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Abstract

Numerical Methods form an important part of options valuation

and especially in cases where there is no closed form analytic formula.

We discuss three numerical methods for options valuation namely Bi-

nomial model, Finite difference methods and Monte Carlo simulation

method. Then we compare the convergence of these methods to the

analytic Black-Scholes price of the options. Among the methods con-

sidered, Crank Nicolson finite difference method is unconditionally sta-

ble, more accurate and converges faster than binomial model and Monte

Carlo Method when pricing vanilla options, while Monte carlo simula-

tion method is good for pricing path dependent options.
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1 Introduction

Numerical methods are needed for pricing options in cases where analytic

solutions are either unavailable or not easily computable. Examples of the

former include American style options and most discretely observed path de-

pendent options, while the latter includes the analytic formula for valuing

continuously observed Asian options which is very hard to calculate for a wide

range of parameter values encountered in practice.

The subject of numerical methods in the area of options valuation and

hedging is very broad. A wide range of different types of contracts are avail-

able and in many cases there are several candidate models for the stochastic

evolution of the underlying state variables [13].

Now, we present an overview of three popular numerical methods available

in the context of Black-Scholes-Merton [2, 8] for vanilla and path dependent

options valuation which are binomial model for pricing options based on risk-

neutral valuation derived by Cox-Ross-Rubinstein [6], finite difference methods

for pricing derivative governed by solving the underlying partial differential

equations was considered by Brennan and Schwarz [5] and Monte Carlo ap-

proach introduced by Boyle [3] for pricing European option and path dependent

options. The comparative study of finite difference method and Monte Carlo

method for pricing European option was considered by [9]. These procedures

provide much of the infrastructure in which many contributions to the field

over the past three decades have been centered.

2 Numerical Methods for Options Valuation

This section presents three numerical methods for options valuation namely:

• Binomial Methods.

• Finite Difference Methods.

• Monte Carlo Methods.
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2.1 Binomial Model

This is defined as an iterative solution that models the price evolution

over the whole option validity period. For some types of options such as the

American options, using an iterative model is the only choice since there is no

known closed form solution that predicts price over time. Black-Scholes model

seems dominated the option pricing, but it is not the only popular model, the

Cox-Ross-Rubinstein (CRR) “Binomial” model has a large popularity. The

binomial model was first suggested by Cox-Ross-Rubinstein model in paper

“Option Pricing: A Simplified Approach” [6] and assumes that stock price

movements are composed of a large number of small binomial movements. The

Cox-Ross-Rubinstein model [7] contains the Black-Scholes analytical formula

as the limiting case as the number of steps tends to infinity.

We know that after one time period, the stock price can move up to Su

with probability p or down to Sd with probability (1 − p). Therefore the

corresponding value of the call option at the first time movement δt is given

by

fu = max(Su−K, 0) (1)

fd = max(Sd−K, 0) (2)

where fu and fd are the values of the call option after upward and downward

movements respectively.

We need to derive a formula to calculate the fair price of the option. The

risk neutral call option price at the present time is

f = e−rδt[pfu + (1− p)fd] (3)

where the risk neutral probability is given by

p =
erδt − d

u− d
(4)

Now, we extend the binomial model to two periods. Let fuu denote the

call value at time 2δt for two consecutive upward stock movement, fud for one

downward and one upward movement and fdd for two consecutive downward

movement of the stock price. Then we have

fuu = max(Suu−K, 0) (5)
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fud = max(Sud−K, 0) (6)

fdd = max(Sdd−K, 0 (7)

The values of the call options at time δt are

fu = e−rδt[pfuu + (1− p)fud] (8)

fd = e−rδt[pfud + (1− p)fdd] (9)

Substituting (8) and (9) into (3), we have

f = e−rδt[pe−rδt(pfuu + (1− p)fud) + (1− p)e−rδt(pfud + (1− p)fdd)]

f = e−2rδt
[

p2fuu + 2p(1− p)fud + (1− p)2fdd
]

(10)

(10) is called the current call value using time 2δt, where the numbers p2,

2p(1 − p) and (1 − p)2 are the risk neutral probabilities that the underlying

asset prices Suu, Sud and Sdd respectively are attained.

