must be of a 

rather restricted form. 

Claim 2.1 T contains all the edges T O . 

Proof. Suppose it did not. Let [u,v] be an edge 

of T O not in T. By definition of TO, [u,v] has 

length i. Adding [u,v] to T must create a cycle, 

as T is already a spanning tree. This cycle must 

contain at least one edge not in TO, as by construc- 

tion T O contains no cycles. This edge must have 

Ll-length at least i since it is between integer- 

coordinate points. Thus deleting this edge and 

adding [u,v] gives us a new spanning tree of no 

greater length than T which contains one more edge 

of TO, a contradiction. [] 

Thus T is made up of T O plus some additional 

edges of total length less than K. Ignoring these 

additional edges for a moment, we can see that the 

graph made up of just the edges from T O is made up 

of 3n+2q+l connected components. A To-COmponent 

which contains a point with y-coordinate yj will 

be called a level j component. There are 3n+l+q 

level components all told. The remaining q 

components are those that run vertically between 

levels~ each made up of the top part of one cross- 

over or junction joined to the bottom part of the 

crossover above it. In Figure 6, the To-components 

12 



.. ' ] . '~o.z,~) 

~CT t~ E to,-~K) 
R E 6 1 0 N  

I OoK,z~) 

AI~BKE ~ItA'TION 

UPPE I~ ~R~ED ST~N~.O 

"" (ZK,O) f,-----= 
('~'~,o) J . . ' " ' . .  j ~,.~,o'~ 

(-z~,-z,4 "'x,- "~ .-" (~,-z~) 
/ "  "..~.(o;-z,-,,~) 

LOW~ J T 
~CT wS. " ~  n _ . 

'R~btotq • LO)-q~) 

WAI~?EO 

+ 
~"  1B n't. 

-E 

-E 

-E 

3-  

3- 

3- 

F " ~  C Rosso',IE'R. S'T ~CK. 

F ~.. SET ST R or...T u~ll 
I GURE . ~ox x=~- ~ ~,~.'~3 

(0~ LOK) 
'Pl~,,,,tr, 0 

1 1. 
3oK 3oK 

PR~,~,I~- I 1PIION5 "t 

3.OK 2~K 

(o.%'~ 

l'o,"ss'~ 

(o,~,1 

(o.~,) 

(o,s,~ 

(o.%~ 

Co.o) 

E 

F ~INAL CoNSTRUCTIoN 6 

13 



are separated from each other by the circles 

representing active regions. The additional edges 

in T must serve to link up these T0-components into 

one overall connected tree structure. 

We first observe that, since we are operating 

in the Ll-metric , each of these additional edges 

can be drawn as a path made up of horizontal and 

vertical length 1 line segments, whose total L l- 

length is the same as the length of the edge. Let 
us assume that all additional edges are so drawn. 

The segments making up ti~e paths will be called 

supplementary segments, and will form the set T 1. 

Observe that we must have 

I~ll ~ 54qnt + 96n2t - 9n < K (2.3) 

Claim 2.2 All supplementary segments in T 1 are 

contained in active regions of crossovers and 

junctions of S. 

Proof. By our overall construction of S and the 

specification of the active regions, a point not in 

an active region cannot lie on a path of length K 

or less between two different To-components. Yet, 

since T is a minimum L1-Steiner tree, all points 

on a su~lementary segment must lie on such a 

path. i 

We thus know that all connections between 

To-components occur in active regions. This 

greatly reduces the possibilities we need consider, 

as it is easy to determine a minimum length way 

of achieving any given connection of the T O- 

components entering an active region. Figures 7, 

8, and 9 show a minimum length connecting configura- 

tion for each of the possibilities, with symmetric 

cases combined, and the case of zero connections 

omitted. Note that the number of connections for 

a given configuration is the difference between 

the number of To-components entering the region, 

and the number of connected components present in 

the configuration. 

We may assume witheut loss of generality that 

in T, all connections between T0-components are 

made by one of the configurations listed in the 

figures. Since there are 3n + 2q + 1 T0-components , 

exactly 3n + 2q connections must be made. For 

each type x of configuration, let N(x) be the 

number of times that connecting configuration is 

used in T. 

