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Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Flow in a deep turbulent boundary-layer above a rough, rigid, wavy 
surface is considered. Closure is made via mixing-length hypotheses and 
at the level of the turbulent energy equation and the resulting equations 
are solved numerically using finite difference approximations. Results are 
presented for a typical case representative of flow above gravel waves on 
the bed of a tidal channel and the effect of changes in wave amplitude, shape 
and surface roughness are considered. Comparisons are made with 
recent experimental and theoretical studies. In some computations 
allowance is made for the effect of streamline curvature on the turbulence 
structure and the importance of such effects for these flows is assessed. 

1. Introduction 

There are many situations in micrometeorology and oceanography where it 
would be helpful if we knew a little more about the behaviour of turbulent boundary- 
layers above non-plane surfaces. Examples are the flow of water over sand or gravel 
waves, the flow of air above wind waves, or, on land, over small ridges and other 
topographic features. If the surface topography has a length scale which is large 
compared to the depth of the boundary-layer then we have the classic situation in 
which the horizontal pressure gradients within the boundary-layer and the flow 
outside it are determined by the potential flow solution for inviscid irrotational flow 
over the topography in question. This approach has been used by Hino (1968) for 
flow in the atmospheric boundary-layer while, for example, Paskonov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Soprunenko 
(1963) have used the method in a study of the laminar boundary-layer on a wavy wall. 
In many instances however the horizontal length scales of the topography are of the 
same order of magnitude as the depth of the boundary-layer and, if we wish to study 
flow over such features then a straightforward boundary-layer approximation will 
not be applicable. Under these circumstances we must seek solutions to the flow in 
which dynamic pressure ’ effects are retained within the boundary-layer. This step 
has been taken by several workers in atmospheric situations, for example Onishi & 
Estoque (1968) and Shir (1972) in their studies of the roughness change problem and 
Neumann & Mahrer (1971) in a study of sea-breeze circulations. In these cases dynamic 
pressure effects were secondary; in the situation to be considered here they will be 
of primary importance. 

* Received in original form 1975 April 21 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. The flow considered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In the long term we are interested in developing techniques for the study of 
three-dimensional boundary-layer flows above arbitrary topography. The problem 
considered here will however be an idealized two-dimensional situation and we will 
only consider the case of steady mean flow. In view of our three-dimensional aspira- 
tions we choose to work in terms of velocity and pressure rather than vorticity and 
stream function but we do allow ourselves the luxury of using conformal mappings 
to transform the flow region to a rectangle. 

Consider the flow over a rigid rough wavy surface, periodic in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx with wavelength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L and with uniform surface roughness zo. We assume the flow to be periodic in x 
and to be driven by a horizontal kinematic shear stress, uo2 applied well above the 
region containing periodic flow variations caused by the surface topography (at a 
height H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 2.5  L is found to suffice). The situation is illustrated in Fig. 1 with a par- 
ticular form for the lower boundary. In order to apply finite difference methods it is 
helpful if the boundaries of the flow region coincide with the co-ordinate mesh. This 
is achieved by a conformal mapping from Cartesian co-ordinates (x, y )  to co-ordin- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. A. Taylor, P. R Gent and J. M. Keen 

ates (t, ?> 
z = z((*) 

where z = x + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiy and C* = ( + iq. 
boundary, q = 0, corresponds to an almost sinusoidal surface we take 

As a simple example for which the lower zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = [* + iaexp (ik[*). (1) 

This is slightly different from that used by Benjamin (1959) (namely, C* = z - iueik') in 
his treatment of flow over a wavy boundary and has the advantage that the Jacobian 
of the transformation 

Surface 

0 

FIG. 1 .  Flow region with nk = 0.157 
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Numerical solutions for turbulent boundary-layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA179 

may be computed directly at grid nodes in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq) plane. The surface (q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) is 
given, parametrically, by 

Y b  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk5 ] (3) 
x = <-asinkc 

where k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n/L, and, for small amplitude, a, is approximately a simple cosine wave. 
However as a increases the crests become shorter and steeper. (With Benjamin’s 
transformation the troughs are sharper and the crests smoothed.) 

Flow over surfaces of essentially this shape have been studied in the context of 
wind-wave generation. Recently Townsend (1972) and Long (1971) have used closure 
methods based on the turbulent energy equation in their solutions but both have 
linearized the problem in terms of the wave slope-a procedure which Townsend 
suspects when the wave slope (ak) is > 0.1. The numerical method developed in the 
present study is fully non-linear and can go beyond this range but, unfortunately, is 
inherently unstable if horizontal velocities become negative. Thus only the case of a 
fixed wave can be considered. This is of somewhat limited interest for wind-wave 
studies but is relevant for the study of the flow of water above sand or gravel waves. 

We have chosen to drive the flow by an applied shear stress rather than specify a 
given velocity at the top of the model or to impose a given hydrostatic pressure 
gradient throughout the region. This offers considerable simplification in the for- 
mulation of the problem and helps to isolate the effect of the topography in modifying 
stress distributions and in perturbing the velocity profiles from their natural logarithmic 
form. It does however require that the boundary-layer is deep compared with L. If 
this is the case the friction velocity is the relevant velocity scale. Were we to impose 
a given current at a specified distance from the bed as our top boundary condition 
the results would be identical except for a constant scale factor. Clearly the situation 
in the field is far more complex than that considered here in that sand or gravel wave 
trains are rarely perfectly regular or of the precise shape considered, and more 
importantly, their wave length is frequently of a similar magnitude, and often related 
to the water depth. Extension of the model to allow for finite water depth and the 
presence of a free surface is a possible development of our model which we hope to 
investigate in the near future. 