We generalize the result in (10) to value an option at T = Nδt as

f = e−Nrδt

N
∑

j=0

(Nj )p
j(1− p)N−jfujdN−j

f = e−Nrδt

N
∑

j=0

(

N
j

)

pj(1− p)N−j max(SujdN−j −K, 0) (11)

where fujdN−j = max(SujdN−j − K, 0) and
(

N
j

)

= N !
(N−j)!j!

is the binomial

coefficient . We assume that m is the smallest integer for which the option’s

intrinsic value in (11) is greater than zero. This implies that SumdN−m ≥ K.

Then (11) is written as

f = Se−Nrδt

N
∑

j=0

(

N
j

)

pj(1− p)N−jujdN−j

−Ke−Nrδt

N
∑

j=0

(

N
j

)

pj(1− p)N−j (12)

which gives us the present value of the call option.

The term e−Nrδt is the discounting factor that reduces f to its present

value. The first term
(

N
j

)

pj (1− p)N−j is the binomial probability of j up-

ward movements to occur after the first N trading periods and SujdN−j is the

corresponding value of the asset after j upward move of the stock price.
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The second term is the present value of the option‘s strike price. Let

R = erδt, we substitute R in the first term in (11) to yield

f = SR−N

N
∑

j=0

(

N
j

)

pj(1− p)N−jujdN−j −Ke−Nrδt

N
∑

j=0

(

N
j

)

pj(1− p)N−j

= S
∑

j=0

(Nj )
[

R−1pu
]j [

R−1(1− p)d
]N−j

−Ke−Nrδt

N
∑

j=0

(

N
j

)

pj(1− p)N−j (13)

Now, let Φ(m;N, p) be the binomial distribution function. That is

Φ(m;N, p) =
N
∑

j=0

(

N
j

)

pj(1− p)N−j (14)

(14) is the probability of at least m success in N independent trials, each

resulting in a success with probability p and in a failure with probability (1−p).

Then, letting p̂ = R−1pu, we easily see that R−1(1−p)d = 1− p̂. Consequently

it follows from (13) that

f = SΦ(m;N, p̂)−Ke−rTΦ(m;N, p) (15)

where δt = T
N
.

The model in (15) was developed by Cox-Ross-Rubinstein [3] and we will

refer to it as CRR model. The corresponding value of the European put option

can be obtained as

f = Ke−rTΦ(m;N, p)− SΦ(m;N, p̂) (16)

using call put relationship given by

CE +Ke−rt = PE + S (17)

where r denotes the risk free interest rate, CE is the European Call, PE is

European put and S is the initial stock price. European options can only be

exercised at expiration, while for an American options, we check at each node

to see whether early exercise is preferable to holding the option for a further

time period δt. When early exercise is taken into account, this value of f must

be compared with the option’s intrinsic value [5].
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2.1.1 Variations of Binomial Model

The variations of binomial models is of two forms namely:

• Underlying stock paying a dividend or known dividend yield

The value of a share reflects the value of the company. After a dividend is

paid, the value of the company is reduced so the value of the share.

Let us assume a single dividend λ during the life of an option and the the

dividend which is given as a proportional to the share price at the ex-dividend

by iδt, then the share prices at nodes are

SujdN−j, j = 0, 1, ..., N, N = 0, 1, ..., i− 1

S(1− λ)ujdN−j, j = 0, 1, ..., N, N = i, i+ 1, ...

}

(18)

• Underlying stock with continuous dividend yield

A stock index is composed of several hundred different shares. Each share

gives dividend away a different time so the stock index can be assumed to

provide a dividend continuously.

We explored Merton’s model, the adjustment for the Black-Scholes model

to carter for European options on stocks that pay dividend. Referring to

Black-Scholes analytic pricing formula on a dividend paying stock for European

option, we saw that the risk-free interest rate is modified from r to (r−λ) where

λ is the continuous dividend yield [14]. We apply the same principle in our

binomial model for the valuation of the options. The risk neutral probability

in (4) is modified but the other parameters remains the same.

p =
e(r−λ)δt − d

u− d
(19)

where u = eσ
√
δt and d = e−σ

√
δt.