Claim 2.3 N(O~l) + N(S1) = q, and each crossover 

~xac~ly one of its active regions connected by 

a type cQ1 or type 8l configuration. 

Proof. If any crossover had both its active regions 

so connected, it would contain a cycle, which is 

impossible since T is a tree. Thus 

N(O~) + N(~l) _( q. If N(G1) + N(~l) (_ q-l, then at 

most 2q-2 connections of T0-components are made at 

average cost 27nt or less. The remaining 3n + 2 

connections must have average cost at least 32nt. 

Thus 

I~l I 2 (2q -2 ) (27n ' ; -3 /2 )  + (3n+2)(32nt) 

= 54qnt + 96n2t + lOnt - 3q + 3, 
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which violates (2.3) since q < 3nt. • 

By Claim 2.3, the type o~_ and type 81 connec- 

tions insure that all level j components of T O are 

connected into a single level j supercomponent in T, 

0 < j < 3n. From this we can conclude the following. 

Claim 2.4 N(81) = 3n, and exactly one warped 

crossover is connected by a type 81 configuration 

at each level j, 0 < j < 3n-1. 

Proof. Suppose two warped crossovers at the same 

level j were connected by type 81 configurations. 

These must occur in the top active regions of the 

crossovers, each of which by our construction 

contains a To-component of level j + 1. Thus T 

would contain two distinct paths from level j to 

level j + l, and hence a cycle involving the two 

paths and parts of the level j and level j + 1 

supercomponents. Since this is impossible, and 

since only warped crossovers can contain type 81 

configurations, N(S1) ~ 3n. A lower bound argu- 

ment similar to the one for Claim 2.3 can then be 

used to force equality. • 

Observe that a type 81 configuration at level 

j will connect up the level j and level j + 1 

supercomponents. Thus Claim 2.4 tells us that all 

the supercomponents are connected into one over- 

all skeleton component, which includes the backbone 

as that is connected to the level 0 supercomponent 

at prong O. Observe that the skeleton has been 

connected up without the use of any of the "between- 

level' To-cOmponents. Hence each of these can be 

directly connected to at most one of the two levels 

it lies between. Otherwise it would create a 

cycle. 

Claim 2.5 N(T1) : n 

This follows from another lower bound argument 

similar to the one used for Claim 2.3. We are now 

ready, using Claim 2.5, to show that the existence 

of T implies that ~has an exact cover. 

Claim 2.6 ~' = [Fi: the junction active region 

for the set structure representing 

F i contains a type T 1 configuration 

in T] 

is an exact cover for ~. 

Proof. From Claim 2.5, we know that l~'I = n, as 

desired. All that remains to be shown is that the 

sets in ~' are all pairwise disjoint, in which 

case their union must be all 3n elements. Let us 

consider the set structure for an Fief'. We show 

that the top crossovers in its three crossover 

stacks must all contain type 81 configurations. 

Since there cannot be two 81 configurations at the 

same level in T, ~' cannot then contain two F i 

whose set structures have crossover stacks of the 

same height, and hence all the Fie ~' are pairwise 

disjoint. 

So suppose the top crossover in a crossover 

stack of height j for F i does not contain a type 

B 1 configuration in its upper active region. Then 

by Claim 2.3 it must contain a type (~l configura- 

tion in its lower active region. Thus the between- 

level To-cOmponent just below the crossover is 

directly connected to level j. By our discussion 

after Claim 2.4, that between-level component can- 

not also be directly connected to the level below. 

Thus if j > O, the crossover at level j-1 in the 

stack cannot have a type ol configuration in its upper 

active region, and so must have one in its lower 

active region. By induction, the level 0 crossover 

in the stack has a type ~l configuration in its 

lower active region. But this means that the 

between-level To-COmponent between that crossover 

and the junction active region for the set struc- 

ture is joined directly to level ~ and cannot be 

joined directly to the backbone without creating a 

circuit. This contradicts the fact that the 

junction active region contains a type 71 

configuration. • 

Now we complete the proof that the L1-STEINER 

TREE problem is NP-complete by showing that if 

there is an exact cover for ~, there is an L 1- 

Steiner tree for S of total length L or less. 