3. Equations and hypotheses 

The equations of motion for steady, two-dimensional laminar flow of an inviscid, 
incompressible fluid in the transformed (5,  q)  co-ordinate system may be written, for 
any conformal mapping, in the form 

av av 1 aP (JcUV-J,U2) = - - u-+v-----  
a5 a1 2J av (5 )  

a a 
a5 a? 
- (J-* U)+ - (J-*  V )  = 0. 

Here U and I/ are velocity components in the 5 and 4 directions respectively. While 
molecular viscosity will be unimportant in the momentum equations for the flows 
we are considering we must take account of turbulent stresses. These we may introduce, 
as in the Cartesian co-ordinate case, by replacing U by U + u’, V by V + u’, p by j +p’,  
introducing additional w’ terms in the equations above and then ensemble averaging. 
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Combining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(4) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ * m ]  (i.e. adding the mean of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu’ X the fluctuating part 
equation (6) to the mean of equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4)) we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. A. Taylor, P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Gent and J. M. Keen 

of 

while [(5) + J* V’(6)’l gives 

1 
- 25 (J , (V ’2-P)+2J5u’ ) .  (8) 

It is convenient to follow Townsend (1972) and set = p + p .  We will subsequently 
drop the * and refer top* as pressure in what follows. The mean continuity equation 
takes the form 

We are now faced with the usual closure problem for turbulent flow. In the 
development of the models to be described a sequence of alternative hypotheses were 
made. In general the results were not unduly sensitive to the detailed assumptions 
made with the exception of differences between mixing-length (ML) models and those 
incorporating the turbulent energy equation (TE models). We will concentrate on 
the description of a particular basic TE model but will also give some results from a 
ML model and a model using the scalar eddy viscosity suggested by Hinze (1959). 

The stress-strain closure assumption used within the basic TE model is that 

(10) 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

all 
5 = I(,@)*- (5% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) 

- -  
where z = - u’ u’, E = 3 (ii’2 + i j r2 + iY2) and A is a constant, equal to the equilibrium 
value of the ratio uO2/E. A value of 0.25 is used here based on current estimates for 
the surface boundary layer of the atmosphere (see Monin & Yaglom (1971, p. 517- 
520) and Busch (1973)). The length scale, 1, for the mixing process is a prescribed 
function of position. This approach was preferred to setting T E E .  

In effect equation (10) assumes that the flow is essentially parallel to the lines 
4 = const in that it neglects the rate of strain @/a<) (53 8) from the expression that 
would hold with a scalar eddy viscosity, namely 

Equation (10) can be thought of as containing a plane shear term J*(ao/+) and 
a curvature term U(aJ*/aq). In the flow situations considered here the effect of 
the (ajat) term would often be to reduce the contribution from the curvature term. 
This is simply stating that the flow will be less curved than the co-ordinate system, 
which corresponds to the streamlines for ideal flow, 
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Numerical solutions for turbulent boundary-layer flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA181 

In most of the region the plane shear term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ*(aP/laq) will dominate, especially 
near the surface. However, there will be a region of reduced shear a little above the 
crest where, as the amplitude of the surface waviness increases, we may find that the 
other terms are important. 

The choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is not unambiguous and after trials with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc (q+zo) and with 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc ds+z, 
0 

(the integral being taken along lines 4: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= const.) the final form adopted was 

where 
I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( q  +zo) (l-e-k'')+rc(s+zO)e-kq 

'' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s = / J - * d q ,  

0 

z,, is the surface roughness length and K is von Karman's constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0.4). Thus near 
the lower boundary I cc (s + zo), s being the local distance from the wall while at 
large distances I cc q,  an average distance from the wall. TMs is essentially the same 
form as that adopted by Townsend (1972) for his dissipation length. Provided 
I N K ( s + z ~ )  near the wall, which is well established, the results will be relatively 
insensitive to other details. 

We also assume a fixed partitioning of the turbulent energy with 

= 1 -0E; f i ' 2  = 0.35E; qf2 = 0-  65E. (12) 

In the absence of accepted values for marine boundary-layers the constants are again 
based on Monin & Yaglom's (1971) and Busch's (1973) atmospheric data. We would 
anticipate similar values in the sea and can also remark that the model predictions 
are not at all sensitive to this partitioning of E .  Note that y is the vertical direction in 
the notation used here. In the ML model we assume 

J" - iY2 = 2-6 uo2 (constant) 

which is equivalent to the assumption in equations (12) if uo2 = 0.25 E, and 

a 
as 

T* = 1- (J* u), 

The turbulent energy equation in (5, q) co-ordinates may be obtained by analogy 
with the standard procedure for Cartesian co-ordinates and can be written, including 
the time rate of change for reference, as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+(y" + v')] - J - f, 
a 

att 
-.IJf- [ J -  

where E is the rate of viscous dissipation of turbulent energy. 
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182 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Taylor, P. R. Gent and J. M. Keen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The additional closure hypotheses used within the turbulent energy equation are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(AE)*/ZD; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID is taken equal to E 
-- 

Horizontal diffusion of turbulent energy is not included explicitly and u'p'+u'E' is 
neglected. There is, however, a small amount of residual horizontal diffusion asso- 
ciated with the finite difference scheme (see Appendix). The hypotheses used here are 
analogous to closure assumptions frequently made at this level in artesian co-ordinates 
(e.g. Taylor 1973). 

Boundary conditions to be imposed on the solution are 

on q = H :  z = uo2, p = 0 and E = uo2/A. J 
We anticipate (correctly) that the results will show V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 0 at the upper boundary. 
This serves as one check on the validity of the numerical solutions obtained. 

The lateral boundary conditions are of periodicity L in < so that 

O(0) = U(L), V(0)  = V(L),  E(0) = E(L) and p(0) = j5(L). 