These parameters apply when generating the binomial tree of stock prices

for both the American and European options on stocks paying a continuous

dividend and the tree will be identical in both cases. The probability of a stock

price increase varies inversely with the level of the continuous dividend rate λ.
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2.2 Finite Difference Methods

Schwartz [5] first applied the finite difference techniques to solve option val-

uation problems for which closed form solutions are unavailable. He considered

the valuation of an American option on stock which pays discrete dividends.

The finite difference methods attempt to solve the Black-Scholes partial dif-

ferential equation by approximating the differential equation over the area of

integration by a system of algebraic equations [7]. They are a means of ob-

taining numerical solutions to partial differential equations [12]. They provide

a general numerical solution to the valuation problems, as well as an optimal

early exercise strategy and other physical sciences. They are also referred to

as grid methods. The most common finite difference methods for solving the

Black-Scholes partial differential equation are:

• Implicit method

• Crank Nicolson method

These are closely related but differ in stability, accuracy and execution speed.

In the formulation of a partial differential equation problem, there are three

components to be considered:

• The partial differential equation.

• The region of space-time on which the partial differential is required to

be satisfied.

• The ancillary boundary and initial conditions to be met.

2.2.1 Discretization of the Equation

The finite difference method consists of discretizing the partial differential

equation and the boundary conditions using a forward or a backward difference

approximation. The Black-Scholes partial differential equation can be written

as
∂f(t, St)

∂t
+ rSt

∂f(t, St)

∂St

+
σ2S2

2

∂2f(t, St)

∂St
2 = rf(t, St) (20)

We discretize the equation with respect to time and to the underlying price

of the asset. Divide the (t, S) plane into a sufficiently dense grid or mesh and
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approximate the infinitesimal steps δt and δS by some small fixed finite steps.

Further, define an array of N + 1 equally spaced grid points t0, t1, ..., tN to

discretize the time derivative with tn+1 − tn = δt and δt = T
N
.

We know that the stock price cannot go below zero and we have assumed

that Smax = 2S0. We have M + 1 equally spaced grid points S0, S1, ..., SM to

discretize the stock price derivative with SM+1 − SM = δS and δS = Smax

M
.

This gives us a rectangular region on the (t, S) plane with sides (0, Smax) and

(0, T ). The grid coordinates (n,m) enables us to compute the solution at

discrete points.

The time and stock price points define a grid consisting of a total of (M +

1)× (N +1) points. The (n,m) point on the grid is the point that corresponds

to time nδt for n = 0, 1, 2, ..., N and stock price mδS for m = 0, 1, 2, ...,M

We will denote the value of the derivative at time step tn when the under-

lying asset has value Sm as

fm,n = f(nδt,mδS) = f(tn, Sm) = f(t, S) (21)

Where n and m are the number of discrete increments in the time to maturity

and stock price respectively. The discrete increments in the time to maturity

and stock price are given by δt and δS respectively [9].

2.2.2 Finite Difference Approximations

In finite difference methods we replace the partial derivative occurring in

the partial differential equations by approximations based on Taylor series

expansions of function near the point or points of interest. The derivative we

seek is expressed with many desired order of accuracy.

Assuming that f(t, S) is represented in the grid by fn,m, the respective

expansions of f(t, δS + S) and f(t, δS − S) in Taylors series are

f(t, δS + S) = f(t, S) +
∂f

∂S
δS +

1

2

∂2f

∂S2
δS2 +

1

6

∂3f

∂S3
δS3 +O(δS4) (22)

f(t, S − δS) = f(t, S)− ∂f

∂S
δS +

1

2

∂2f

∂S2
δS2 − 1

6

∂3f

∂S3
δS3 +O(δS4) (23)

Using (22), the forward difference is given by

∂f(t, S)

∂S
=

f(t, δS + S)− f(t, S)

∂S
+O(δS)
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≈ fn,m+1 − fn,m

δS
(24)

Where fn,m+1 = f(t, δS + S) and fn,m = f(t, S). (23) gives the corresponding

backward difference as

∂f(t, S)

∂S
=

f(t, S)− f(t, S − δS)