Suppose I C [l, 2,...,t] satisfies III = n, and 

~' = [Fi:i~l ] is an exact cover for ~. We construct 

an Li-Steiner tree T* as follows. 

a) Include all edges of TO; 

b) For all iel, include a type T1 configuration 

in the junction active region of the set 

structure representing Fi; 

c) For all ieI, include a type 61 configuration 

in the upper active regions of the warped 

crossovers topping the three crossover 

stacks of the F i set structure, and a type G1 

configuration in the upper active region 

of each standard crossover in the F i set 

structure; 

d) For all i6[1,2,...,t] - I, include a type o l 

configuration in the lower active region 

of every crossover in the F i set structure. 

The tots& length of the edges in T* is clearly 

ITol + n.(96nt) + 3n.(54nt-3) + (q-3n)(54nt) = L. 

Moreover, T obeys Claims 2.3 and 2.4, so that all 

To-components except the between-level components 

must be connected together into a single, connected 

"skeleton', as argued above. The reader should 

easily be able to verify that (b), (c), and (d) 

insure that all between-level To-cOmponents are 

connected to the skeleton and no cycles are created. 

Thus T connects all the points of S and is the 

desired tree. 

3. THE L2-STEINER TREE PROBLEM IS NP-COMPLETE 

In this section we sketch a proof that the 

STEINER TREE problem, with distance measured by 

d ~ , our iscretized metric, is NP-complete (full 

details can be found in [5]). Given ~ we construct 

as before a set S t of points organized into cross- 

overs, junctions, etc., and a constant L' such that 

a minimum L2-Steiner tree for S t has length L' or 

less if and only if ~has an exact cover. 

For heuristic purposes, however, we shall 

first describe our construction as if it were 
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taking place in ordinary L2-space , obtaining a set 

S of points, some of which may possibly have 

irrational coordinates. The set S' will be 

obtained from S by a process of scaling and round- 

ing. The reason for working with L 2 as an inter- 

mediary is that a number of useful lemmas about 

minimum Steiner trees are easier to prove under 

that metric. Using these lenmlas, we shall prove 

a theorem of the followir~ form, for a specific 

L and 8 > O. 

Theorem 3.1 (a) If ~ has an exact cover, then S 

has a minimum L~-Steiner tree of length L or less. 

(b) If ~does not have an exact 

cover, then a minimum L2-Steiner tree for S has 

length at least L + 8. 

(A careful examination of the proof in the 

preceding section for the L I metric will show that 

our construction there satisfied a theorem 

analogous to the one above, with 8 = 3.) 

The 'important thing about a theorem of the 

above form for L 2 is the gap 5 > 0 it provides 

between the length of a ndnimum Steiner tree when 

an exact cover for ~ does or does not exist. 

Rounding the coordinates of the points in S to 

integers to obtain S r and converting from the L 2 

to the ~ metric will affect the length of a 

minimum Steiner tree, but with appropriate scaling 

beforehan~ the cumulative effect can be kept less 

than 8/2. Thus a residual gap will be left in the 

L 2 case, and NP-eompleteness for that case will 

follow. 

The lenmmas we shall use are presented without 

proof. (Missing details here and elsewhere can 

be found in [5,7,8,13].) Let T* be an L2-minimum 

Steiner tree for S containing the least possible 

number of Steiner points. 

Lemma 3. I 

endpoint, 

[7, 13 ]. 

If two edges of T* meet at a common 

the angle between them is 120 ° or more 

Lemma 3.2 Every Steiner point of T* has degree 3 

and each of the three e~es meeting at it makes 

angles of 12~ with the other two [7,13]. 

In light of the abo~ two lemmas, our con- 

struction will be arranged so that edges we wish 

to be present in T* do not meet at angles less 

than 12~ . However, this alone will not insure 

that the analogues of the To-edges of Section 2 

will all be present in T*. The situation under L 2 

is more complicated than under L I. Here we no 

longer have Hanan's result to restrict the loca- 

tions of possible Steiner points, and must proceed 

by a more indirect route, using two additional 

lemmas. The first is true of minimum Steiner 

trees in general, but for convenience we state it 

in terms of the L 2 metric. If T is a spanning tree 

for S and u, veS, let PT(~4v) denote the path in T 

between points u and v. For any path P, let m(P) 

be the L2-1ength of the longest edge in P. Let 

m(T) be the longest edge.length in the whole tree T. 