0.1 0.2 0.3 0 4  0.5 0 6  0.7 0.8 0.9 1.0 1.1 1.2 E , ,  
.I L Crest Trough Crest 

L .  * 
0 0.1 0.2 0 3  0.4 0.5 0.6 0.7 0.8 0.9 1.0 

"/L 

40.0 

20.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 4 

2 

-20.0 

-40.0 

FIQ. 2. Surface shear stress and pressure plotted against EIL and xlL. Llzo = 
1OOOO; uk = 0.157; - Turbulent energy equation model; X Mixing-length 

model. 
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Numerical solutions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhpbulent boundary-layer flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA183 

In most turbulent boundary layers the logarithm of the distance from the wall 
is the relevant ‘vertical’ co-ordinate and we acknowledge this by making the 
transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= In(--). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV+ZO 

We also scale velocities wrt uo and lengths wrt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo to give a non-dimensional set of 
equations prior to attempting their numerical solution. The numerical methods used 
are described in the Appendix. 

4. Results for a typical case 

The initial application of this work is intended to be in the study of the flow of 
water above sand and gravel waves. A gravel wave in the Solent area (between the 
mainland and the Isle of Wight in Southern England) can be approximately sinusoidal 
with a wavelength of 10 m and an amplitude of 0.25 m (Dyer 1970). If we take the 
roughness length to be 0.1 cm then we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/z, = 10 000 and a/zo = 250 in our 
idealized model. The approximate maximum wave slope, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak, will be 0- 157 as in Fig. I. 

We have obtained results for this case using both our mixing-length and turbulent 
energy equation models. Predictions of surface shear stress, r,, and surface pressures 
(j.j+PX are given in Fig. 2. The ML model precits slightly larger amplitude variations 
in surface shear stress than the TE model while the pressure fields are essentially the 
same for the two models. Phase differences (in () of the maxima relative to the wave- 
form are about the same in both cases (-22” for the stresses and +191” for the 
pressures). Velocity profiles are also quite similar as can be seen in Fig. 3, which 
shows velocity profiles O(q) at a series of positions on the wave. It should be remarked 
that these are velocities parallel to the lines = constant and are plotted at fixed 
values of They do show 
considerable variations from the logarithmic form and are not unlike some of the 
profiles given by Dyer (1970, Fig. 2). In Fig. 4 we show contours for the pressure 
field in the ((, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC) plane. It is immediately apparent that the phase of the pressure 
disturbance changes very little with distance from the wall. Pressure extrema occur 
only at the surface and, as can also be seen in Fig. 2 the negative extremum is con- 

rather than in the original rectangular co-ordinates. 

0 5.0 10.0 15.0 20.0 
Velocity scale U/uo 

FIG. 3. Velocity profiles; L/zo  = 1OOOO; uk = 0.157; -Turbulent energy 
equation model; 0 Mixing-length model. 
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184 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.5 

6.0 

2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. A. Taylor, P. R. Gent and J. M. Keen 

--. -. 
\ 

-. 
\ 

\ 

-30 -20 -10 0 lo 20 I lo 
-10 f7 -20 -30 

0.2 0.4 0.6 0.8 E/L  

10 000 

1000 

100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl / z o  

10 

? 
Crest Trough Crest 

FIG. 4. Ressure field; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/zo = 10 OOO; uk = 0.157 (TE model). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
siderably larger in magnitude than the positive one. When the net vertical stress on 
the lower boundary is computed however it is approximately zero and an overall 
stress balance for the integration region is obtained to within about 1 per cent of the 
applied shear stress. While the phase of the surface pressure distribution relative to 
the surface is only slightly different from 180" this asymmetry does give rise to a 

.. 
0.31 

I l l .  -.  I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 0.2 0.4 0 6  0.8 

FIG. 5. Shear stress contours; L/zo  = 1OOOO; ak = 0.157 (TE model). 
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Numerical solutions for turbulent boundary-layer flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA185 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'4.0 = I / X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I - - - - - - - - - - - - - - - - - - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
10.0 ' 

Crest Trough C r s f  

Fro. 6. Turbulent energy contours; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALizo = 10 OOO; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak = 0.157. 

contribution to the mean horizontal stress on the lower boundary, 0 . 2 2 ~ ~ ~  in this 
case. (0.26 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuO2 with the mixing length model). The horizontal contribution of the 
shear stress at the surface is correspondingly reduced to 0.78 uo2 (0.74 uo2). 

The distributions of shear stress and turbulent energy are shown in Figs 5 and 6. 
There are considerable variations in the phase and the amplitude of the perturbation 
in shear stress (from its average value for a given q)  with distance from the lower 
boundary. At the surface there is a stress maximum a little way upstream of the 
crest and a minimum upstream of the trough. There are however additional extrema 
about 180" out of phase with these at a height of about 0.1 L above the surface. 
These figures are plotted with a logarithmic scale in q and the fluid volume or depth 
associated with these elevated extrema is considerably (about 100 times) larger than 
for the surface features. It is not unreasonable to expect therefore that the most 
pronounced features of vertical profiles of turbulent shear stress, or to a lesser extent 
turbulent energy, would be maxima above the trough and minima above the crest. 