∂S
+O(δS)

≈ fn,m − fn,m−1

δS
(25)

Subtracting (23) from (22) and taking the first order partial derivative results

in the central difference given by

∂f(t, S)

∂S
=

f(t, S + δS)− f(t, S − δS)

2δS
+O(δS2)

≈ fn,m+1 − fn,m−1

2δS
(26)

The second order partial derivatives can be estimated by the symmetric

central difference approximation. We sum (22) and (23) and take the second

order partial derivative to have

∂2f(t, S)

∂S2
=

f(t, S + δS)− 2f(t, S) + f(t, S − δS)

δS2
+O(δS2)

≈ fn,m+1 − 2fn,m + fn,m−1

δS2
(27)

Although there are other approximations, this approximation to ∂2f(t,S)
∂S2 is pre-

ferred, as its symmetry preserves the reflectional symmetry of the second order

partial derivative. It is also invariant and more accurate than the similar ap-

proximations [1].

We expand f(t+ δt, S) in Taylors series as

f(t+ δt, S) = f(t, S) +
∂f

∂t
δt+

1

2

∂2f

∂t2
δt2 +

1

6

∂3f

∂t3
δt3 +O(δt4) (28)

The forward difference for the time is given by

∂f(t, S)

∂t
=

f(t+ δt, S)− f(t, S)

δt

≈ fn+1,m − fn,m

δt
(29)
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Substituting equations (26), (27) and (29) into the equation (20) and noting

that S = mδS gives

fn+1,m − fn,m

δt
+rmδS

fn,m+1 − fn,m−1

2δS
+
1

2
σ2m2S2fn,m+1 − 2fn,m + fn,m−1

δS2
= rfn,m

for m = 1, 2, 3, ...,M − 1 and n = 0, 1, 2, ..., N − 1. Rearranging terms, we

obtain

amfn,m−1 + bmfn,m + cmfn,m+1 = fn+1,m (30)

where

am =
1

2
rmδt− 1

2
σ2m2δt

bm = 1 + σ2m2δt+ rδt

cm = −1

2
rmδt− 1

2
σ2m2δt

(30) is a finite difference equation which gives equation that we use to ap-

proximate the solution f(t, S) [4]. Similarly, we obtained the following finite

difference methods using above approach as follows.

For implicit case, we have

fn+1,m =
1

1− rδt
[α1mfn,m−1 + α2mfn,m + α3mfn,m+1] (31)

for n = 0, 1, 2, ..., N − 1 and m = 1, 2, ...,M − 1. The implicit method

is accurate to O(δt, δS2). The weights αkm
′s for k = 1, 2, 3 are given by

α1m =
1

2
rmδt− 1

2
σ2m2δt,

α2m = 1 + σ2m2δt,

α3m = −1

2
rmδt− 1

2
σ2m2δt

For Crank Nicolson finite difference method, we have

γ1mfn,m−1 + γ2mfn,m + γ3mfn,m+1

= ρ1mfn+1,m+1 + ρ2mfn+1,m + ρ3mfn+1,m+1 (32)

for n = 0, 1, ..., N − 1 and m = 1, 2, ...,M − 1. Then the weights γkm and

ρkm for k = 1, 2, 3 are given by

γ1m =
rmδt

4
− σ2m2δt

4
,
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γ2m = 1 +
rδt

2
+

σ2m2δt

2
,

γ3m = −σ2m2δt

4
− rmδt

4
,

ρ1m =
σ2m2δt

4
− rmδt

4
,

ρ2m = 1− rδt

2
− σ2m2δt

2
,

ρ3m =
rmδt

4
+

σ2m2δt

4

2.2.3 Boundary and Initial Conditions

A partial differential equation without the ancillary boundary or initial

conditions will either has an infinitely many solutions or has no solution. We

need to specify the boundary and initial conditions for the European put option

whose payoff is given by max(K − ST , 0), where ST is the stock price at time

T . When the stock is worth nothing, a put is worth its strike price K. That is

fn,0 = K, for n = 0, 1, 2, ..., N (33)

As the price of the underlying asset increases, the value of the put option

approaches zero or worths nothing. Accordingly, we choose Smax = SM and

from this we get

fn,M = 0, for n = 0, 1, 2, ..., N (34)

We know the value of the put option at time T and can impose the initial

condition

fN,m = max(K −mδS, 0), for m = 0, 1, 2, ...,M (35)

The initial condition gives us the value of f at the end of the time period and

not at the beginning. This means that we move backward from the maturity

date to time zero. The price of the put option is given by f0,M+1

2

and f0,M
2

when M is odd and even respectively.