Lemma 3.~ Suppose T is a spanning tree for S and 

T* is an Lp-minimumSteiner tree for S. Then 

re(T*) < re(T) and fo r  any u,v~S. 
m(PT.(~,v)) < m(PT(u,v)) [5,8] 

Our final lemma will be very useful in 

restricting Steiner points to a very narrow range 

of possibilities, and can be proved using Lemmas 

3.2 and 3.3. Let T* be, as before, an L2-minimum 

Steiner tree for S with the least possible number 

of Steiner points. 

Lemma 3.4 Consider the region shown in Figure i0, 

which we shall call a probe. If m(T*) ~ i, then 

for each way of positioning the probe in the plane 

so that no points of S are in the probe or on its 

boundary, the point where the "ti~' of the probe 

is located cannot be a Steiner point of T*. [5,8] 

f 
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We now describe the L 2 construction. Figure 

13_ shows the junction and Figure 12 shows the 

standard and warped crossovers. The value of K 

used here is given by 

K = 3nt~ + n(l ~V~) (3.1)  

Each line segment ~ in our L 2 figures represents 

a set S(~) of points as follows. Starting at one 

end of ~, divide ~ into a sequence of subsegments: 

The first [5K] subsegments and the last [5K] 

subsegments all have length exactly i/i0. The 

subsegments in the middle all have lengths in the 

range [~ll, 1/lO]. Such a subdivision can be made 

since all the line segments in our figures have 

length exceeding K + ~. We then let S(~) be the 

set of all the endpoints of the suhsegments. This 

rather involved definition is required so that 

S(~) will be defined for line segments of non- 

integral and even irrational length. (Note that 

S(~) can itself contain points with irrational 

coordinates, although it will be possible to choose 

these coordinates so that they can be represented 

symbolically. ) 

The junctions and crossovers are put together 

to form the overall structure S representing ~ in 

a fashion analogous to that used for the L I metric. 

The major difference is that junctions are joined 

to the backbone, and warped crossovers to the level 

above themselves, in such a way as to avoid angles 

of less than 120 ° and line segments of length less 

than K + i. See Figure 13 for a schematic of the 

L 2 construction corresponding to Figure 5. 
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We now begin a proof that Theorem 3.1 holds 

for S, with L and ~ to be specified later. Let T* 

be an L2-minimum Steiner tree for S containing the 

least possible number of Steiner points. Since 

there is a spanning tree for S with maximum edge 

length l, we know by Lemma 3.3 that every edge of 

T* has length 1 or less. Thus Lemma 3.4 applies, 

and by using its "probe" we can substantially 

limit the possible locations of Steiner points. 

Claim 3.1 A Steiner point in T* can occur only in 

a location corresponding to one of the following 

(see Figure 14) 

(a) the points (0, 3K) and (O,-3K) in a cross- 

overs 

(b) the region defined by 

[(x,Y):Ix2+xy~+y2i ~ ~/3] in a junction. 

lu light of Claim 3.1, no Steiner point is 

closer than 1/v ~ - ~/v~= 0.1297... > 1/lO to any 

point in S. Thus, if we let T O be the set of all 

edges between pairs of points which are no further 

than 1/lO apart, Lemma 3.3 implies the following. 

Claim 3.2 T* contains sA1 edges of T O 

Thus we know, as in Section 2, that T* is 

made up of To-components which are interlinked in 

some manner by non-T 0 edges. From now on, we shall 

assume that T* has length less than D O + K, where 

D O is the total length of the T O edges, and K is 

as in (3.1). Given this, the non-T 0 edges have 

total length less than K. Moreover, it is a fairly 

straightforward task to prove the following claim, 

using the nature of our construction and the 

distances involved, along with Lemma 3.1. 