5. Effects of variation in amplitude and roughness 

A series of computations have been made keeping L/zo fixed at 10 OOO and varying 
u/zo. We have only been able to obtain stable results with u/zo < 400. From these 
results we estimate that mean flow separation would occur with u/zo cv 500 (uk = 
0.314). Fig. 7 shows the computed maximum and minimum shear stresses. Variations 
with u/zo are approximately linear over the lower part of the range shown. The values 
for these maxima and their phases are also given in Table 1. The changes in phase 
with amplitude may be partly due to the changes in shape of the wave. Note that as 
the amplitude of the wave increases so the proportion of the horizontal force on the 
lower boundary due to horizontal shear surface stress, (z,,,) decreases. This is 
compensated for by an increase in the horizontal component of the surface pressure 
forces arising partly from an increase in magnitude and partly from a change of 
phase angle. 
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0 -  

P. A. Taylor, P. R. Gent and J. M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKeen 

' 

+ 
X 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

0 

+ 
I 

+ 
x +  

+ 
x i 

+ 
X 

X 

X 

-0.4 - - -& - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkoij- - - -30t - L -4s - -a/& - 
0,063 0.126 0.188 0.251 

OA 

FIG. 7. Variation of shear stress values with wave amplitude; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/zo = 10 OOO. 
+ , surface extreme values; X, elevated extrema;' , average horizontal component of 

surface shear stress. 

In order to investigate the effect of surface roughness a series of computations for 
different values of L/zo were made with ak fixed at 0.157. Some of the results are 
given in Table 2. Perhaps the most notable feature of these results is that as the rough- 
ness length is decreased the range of the variations in surface shear stress decreases 
but the elevated shear stress extrema become more pronounced. For the smoother 
surfaces the elevated extrema become absolute extrema in the sense that overall 
maximum and minimum shear stresses no longer occur at the surface. These elevated 
extrema occur at a height which is virtually independent of roughness length, at 
q/L N 0.1. As we may expect the contribution of the pressure field to the average 
horizontal stress increases with decreasing roughness as may be seen from the values 
for (z,,,~). The increase in magnitude of the pressures, scaled wrt uo2, as the roughness 
decreases reflects the decrease in uo under these circumstances. 

6. Some effects of variation in shape 

We have noted in Section 2 that the surface configuration (3) corresponding to 
the transformation (1) is not identical to a cosine wave, nor is that corresponding to 
Benjamin's (1 959) transformation for which 

y,(x) = ue-lrYb cos kx. (17) 
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Numerical solutions for turbulent boundary-layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA189 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 0.5 1.0 

Crest Trough Crest 

1 
0 0.2 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0 1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x / L  

FIG. 8. Surface pressure and shear stresses plotted against x / L .  -, transforma- 
tion (1); - - -, Brooke-Benjamin transformation ak = 0.157 L / z o  = 10 OOO. 

The shapes of the underlying surface are also plotted. 

In order to illustrate the effects of these differences computations have been made 
using the basic TE model with Benjamin's transformation for the case ak = 0.157, 
L/zo = 10000. The resulting surface shear stress and pressure are shown in Fig. 8 .  
The differences are quite pronounced and consistent with the notion that (17) gives rise 
to sharper troughs and smoother crests than equation (1). For Benjamin's trans- 
formation the elevated shear stress maximum, over the trough, is approximately 
1.90 uo2 while the minimum is 0.31 uo2 compared with 1.67 uo2 and 0.14 uo2. Both 
occur, as before at (q/L) N 0.1 and (z,,,) is again 0.78 uo2. The phase of the surface 
shear stress maximum is reduced in the Benjamin case to - 31" (in x )  compared to 
- 19" while the phase of the minimum is advanced towards the trough. The pressure 
maximum remains in approximately the same place, x = 191" for the Benjamin 
case compared to 193". Both the surface shear stress and pressure distributions take 
on a somewhat more sinusoidal appearance than in the case with transformation (I). 

The underlying surface can be made closer to a pure cosine wave by adding 
higher harmonics to the conformal mapping. If 

3a2 k2 eik[* ak (1 - ,2 t k i * )  + ~ 3a2 k2 e31kC* 

z = c*+ ia [ (  1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) 2 8 
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Table 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Stress extrema etc. with standard and cosine wave models: (L/z,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOOO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a/zo = 250 ak = 0.157 a/zo = 350 ak = 0.22 
Standard Cosine wave Standard Cosine wave 

<7,"d> 0.78 0.79 0.62 0.64 

shear 7,In 0-32 0.28 0.15 0.11 

Elevated 
shear 1.67 1.74 1-83  1.98 

Surface 22.7 24.8 23.4 26-5 

field (F 193" 192" 199" 196" 

Surface 7- 1.62 1-48 1.72 1.47 

stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL* - 19" -23" - 16" - 22" 

stress (7m,n 0.14 0.24 -0.16 0.02 

Pressure pmln -36.1 -31.1 -45.2 -36.6 

* e are phases in x relative to the crest of the underlying wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the surface is given by 

= cos kx+0(a4 k3). 

Several runs were made for (L/z,) = 10000 with this profile in the basic model 
and then compared to the previous results. For a = 50z0, the differences were very 
small being less than 1 per cent in all the variables. For higher amplitudes the differ- 
ences became more pronounced, and a comparison is shown in Table 3. 

Pressure showed slight differences in that the range was decreased for the cosine 
wave and the distribution became less asymmetric (about p = 0). The phase reduced 
fractionally and the contribution to the surface stress due to form drag was slightly 
reduced. The surface shear stress maximum is reduced and moved further back from 
the wave crest for the cosine wave case. The reduced surface shear stress minima 
indicate that mean flow separation is now predicted for a smaller amplitude than for 
the standard model. 

In all cases considered in this section the overall picture of the flow field remains 
essentially the same as that described in Section 4 but it may be noted that the changes 
in shape do give rise to changes in surface shear stress which may be significant if we 
are concerned with the sediment transport over such bed forms. 