This method is suited for European put options where early exercise in

not permitted. The call-put parity in (17) is used to obtain the corresponding

value of the European call option. To value an American put option, where
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early exercised is permitted, we need to make only one simple modification [9].

After each linear system solution, we need to consider whether early exercise

is optimal or not. We compare fn,m with the intrinsic value of the option,

(K − mδS). If the intrinsic value is greater, then set fn,m to the intrinsic

value.

The American call and put options are handled in almost exactly the same

way. We have for call and put respectively.

fN,m = max(mδS −K, 0), for m = 0, 1, 2, ...,M

fN,m = max(K −mδS, 0), for m = 0, 1, 2, ...,M

}

(36)

2.2.4 Stability Analysis

The two fundamental sources of error, the truncation error in the stock price

discretization and in the time discretization. The importance of truncation

error is that the numerical schemes solves a problem that is not exactly the

same as the problem we are trying to solve.

The three fundamental factors that characterize a numerical scheme are

consistency, stability and convergence [9].

• Consistency: A finite difference of a partial differential equation is

consistent, if the difference between the partial differential equation and

finite difference equation vanishes as the interval and time step size ap-

proach zero. That is , the truncation error vanishes so that

lim
δt→0

(PDE − FDE) = 0 (37)

Consistency deals with how well the FDE approximates the PDE and it

is the necessary condition for convergence.

• Stability: For a stable numerical scheme, the errors from any source

will not grow unboundedly with time.

• Convergence: It means that the solution to a FDE approaches the true

solution to the PDE as both grid interval and time step sizes are reduced.
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These three factors that characterize a numerical scheme are linked together

by Lax equivalence theorem [8] which states as follows;

Theorem 2.1. Given a well posed linear initial value problem and a consis-

tent finite difference scheme, stability is the necessary and sufficient condition

for convergence.

In general, a problem is said to be well posed if:

• a solution to the problem exists.

• the solution is unique when it exists.

• the solution depends continuously on the problem data.

2.2.5 A Necessary and Sufficient Condition for Stability

Let fn+1 = Afn be a system of equations. Matrix A and the column vectors

fn+1 and fn are as represented in (30). We have

fn = Afn−1

= A2fn−2

...

= Anf0

for n = 1, 2, ..., N (38)

where f0 is the vector of initial values. we are concerned with stability and

we investigate the propagation of a perturbation. Perturb the vector of initial

values f0 to f̂0. The exact solution at the nth time-row will then be

f̂n = Anf̂0 (39)

Let the perturbation or ‘error’ vector e be denoted by

e = f̂ − f

and using the perturbation vector (38) and (39) we have

en = f̂n − fn

= Anf̂0 − Anf0

= An(f̂0 − f0)
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Therefore,

en = Ane0, for n = 1, 2, ..., N (40)

Hence for compatible matrix and vector norms [8]

‖en‖ ≤ ‖An‖‖e0‖

Lax and Richmyer defined the difference scheme to be stable when there exists

a positive number L, independent of n, δt and δS such that

‖An‖ ≤ L, for n = 1, 2, ..., N

This limits the amplification of any initial perturbation and therefore of any

arbitrary initial rounding errors because it implies that

‖en‖ ≤ L‖e0‖

since ‖An‖ = ‖An−1A‖ ≤ ‖A‖‖An−1‖ ≤ · · · ≤ ‖A‖n, then the Lax-Richmyer

definition of stability is satisfied when

‖A‖ ≤ 1 (41)

condition (41) is the necessary and sufficient condition for the difference equa-

tions to be stable [8]. Since the spectral radius ρ(A) satisfies

ρ(A) ≤ ‖A‖

it follows automatically from (41) that

ρ(A) ≤ 1

We note that if matrix A is real and symmetric, then by definition [6], we

have

‖A‖∞ = moduli of the maximum row of matrix A

‖A‖2 = ρ(A) = max |λn| (42)

where λn is an eigenvalue of matrix A which is given by λn = y+2(
√
xz) cos nπ

N
,

for n = 1, 2, ..., N where x, y and z are referred to as weights which may be

real or complex.