Claim 3.3 If<u,v> is sn edge of T*, but is not in 

TO, and if ~S, then u corresponds to one of the 

points labeled as "acti~ points" in Figure 14. 

Thus the To-components can be interconnected 

only in the viclnity of the possible Steiner 

points, areas which we s~ain call"active regions". 

As before, we provide a list of minimum length 

connecting configurations for each of the possible 

ways of connecting the To-components within a 

given active region (see Figure 15). Symmetric 

cases have been combine(~ mud all cases with average 

length per connection exceeding (1 +v~)/3 have 

been omitted, because it will turn out that they 

are too costly. Note that this leaves only three 

relevant configurations, which correspond in a 

natural way to the three configurations used in the 

L 1 case. In a continuing analogy with the L 1 case, 

we now can prove Theorem 3.1 for S, with L and 

specified as follows. Let s = 1/(20Out) and 

q < 3nt be the number of crossovers in S. We then 

set 

L : D O + qv/~ + n(l +~/~) - 3ns~/~ < D O + K 

(B.1) 

5 : E (3.2) 

We construct an i~?ut to the ~-STE]I~ER TREE 

problem from S and L in two steps. The first step 

is to scale the problem up. Let M = ISI and let 

Theorem 3.1 now holds for S" with L" = 12_M L and 

G" = 1 2 M .  E 

The next step is to round the coordinates up 

to integers. For x = (Xl, X2) , define f(x) to be 

( [Xl] , Ix2] ). Then set 

s' = {f(x):~s"] (3.4) 

Observe that there is a natural correspondence 

between Steiner trees for S" and ones for S'. This 

correspondence may not preserve minimality, but 

the length of an individual edge cannot change by 

much, even as we go from the L 2 to the ~ metric. 

The change is made up of a contribution of less 

thanv/2 due to the trauslation of the edge's 

endpoints, and a contribution of less than 1 due 

to the change in measure, for a total change of 

less than 3. Recalling from Section 1 that a 

minimum Steiner tree for a set with M points need 

have at most M-2 Steiner points and hence at most 

2M-3 edges, we can thus conclude the following. 

t 

Theorem 3.2 S' has an Lp-minimum Steiner tree of 

length less than [L"] +6M if and only if ~ has an 

exact cover. 

Since it is clearly possible (although 

admittedly a complicated process) to construct S' 

in time bounded by a polynomial in n and t, 

Theorem 3.2 leads to the desired conclusion that 

the L~-STEINER TREE problem is NP-complete. More- 

over, note that the change in Steiner tree edge 

length as we go from S" to S' is still less than 3 

if we use the Lo metric for both. Thus Theorem 

3.2 also holds~f ~ is replaced by L2, and 

consequently the L2-STEINER TREE problem, even 

when restricted to integer coordinate inputs, is 

NP-hard. 

l 

4. THE L 1 and L 2 TRAVELING SALESMAN PROBLEM 

ARE NP-COMPLETE 

Our TRAVELING SALESMAN constructions will 

follow the same general scheme as did our STEINER 

TREE constructions. A set S will be built up out 

of junctions, crossovers, etc. However, instead 

of using single rows of closely spaced points to 

build the junctions and crossovers and to link them 

together, we shall use pairs of parallel rows. 

These will in effect form "tubes", whose interiors 

will be forced to be "insid@' the TRAVELING SALES- 

MAN circuit. 

To explain more clearly what we mean by 

"inside" a circuit, we must first set up a corre- 

spondence between a circuit of S (thought of as a 

sequence of edges in a graph) and the representation 

of such a circuit by line segments in the plane. 

For the two distance metrics L 1 and ~, it is not 

true that a straight line is the unique shortest 

path between two points in the plane, as is the 

case under the L 2 metric. For the L 1 metric, there 

can be infinitely many paths of length dl(X,y) 

between x and y made up of horizontal and vertical 

line segments, so long as x and y do not agree in 
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either coordinate. Similarly, if d~(x,y) is not a6 

integer, there can be infinitely many paths made up 

of straight line segments that go from x to y with 

total length d~(x,y) = [d2(x,y )]. 