7. Comparisons with other studies 

As noted in Section 2 there have been several previous studies, both theoretical 
and experimental, on flow above wavy surfaces. The main application lies in the 
field of wind-wave generation and the case of a rigid lower boundary is often treated 
only briefly as a special case. We first discuss some comparisons with recent experi- 
mental work. As noted by Ursell (1956) the experiments conducted by Motzfeld 
(1937) are somewhat unsatisfactory in that he only used three sinusoidal waves to 
generate the flow which would not have reached a ' fully developed ' state. This 
factor does not appear to be as important in recent wind-tunnel work by Kendall 
(1970) where 12 waves are used. His boundary-layer thickness is however still only 
about 0.75 L. Comparisons with the present work are also hindered by the fact that 
his experiment was made with a smooth wall. We will concentrate our attention on 
his case with the free stream velocity, u, = 5-5ms-'. His experiment had L = 
10.16 cm and a = 0.3 17 cm which give ak = 0.196. We also used Kendall's values 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkz, = 0.0016 which gives zo = 0.0026 cm and uo = 0.4 x 0.118 u, corresponding 
to u, N 26 cm s- '. Here u, is an average surface friction velocity, and appears to be 
based on an average velocity profile over the wave form. If the flow were hydraulically 
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Numerical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsolutions for turbulent boundary-layer flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA191 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 9. Surface shear stress against zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx / L .  kzo = exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( - 8 )  ak = 0.05; -, 
turbulent energy equation model; - - -, Townsend's linear theory. 

smooth the effective zo could vary by a factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.7 with position along the wave. In 
Kendall's case the flow is probably transitional between hydraulically smooth and 
rough as taking v(air) = 0.14 cm2 s- l  gives an effective zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, (= v/9uo) of 0.0006 cm. 
This is not much smaller than the value assumed above. Also the fact that (z,,,~) # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( u ~ ) ~ ,  means that the above value of uo may be an underestimate since the pressure 
forces provide a third of the total drag on the surface according to Kendall's results. 

In spite of these problems we have run our model for constant zo with ak = 0.196 
and L/zo = 3928. We have used the cosine wave transformation equation (18). 

Consider first the wall shear stress measurements, Fig. 15 of Kendall's paper. 
We note that the phases are different (-70" from Kendall's experiment and about 
- 22" (in x )  for the present results) and there are considerable differences in the shapes 
of the curves with the experimental results showing almost a sawtooth pattern in 
contrast to the model prediction of a relatively smooth shear stress minimum similar 
to that shown in Fig. 10. There is a tendency to increased asymmetry in our surface 
shear stress results with increasing wave amplitude but no indication of such a sharp 
minimum. Kendall's wall stress meter was not calibrated but gave a ratio of maximum 
to minimum surface shear stresses of 7.5. Our computations give 10. 

Surface pressure results are given by Kendall in his Fig. 3. Our computed results 
give values of (pmax-pmio)/puo2 of 45.2. The values given by Kendall's Fig. 3 with 
uo/u, = 0.0472 give (pmar-pmin)/puo2 = 44-9. There is also agreement in the phase 
for which Kendall gives a value of 195.6" for the fundamental wave number on a har- 
monic analysis while we have 197" based on the location of the maximum. Kendall also 
shows an increase of this phase angle with roughness (decreasing Reynolds number) 
in agreement with Table 2. Kendall computes pressure drag assuming a simple 
sinusoidal surface pressure field and gives values from which we find a ratio of pressure 
drag to total surface drag of 33 per cent. This is slightly higher than the model 
prediction of 28.7 per cent but the agreement is encouraging. 

The mean velocity field results shown by Kendall (Fig. 6 of this paper) agree in 
some qualitative features with our computations. The perturbation from the mean, 
essentially logarithmic profile has a maximum at about y / L  = 0.01 - 0.02 and 
extends to y / L  = 0.25. The maximum range of his perturbation may be estimated 
as 8.3 uo from Kendall's paper which is somewhat larger than our computed value 
of about 5.8 ito. 
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192 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. A. Taylor, P. R. Gent and J. M. Keen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t 4-40.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.C c 2  0.4 0 6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.8 10 1.2 

cI1st Trobqri Crest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/i 

Fro. 10. Differences in surface stresses between standard and 'Isotropic eddy 
viscosity ' models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/ro  = 10 OOO; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk = 0.157; X, standard model; -, isotropic 
eddy viscosity model; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  isotropic model with curvature modifications, a = 5.0. 

All things considered there seems quite fair agreement between the model pre- 
dictions and Kendall's measurements except in the form of the variation of wall 
shear stress. At present we are unable to account for this but we can note that 
Kendall's shear stress results are not substantiated by the observations of Hsu & 
Kennedy (1971). Their experiments were carried out in a tube with a sinusoidal 
longitudinal section. Although the wavelength of the sine waves is greater than the 
diameter of the tube, comparison between their results taken at the wall of the tube 
and our lower surface values is possibly relevant. Hsu and Kennedy give results for 
two runs with a/L equal to 1/45 (Case I) and 1/90 (Case 11). Their Fig. 5 shows wall 
pressures that are closer to sine waves than are our predictions but there is agreement 
in the location of the pressure minimum, slightly downstream from the wave crest. 
(The location of the maximum is difficult to determine from their figure.) Their 
Fig. 9 gives wall shear stress profiles which again show a very sinusoidal pattern. 
They give values for the location of the shear stress maximum of - 26" for a/L = 1/45 
and - 18" for a/L = 1/90 compared to the wave crest. Results for our cosine wave 
case give - 23" for a/L = 1/40. 

As a comparison of the magnitude of shear stress variation we note that the ratio 
(z,,,-~~~,)/~(z,,,+~~~~) has a value of 1.28 for Hsu & Kennedy's model I and 1.07 
for model 11. For our cosine model with a/L = 1/40 we have a value of 1 * 36 which is 
in reasonable agreement. More detailed comparison is not justified as there are 
considerable differences between our model and these experiments. The use of smooth 
walls and the consequent importance of the viscous shear layer near the wall is 
perhaps the most serious of these. 