By Lax equivalence theorem, the two finite difference methods are consistent,

unconditionally stable and convergent.
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2.3 Monte Carlo Simulation Method

Boyle [3] was the first researcher to introduce Monte Carlo simulation into

finance. Monte Carlo method is a numerical method that is useful in many

situations when no closed form solution is available. This method is good for

pricing path dependent options.

The basis of Monte Carlo simulation is the strong law of large numbers,

stating that the arithmetic mean of independent, identically distributed ran-

dom variables, converges towards their mean almost surely. Monte Carlo sim-

ulation method uses the risk valuation result. The expected payoff in a risk

neutral world is calculated using a sampling procedure The main procedures

are followed when using Monte Carlo simulation.

• Simulate a path of the underlying asset under the risk neutral condition

within the desired time horizon

• Discount the payoff corresponding to the path at the risk-free interest

rate.

• Repeat the procedure for a high number of simulated sample path

• Average the discounted cash flows over sample paths to obtain the op-

tion’s value.

A Monte Carlo simulation can be used as a procedure for sampling random

outcomes of a process followed by the stock price [9]

dS = µSdt+ σSdW (t) (43)

where dWt is a Wiener process and S is the stock price. If δS is the increase

in the stock price in the next small interval of time δt then

δS

S
= µδt+ σZ

√
σt (44)

where Z ∼ N(0, 1), σ is the volatility of the stock price and µ is its expected

return in a risk neutral world (44) is expressed as

S(t+ δt)− S(t) = µS(t)δt+ σS(t)Z
√
δt (45)

We can calculate the value of S at time t+ δt from the initial value of S, then

the value of S at time t + 2δt, from the value at t + δt and so on. We use N
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random samples from a normal distribution to simulate a trial for a complete

path followed by S. It is more accurate to simulate lnS than S, we transform

the asset price process using Ito’s lemma

d(lnS) =

(

µ− σ2

2

)

dt+ σdW (t)

so that

lnS(t+ δt)− lnS(t) =

(

µ− σ2

2

)

δt+ σZ
√
δt

or

S(t+ δt) = S(t) exp

[(

µ− σ2

2

)

δt+ σZ
√
δt

]

(46)

Monte Carlo simulation is particularly relevant when the financial derivatives

payoff depends on the path followed by the underlying asset during the life of

the option, that is, for path dependent options. For example, we consider an

Asian options whose Stock price process at maturity time T is given by

S
j
T = S exp

[(

µ− σ2

2

)

T + σZ
√
T

]

(47)

where j = 1, 2, ...,M and M denotes the number of trials or the different states

of the world. These M simulations are the possible paths that a stock price

can have at maturity date T . The estimated Asian call option value is

C =
1

M

M
∑

j=1

e−rT max[Sj
T − St, 0] (48)

where St is the strike price determined by either arithmetic or geometric mean

[4].

3 Numerical Examples

Now, we present some numerical examples as follows:

Example 3.1. We compute the values of both European and American style

options. The results in Table 1 and Table 2 for the American and European

options are compared to those obtained using Black-Scholes analytic pricing
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formula. The rate of convergence for multi-period method may be assessed

by repeatedly doubling the number of time steps N . Tables 1 and 2 use the

parameters:

S = 45, K = 40, T = 0.5, r = 0.1, σ = 0.25

in computing the options prices as we increase the number of steps. The Black-

Scholes price for call option and put option are 7.6200 and 0.6692 respectively.

Example 3.2. Consider pricing a vanilla option on a stock paying a known

dividend yield with the following parameters:

S = 50, r = 0.1, T = 0.5, σ = 0.25, τ =
1

6
, λ = 0.05

The results obtained are shown in the Table 3 below.