Thus, we shall say that a representation of a 

given edge <x,y>under distance measure d is any 

path from x to y made up of line segments whose 

total length under d is d(x~y). In the L 1 case we 

make the further restriction that all the line 

segments be either horizontal or vertical. A 

representation of a circuit C under d is a collec- 

tion of edge representations, one for each edge 

in C. 

These definitions allow us to prove the 

following lemma, using the triangle inequality. 

Lemma 4.1. If S is a set of points in the plane 

L2} , then which are not all collinear and Le[L1, ' 

under L there is a minimum length circuit of S 

which visits each point exactly once and which has 

a representation in the plane in which no two edge 

representations intersect or overlap except at a 

common endpoint. 

Observe that by the Jordan Curve Theorem [14], 

such a representation must divide the plane into 

two connected regions, one inside the circuit and 

one outside. Our "tube" construction will force 

all the tube interiors to be inside the circuit. 

Since the tube interiors will only be able to 

connect up with each other in "active regions" of 

junctions and crossovers, we can see the analogy 

with the STEINER TREE case becoming more apparent. 

To complete the analogy, we observe that just as 

we could not make a connection in the STEINER TREE 

case if it would create a cycle, here we cannot 

make a connection if it will make a "hole" in the 

inside region, as this would mean that the plane 

was divided into at least three regions by the 

circuit representation. 

We now begin the actual construction. In 

contrast to the case of STEINER TREE, no L 2 inter- 

mediary is needed for the ~ construction. In 

fact the ~ construction is so similar to that for 

L 1 (they differ only in the fine structure of their 

junctions) that we shall present the two in 

parallel. Given 5, the corresponding junctions 

and crossovers are shown in Figures 16 and 17, 

where 

K = 108nt 2 + lO08n2t 2 + 108n2t. (4.1) 

Each line segment once more stands for the set of 

integer coordinate points it contains. Note that in 

the crossovers, the central ~oint (0,0) is included 

in the set of points the crossover represents. 

(The point (0, O) is not included in the junctions.) 

For both junctions and crossovers, the active 

region is defined to be the set of all points with- 

in distance 3K of (0,0), under the appropriate 

metric. 

These basic units are put together to form an 

overall structure representing ~ in a fashion 

analogous to that for the STEINER TREE constructions, 

with what previously were connected components now 

being connected "tube" systems. See Figure 18 for 

a schematic of the construction corresponding to 

Figures 5 and 13. 

Let TQ be the set of all edges of length i 

between polnts of S (under the relevant metric), 

and let q < 3nt be the number of crossovers in S. 

We shall show that ~ has an exact cover if and only 

if there is a circuit passing through all the points 

of S with total length not exceeding 

I IT01+lOSnt2+336ntq+108n2t-6n, under L I 

L = t 

I T O I +72nt2+ 3LTntq+ 108n2t-6n, under L 2 

(4.2) 

We shall argue in parallel for both metrics, 

distinguishing between them only when necessary. 

Let C* be a minimum length circuit of S, with 

length ~* < L. By Lemma 4.1, we can assume that 

every vertex seS has degree 2 in C*, and that there 

is a representation R(O*) of C* in the plane which 

does not intersect or overlap itself. 

We first note that ISl > IToI. Since all 

edges of C* must have length at least 1 by our 

thus have ~* > IToI. In fact, if construction, we 

we let<xl, x2,...,x SI > be the cyclic permutation 

of S induced by C*, then we have 

~I [d(xi, xi+l)-l] + d(Xlsf,X l) - 1 < L ITOI < K 
i=1 (4.3) 

From this and the fact that R(C*) does not intersect 

or overlap itself, we can derive the following. 

Claim 4.1 Suppose<a,b>eT 0 and all points of S 

within distance K of a or b are on the same 

horizontal or vertical line as a and b. Then 

<%b>~C*. 

From Claim 4.1 we can conclude that C* contains 

all edges of T O which are not in an active region 

or within distance K of a place where line segments • 

meet at 90 ° angles. A simple argument using (4.3) 

and the fact that all points of S have degree 2 in 

C* then suffices to prove the following. 

Claim 4.2 C* contains all edges of T O that are 

not in active regions. 