On the theoretical side perhaps the most appropriate comparison to make is with 
Townsend's (1972) recent linear theory. The turbulent energy equation is included 
in his model with similar closure assumptions to those used here. The case of interest 
(i.e. with c = 0) for which results are given by Townsend is for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = - ln(kz,) = 8. 
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Numerical solutions for turbulent boundary-layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA193 

The surface stresses are compared in Fig. 9, where we have taken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.05 in the 
cosine wave model and scaled quantities wrt zo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno2. Setting ro = (zsUrf) would 
produce only slight changes, but would bring the curves in Fig. 9 closer together. 
The general agreement is very good, the slight phase differences in the stress field 
probably being attributable to the different shear stress hypotheses in the two studies. 

8. Isotropic eddy viscosity model 

So far the stress-strain relation assumed, equation (lo), has relied for its validity 
on the flow being approximately parallel to the lines q = constant. If we simply 
replace (10) by (lOa) we find that our numerical scheme fails and that in order to 
retain numerical stability we must also express the and Reynolds stresses 
appearing in the momentum equation in terms of mean flow derivatives. A consistent 
approach to this is suggested by Hinze (1959, p. 21) which, in our curvilinear co- 
ordinate scheme, gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-F+ *E = (12E)f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - (P V )  - - ( J )  U) (aa, at " 
- w T + @  = 0 

I 

in addition to equation (1Oa). 
Summation of these equations leads to a null balance and they cannot be used to 

determine the value of E.  Clearly they could lead to anomalous negative values of 
17'~ or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6" (in practice they have not) and are inconsistent with the partitioning of 
energy found in most boundary-layers (equation (12)). However, our model is 
fairly insensitive to this partitioning and this aspect of the modification to our model 
is not very significant. 

For the present model we define asp** by 

- 2B 
P** = F+ -- 3 

and after some manipulation we can write the momentum equations in the form 

a 
+ ( K r  9) [-& ( J f t 7 ) -  - art (4 
+ ( K q -  +) [+ ( J f P ) +  

M 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Taylor, P. R. Gent and J. M. Keen 

In the turbulent energy equation we retain the assumptions previously made but now 
computep andT2 from equation (19). We also include horizontal diffusion given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtt E’ = - J* K~ (aE/ag). (24 

With the new scheme we are able to allow full correction for the use of upstream 
differences. Surface shear and normal stress (p+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV”) results for the case u/zo = 250, 
L/z, = 10 000, are shown in Fig. 10 and compared with the predictions of the earlier 
model. Note that at the surface 6‘’ = (2E/3 )  and so the normal stress is simplyp**. 
There are some differences in this case between the predictions in that surface shear 
stresses are slightly lower and there is a compensatory shift in the phase of the surface 
pressure maximum. This is reflected by a change in the contribution of form drag 
(due to the pressure forces) to the total horizontal stress on the bed from 22 per cent 
with the original model to 26 per cent with the isotropic eddy viscosity model. The 
most pronounced changes occur in the magnitudes of the elevated stress extrema as a 
result of the change in the expression used for shear stress. This can be seen in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
which shows the pressure and shear stress extrema both for these cases and for the 
case with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/zo = 400. One of the main motivations for developing this isotropic or 
scalar eddy viscosity model was to enable us to carry out the numerical experiments 
described in the next section. 

9. Streamline curvature effects 

Bradshaw (1973) has recently reviewed the effects of streamline curvature on 
turbulent flow and draws particular attention to the influence of ‘ extra ’ rates of 
strain (e.g. (dv /ax )  compared to @lay)) on the structure of the turbulence. These 
effects can be incorporated empirically into our model in a rather tentative way by 
making use of the curvature-buoyancy analogy described by Bradshaw. To achieve 
this we assume that our length scales I ,  I, are modified so that, with curvature effects, 

‘ l ’=lF(‘Rf’) .  

Here, ‘ Rf ’ is the curvature analogue of the flux Richardson number. In meteorological 
terms F = @ - I ,  where @ is the dimensionless wind shear (see Monin & Yaglom 
197 1). A relatively simple form for F is:- 

F = 1 -a  ‘ Rf ’ for ‘ Rf ’ c 0 (Analogous to statically unstable situations) 

F = (1 +a ‘ Rf ’)-‘I for ‘ R f ’  > 0 (Stable situations). (23)  

The value of a is somewhat uncertain but the buoyancy analogue would indicate a 
value of about 5 ,  while Bradshaw suggests 10. The definition of ‘ Rf ’ is not entirely 
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Numerical solutions for turbulent boundary-layer flow 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Stress extretna etc. with standard and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' isotropic K ' models: (Liz,) = 10 000 

195 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a /zo  = 250 ak = 0.157 alzo = 400 ak = 0.251 
Standard Isot. model Standard Isot. model 

\Ts.rr) 0.78 0.74 0.54 0.48 
1.62 1-57 1.72 1-56 
0.32 0.29 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-08 0.07 
- 22" - 22" - 19" - 18" 

shear 
stress 
Elevated 

1.67 1-51 1-89 1-61 
stress 0.24 -0.29 -0.19 

Surface pm.= 22.7 21-5 22.3 20.0 
pressure [pn - 36- 1 -34.4 -47.3 -42.2 
field 191" 193" 199" 201° 

extrema 

* e are phases (in 0 of pressure and shear stress maxima relative to the crest of the underlying 
surface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
straightforward and we choose a form based on Cartesian co-ordinates which differs 
by a factor of 2 from that adopted by Bradshaw. It is perhaps worth recalling that for 
stratified, rectilinear, shear flow ' Rf ' is defined via the turbulent energy equation 
(e.g. Turner 1973) as the ratio of the rate of removal of turbulent kinetic energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(3' component) by working against buoyancy forces to the rate of production by the 
shear (3' component). 