Example 3.3. We consider the convergence of the multi-period binomial

model, fully implicit and the Crank Nicolson method with relation to the

Black-Scholes value of the option. We price the European call option on a non

dividend paying stock with the following parameters:

S = 50, K = 60, r = 0.05, σ = 0.2, T = 1

The Black-Scholes price for the call option is 1.6237. The results obtained are

shown in the Tables 4 and 5.

Example 3.4. We consider the performance of the three numerical meth-

ods against the ‘true’ Black-Scholes price for a European put with

K = 50, r = 0.05, σ = 0.25, T = 3

The results obtained are shown in the Table 6 below.

Next, we will now attempt to price an Asian options for which there is no

closed form solution available.
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Example 3.5. Consider pricing of an Asian call and put options using

Monte Carlo method with the following parameters:

S0 = 50, K = 50, µ = 0.04, σ = 0.1, r = 0.03, dt =
1

365
, N = 50, n = 1000

where S0, K, µ, σ, r, dt, N, T and n are called price of underlying today, strike

price, expected return, volatility rate, risk free rate, time steps, number of days

to expiry, expiration date and number of simulation path respectively.

The following shows the results of executing the Asian put and call script:

Put price = 0.3502

Call price = 0.4991

Monte Carlo method is useful in pricing path dependent options and is

becoming more appealing and gaining popularity in derivative pricing. We

obtained the above results using Matlab codes.

4 Discussion of Results

From Table 1, we can see that Black-Scholes formula for the European call

option can be used to value American call option for it is never optimal to

exercise an American call option before expiration. As we increase the value

of N , the value of the American put option is higher than the corresponding

European put option as we can see from this Table, because of the early exercise

premium. Sometimes the early exercise of the American put option can be

optimal.

Table 2 shows that as the value of N is doubled, Multi-Period Binomial

model converges faster and closer to the Black-Scholes value. This method is

very flexible in pricing options.

Table 3 shows that the American option on the dividend paying stock is

always worth more than its European counterpart. A very deep in the money,

American option has a high early exercise premium. The premium of both the

put and call option decreases as the option goes out of the money.

The American and European call options are not worth the same as it is

optimal to exercise the American call early on a dividend paying stock. A deep
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out of the money, American and European call and put options are worth the

same. This is due to the fact that they might not be exercised early as they

are worthless.

Table 4 shows that the Crank Nicolson method in (32) converges faster than

fully implicit method in (31) as N → ∞, δt → 0 and as M → ∞, δS → 0.

The multi-period binomial is closer to the solution for small values of N than

the two finite difference methods.

Table 5 shows that when N and M are different, the finite difference meth-

ods converges faster than when N andM the same. For the implicit and Crank

Nicolson schemes, the number of time steps N initially set at 10 and doubled

with each grid M refinement. We conclude that the finite difference methods,

just as the binomial model are very powerful in pricing of vanilla options. The

Crank Nicolson method has a higher accuracy than the implicit method and

therefore it converges faster. The results obtained highlight that the two finite

difference methods are unconditionally stable.

Table 6 shows the variation of the option price with the underlying price S.

The results demonstrate that the three numerical methods perform well, are

mutually consistent and agree with the Black-Scholes value. However, finite

difference method (F.D.M) is the most accurate and converges faster than

multi period binomial model (M.P.B) and Monte Carlo method (M.C.M).

5 Conclusion

We have at our disposal three numerical methods for options valuation. In

general, each of the three numerical methods has its advantages and disadvan-

tages of use. Binomial models are good for pricing options with early exercise

opportunities and they are relatively easy to implement but can be quite hard

to adapt to more complex situations. Finite difference methods converge faster

and more accurate, they are fairly robust and good for pricing vanilla options

where there is possibilities of early exercise. They can also require sophis-

ticated algorithms for solving large sparse linear systems of equations and

are relatively difficult to code. Finally, Monte Carlo method works very well

for pricing European options, approximates every arbitrary exotic options, it

is flexible in handling varying and even high dimensional financial problems,
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moreover, despite significant progress, early exercise remain problematic for

Monte Carlo method.