This means that all points of S outside the 

active regions have their two edges in C* supplied 

by T O . Since all active regions are at least 2K 

apart, the remaining edges of C* must each be 

between points in the same active region, and hence 

must have their representations entirely contained 

within single active regions. Thus Figure 18 

indicates how R(C*) must look outside the active 

regions. 

Since R(C*) does not overlap or intersect 

itself, it divides the plane into two connected 

regions. A simple coloring argument now suffices 

to show that the interiors of the "tubes" are all 

part of the same region. Let an inactive segment 
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of R(C*) be a path made up of T O edge representa- 

tions which are not in active regions. That part 

of the plane which is not contained in active 

regions can then be thought of as made up of 

inactive regions, which are separated from each 

other by inactive segments. Clearly each inactive 

region must either be entirely"inside" R(C*) or 

entirely "outside", and each inactive segment 

separates an inside region from an outside one. We 

color the inactive regions as follows. Start with 

any tube interior region, and color it red for 

"inside". Now pick an inactive region which borders 

our red region, and color it blue for "outsid@'. 

Continue in this way, always choosing an uncolored 

inactive region which borders a colored one, and 

giving it the opposite color. It should be easy 

for the reader to verify that this will yield a 

unique coloring of the inactive regions, in which 

no two adjacent regions get the same co!oN all 

tube interiors are re~ and all other inactive 

regions are blue. No colors have been assigned to 

the active regions, and indeed these regions will 

each be part "inside" and part "outside". However, 

the edge representations in R(C*) in the active 

regions must be such that all the red inactive 

regions belong to the connected region "insid@' 

R(C*), and all the blue inactive regions belong to 

the single "outside" connected region. 

Thus once again we can think of the active 

regions of S as performing "connections" - this 

time of tube interiors rather than of To-components , 

as in the STEINER TREE case. Moreover, there are 

3n + 2q + i inactive regions which are tube 

interiors, and hence there are, as before, 3n + 2q 

connections to be made. 

However, unlike the STEINER TPEE case, the 

cost of making "no connections" in an active region 

is not zero. In addition to the T O edges, non-T O 

edges must be included to insure that each time 

R(C*) enters the region it continues along an 

unbroken path until it leaves the active region 

(i.e., when no connections are made the tube 

interior regions that enter the active region must 

be "closed off'). Moreover, in the crossovers 

non-To edges will be needed to insure that the 

"central point" of the crossover is included in C*. 

Figure 19 gives canonical ways of achieving "no 

connections" for both junctions and crossovers. 

Observe that all T O edges in the active regions are 

used. The "base length' quoted in the figure is 

the total length of the non-T 0 edges used. 

For configurations that perform one or more 

connections~ we shall compute "excess length' as 

the difference between the total length needed 

to make the connections and the total length needed 

to make no connections. Canonical ways of achieving 

one or more connections using minimum excess length 

are shown in Figure 20. We omit all connection 

possibilities that require average excess length 

exceeding 36nt, as they will prove too expensive. 

We can assume without loss of generality that each 

active region of R(C*) contains one of our 

canonical configurations. 

We thus have 3n + 2q connections to be per- 

forme~ and no connection can be made which creates 

a "hole" in the inside region of R(C*)~ just as no 

connection could be made which created a cycle in 

the STEINER TREE case. The reader should now be 

able to complete the proof using Section 2 as a 

guide. 

We thus conclude that the desired circuit 

exists if and only if the desired cover exists. 

Since the construction is clearly pol~nomially 

bounded, this means that the L I and L2 TRAVELING 

SALESMAN problems are NP-complete. 

We conclude by remarking that the 

construction works equally well for the L 2 

TRAVELING SALESMAN problem restricted to integer 

coordinate inputs. The crossovers and junctions 

were designed so that any edge<x,y>usable in C* 

would have integral length under 12, and hence 

d2(x,y ) = d~(x,y). The reader may verifylthat the 

lemmas and claims continue to hold when L 2 is 

replaced by L 2. Thus we can conclude that this 

L 2 problem is NP-hard, although the technical 

problems mentioned in the introduction leave the 

question of NP-completeness open. 
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