For unstratified curvilinear flow in Cartesian co-ordinates the turbulent energy 
equation may be written 

+ Flux divergence - E. (24) 
If the x direction is aligned with the local mean flow then the second of the production 
terms on the right-hand side of this equation is directly associated with mean stream- 
line curvature and the production of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+E'' while the last two production terms could 
perhaps be associated with extra rates of strain due to streamwise convergence or 
divergence effects. We can choose to define 

' R f ' =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-($)I($-). 
If, as inay well be the case, the flow is not aligned with the axes there may be a con- 
tribution to (aV/ax) not associated with streamline curvature. This can be partially 
corrected for if we define 

In the case of our curvilinear co-ordinates there will be extra contributions 
associated with the curvature of the co-ordinate system (see equation (13)). The 
extra production of (u'2/2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ-* may be written as 

[ 2 U u ' ]  
- -  

2J 
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196 P. A. Taylor, P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Gent and J. M. Keen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
while the extra contribution to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u’2/2) J-*  is 

Thus in addition to production of turbulent energy associated with extra rates of 
strain introduced by streamline curvature there is some transfer between one com- 
ponent and another associated with the curvilinear nature of the co-ordinate system. 
We choose to exclude the latter in our definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ Rf ’ and also, at this stage, to 
neglect some terms involving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 in comparison to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. The term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU d2 (Jc/2J) above 
is regarded as a convergence effect and our definition of ‘ Rf ’ becomes 

-- 

‘ R f ’ =  - (F aV _ -  v - ai7 I D J , , ) / + -  
25 

These modifications to the mixing and dissipation lengths have been added to our 
isotropic eddy viscosity model and computations made for a range of values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu; 
results for u = 5 will be presented here. Surface stress results are shown in Fig. 10 
and can be compared with the results from the isotropic model without curvature 
effects. There are no very dramatic changes in these surface shear stress distributions 
but we may note some reduction in peak shear stress over the crest, where ‘ Rf ’ > 0. 
This reduces the contribution of shear stress to total horizontal stress on the bed from 
74 to 69 per cent. As with thermal stratification effects the importance of streamline 
curvature becomes more pronounced as we move further from the wall. The elevated 
shear stress extrema are modified from 0.24 uo2 and 1 .51  uo2, with 01 = 0, to 0.01 uo2 
and 2 -21 uo2, with u = 5 .O and occur slightly further from the wall. Turbulent energy 
levels are similarly affected with a drop in the elevated minimum from 3 . 0 4 ~ ~ ~  to 
1.91 uo2-this minimum occurring at about 0.14 L downstream of the crest and a 
height of about 0.024L in both cases. Values of ‘ Rf ’ attained range from -0.20 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.58 when u is set equal to zero, i.e. curvature effects are not operative. With 
c( = 5 the range increases to -0.23 to 0.89 implying that the inclusion of these 
effects in the closure hypotheses increases streamline curvature for this flow. These 
‘ Rf ’ maxima and minima occur more or less directly above the crest and trough 
respectively at heights of about 0.1 L and 0.17 L.  With the extremely low values of 
shear stress and of (aU/aq) encountered at the elevated minima we are probably 
stretching our definition of ‘ Rf ’ (equation (25)) and form for F (equation (23)) to the 
limit. With this reservation we can state that, for this flow, modification of the closure 
hypotheses to include curvature effects gives rise to significant changes in predicted 
values for shear stress etc. away from the wall but to relatively small changes in 
predicted surface stresses. There are no qualitative changes in the overall flow pattern. 

10. Conclusions 

The study described here is, conceptually if not chronologically, the first of a 
series of numerical investigations of turbulent boundary-layer flow above ‘ gentle 
topography ’. An essential feature is the treatment of the full non-linear problem in 
contrast to other semi-analytic treatments (e.g. Townsend 1972). A further study, 
Taylor & Gent (1 974), presents some preliminary results on atmospheric boundary- 
layer flow over hills and, in addition, work is under way on flow above moving wavy 
surfaces for application to the study of wind wave generation. The models described 
here have evolved over three or four years during which several alternatives have 
been discarded. A few results from one of the earlier models are given in Taylor 
(1974). 
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Numerical solutions for turbulent boundary-layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA197 

The immediate application of the present work is to the study of flow and the 
associated sediment transport rates over sand or gravel waves in conditions under 
which mean flow separation does not occur. Some tentative attempts to predict 
local bed load transport rates using results obtained with the models presented here 
are described by Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dyer (1975) and a thorough investigation of the impli- 
cations of the present work for sediment transport is planned for the near future. 
It is hoped that this work may stimulate more detailed observations of non-separating 
flow over sand waves both in flumes and on the sea bed. In conjunction with high 
quality observations of this type it should be possible to improve our understanding 
of the factors affecting the formation and growth of sand waves and the prediction 
of sediment transport rates associated with their movement. 
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Appendi 

Numerical methods 

In this appendix we wish to briefly describe the numerical methods used to 
obtain the solutions given. The iterative technique used is rather unusual but of limited 
interest as it is only stable for non-separating flow. 

With the hypotheses stated in Section 3 the equations we wish to solve may be 
non-dimensionalized wrt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,, transferred to (t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr> co-ordinates (see equations 
(16)), and written, for the TE model, as 

1 
25 

-I- - (0 * 65E J ,  - 223,), 

ar +-- at 
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Numerical solutions for turbulent boundary-layer flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and 

199 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/b (A41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ -  f E 3 / 2  

In equation (Al) we make use of the stress-strain closure hypothesis (equation (10)) 
to express the term e-r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(az/aC) in terms of ff derivatives. 