Among the methods considered in this work, we conclude that Crank Nicol-

son finite difference method is unconditionally stable, more accurate and con-

verges faster than binomial model and Monte Carlo Method when pricing

vanilla options as shown in Table 4 and Table 6, while Monte carlo simulation

method is good for pricing path dependent options.

When pricing options the important thing is to choose the correct numerical

method from the wide array of methods available.
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Table of Results

Table 1: Comparison of the Multi-period Binomial to Black-Scholes Value of

the Option as we increase N .

N European call American call European put American put

10 7.6184 7.6184 0.6676 0.7124

20 7.6305 7.6305 0.6797 0.7235

30 7.6042 7.6042 0.6534 0.7027

40 7.6241 7.6251 0.6742 0.7228

50 7.6070 7.6070 0.6562 0.7101

60 7.6219 7.6219 0.6710 0.7199

70 7.6209 7.6209 0.6701 0.7207

80 7.6124 7.6124 0.6616 0.7134

90 7.6210 7.6210 0.6702 0.7201

100 7.6216 7.6216 0.6707 0.7214

Table 2: The Comparison of the Convergence of the Multi Period-Binomial

model and Black-Scholes Value of the Option as we double the value of N .

N European Call American Call European Put American Put

20 7.6305 7.6305 0.6797 0.7235

40 7.6251 7.6251 0.6742 0.7228

60 7.6219 7.6219 0.6710 0.7199

80 7.6124 7.6124 0.6616 0.7134

100 7.6216 7.6216 0.6707 0.7214

120 7.6181 7.6181 0.6673 0.7182

140 7.6209 7.6209 0.6700 0.7211

160 7.6178 7.6178 0.6670 0.7184

180 7.6211 7.6211 0.6703 0.7213

200 7.6171 7.6171 0.6663 0.7185
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Table 3: Out of the Money, at the Money and in the Money Vanilla Options

on a Stock Paying a Known Dividend Yield.

K E.Call A.Call E.E.Premium E.Put A.Put E.E.Premium

30 18.97 20.50 1.53 0.004 0.004 0.00

45 6.06 6.47 0.41 1.37 1.49 0.12

50 3.32 3.42 0.10 3.38 3.78 0.40

55 1.62 1.63 0.01 6.40 7.31 0.91

70 0.11 0.11 0.00 19.19 21.35 2.16

Table 4: The Comparison of the Convergence of the Implicit Method, the

Crank Nicolson Method and the Multi-period Binomial Model as we increase

N and M .
N = M Multi-Period Binomial Fully Implicit Crank Nicolson

10 1.6804 1.3113 1.4782

20 1.5900 1.4957 1.5739

30 1.6373 1.5423 1.6010

40 1.6442 1.5603 1.6110

50 1.6386 1.5692 1.6156

60 1.6289 1.5743 1.6181

70 1.6179 1.5776 1.6196

80 1.6178 1.5798 1.6205

90 1.6254 1.5814 1.6212

100 1.6293 1.5826 1.6216

Table 5: Illustrative Results for the Performance of the Implicit Method and

Crank Nicolson Method when N and M are different.
N M Fully Implicit Method Crank Nicolson Method

10 20 1.4781 1.5731

20 40 1.5505 1.6108

30 60 1.5677 1.6180

40 80 1.5748 1.6205

50 100 1.5786 1.6216

60 120 1.5808 1.6222

70 140 1.5824 1.6225

80 160 1.5835 1.6227

90 180 1.5844 1.6229

100 200 1.5849 1.6230
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Table 6: A Comparison with the Black-Scholes Price for a European put.

S Black-Scholes M.P.B Finite D. Method M.C. Method

45 6.6021 6.6025 6.6019 6.6014

50 4.9564 4.9556 4.9563 4.9559

55 3.7046 3.7073 3.7042 3.7076

60 2.7621 2.7640 2.7613 2.7602

65 2.0574 2.0592 2.0572 2.0581

70 1.5328 1.5346 1.5326 1.5324

75 1.1430 1.1427 1.1427 1.1407

80 0.8538 0.8549 0.8537 0.8543

85 0.6392 0.6401 0.6391 0.6405

90 0.4797 0.4803 0.4795 0.4790