In other places where z appears the latest estimate (in the iteration cycle to be 
described) is used. 

Some derivatives are left in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq in an attempt to minimize certain dis- 
cretatisation errors when finite difference representations are used. These equations 
are to be solved in 0 < 5 < L, 0 < q < H (or 0 < ( < In ((H+z,)/z,)) and in order 
to achieve this we make use of a finite difference mesh with uniform grid spacing in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 and C. Each mesh cell will have p defined at its centre and velocities at the sides as in 
Fig. A1 which shows the arrangement of cells within the solution region. E is defined 
at the same points as D and z at the corners of the grid cells. For the results presented 
a 20 x 14 cell grid was used although almost equally good results could be obtained 
with a 10 x 10 grid. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 

-.A 

U1,j- 
(EUN, j 

FIG. A l .  Finite difference grid. 
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200 P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Taylor, P. R. Gent and J. M. Keen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Equations (Alt(A4) are expressed in finite difference form with equations (Al) 

and (A4) applied at points where gij is defined, (A2) at points where Vij is defined 
and (A3) used as a finite difference representation of continuity within each cell. 
Straightforward central differences are used for all derivatives except the a(a/i3y) 
terms where in the first instance upstream differences were used. As is well known 
these allow errors of O(A<) and we found that we could only satisfy overall momentum 
budgets to within about 7 per cent with upstream differences. In order to reduce 
this error a partial correction was made in which the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@/a<) terms were represented by 
upstream differences on the LHS of equations (Al), (A2) and (A4) but correction 
terms, e.g. -(C/2) lVijl(ni+l, j-2Dij+Di-l, j)/A< in equation (Al), were added 
to the right-hand sides with 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,< C < 1 .  A value C = 1 corresponds to a central 
difference scheme. We were able to achieve stability in a typical case for C < 0.98 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(20x 14 grid) and, in general, computations were made with C = 0.97. The effect 
of this correction term can be seen in Fig. A2 where results for surface shear stress and 
pressure for our typical case are shown with 0, 50 per cent and 97 per cent correction. 
The peak shear stress values appear to suffer most from the errors introduced by 
upstream differences. The horizontal momentum balance has errors of - 7 3, 
- 3 * 8 and +O. 5 per cent in the three cases. Extrapolation, from for example 97 
and 98 per cent to 100 per cent correction can be made but it produced negligible 
changes and was not considered worthwhile. 

In order to solve the finite difference forms of equations (Al) -(A4) two different 
techniques were tried. The more economical of these we term the DIRECT method. 
It was tried somewhat arbitrarily and with little real hope of success. Somewhat to 
our surprise we found it a relatively efficient method for this particular problem. 

Surfoce 
sheor 
stress 

I 1 
0.0 0.2 0.4 0.6 0.8 1.0 &/L 1.2 

Cresi Trouqh Cresf 

FIG. A2. The effect of correction for upstream differences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/zo  = 10 OOO; 
ak = 0.157, - 97 per cent correction; - - - 50 per cent correction; - - - - 

no correction. 
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Numerical solutions for turbulent boundary-layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The procedure is as follows: 

(1) Guess initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV o ,  Eo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo fields-usually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo @c, 0, uo2/i, 0. 

(2) Compute new U and E fields, U',  E* from the finite difference representations 
of equations (Al), (A4) marching from left to right (I = 2,3, .. . N) and solving, 
column by column in a block iterative fashion. A stress field is then computed and 
relaxation applied on the E and t fields to give E' and T'. No relaxation is applied 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. 

(3) Use U' in the finite difference representation of the continuity equation and 
column by column integrate upwards from [ = 0 to obtain a new V field, V*.  
Relaxation is applied to the V* field and we set V' = aV* + (1 -a) Vo.  

(4) Use the V momentum equation (A2) to compute a new pressure field, p * ,  
by integrating downwards from q = H ,  where p = 0, again column by column and 
marching left to right. Relaxation is again applied. The same relaxation parameter 
being used. 

( 5 )  Cycle back to step (2) and continue, usually for about 3000 iteration cycles 
with a very low value of the relaxation parameter, (typically u2 = 0.001). 

Without relaxation this iteration is basically divergent and any disturbance of the 
type po  = A exp (ikt  + i l  q)  will be rapidly amplified, the amplification factor (c 0) 
being largest for I = n/H (lower values of I are not permitted by the boundary 
conditions) and the highest wavenumber, k, that can be represented by the finite 
difference mesh. The amplification factor is however negative provided U > 0 and the 
iteration can be made to converge with suitable relaxation. This does necessitate 
very low values of the relaxation parameter and large numbers of iteration cycles 
but we have found this approach more efficient for our particular problem than a 
method based on Chorin's (1967) ' artificial compressibility technique ' with time 
derivatives introduced into the equations. Both methods gave essentially the same 
results in comparisons made on 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 10 grid schemes. Typical computation times for 
the 20 x 14 grid were approximately 60 s on a CDC 7600 computer using an optimized 
FORTRAN compiler. 

Convergence was assessed somewhat subjectively and results accepted if they 
altered by less than 1 per cent between the 2000th and 3000th iteration cycles. An over- 
all stress or momentum balance test was also applied as a check on convergence and dis- 
cretization errors by computing the average horizontal force on the lower surface 
due to shear stresses and normal pressures. This should be equal to uo2. In the 
results to be presented agreement was achieved to within about 1 per cent. Checks were 
also made on the accuracy to which continuity was satisfied and that V N 0 at the 
upper boundary. The iteration scheme described here breaks down if the velocity 
becomes negative (giving a positive amplification factor for periodic disturbances) 
and in any extension of the work a different technique will have to be used. 
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