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Some Observations on Interpolation in

Higher Dimensions

By R. B. Guenther and E. L. Roetman

Abstract. This paper presents a method, based on successive displacement of the

coordinates, both for finding suitable interpolation points and for constructing the

interpolating polynomial for functions of more than one independent variable.

1. Introduction. The problem of interpolation, in particular polynomial inter-

polation, in higher dimensions has received some attention in recent years, [1J-T9],

but except in certain special cases, [4], [5], [7], the algorithms for computation are

complicated and difficult to use. We shall restate the interpolation problem and give

a method for solving it in the case when the interpolating function is a polynomial of

specified total degree.

2. The Problem. Let R„ denote «-dimensional Euclidean space and let x =

(Xi, • • ■ , xn) denote a generic point in R„. Let S C R* be a set with a nonempty

interior. Let xil), • • • , x(m> be m points in S. The simplest interpolation problem

consists in finding a set of linearly independent functions, f1; • • • , fm, defined on 5

and constants au ■ ■ ■ , am so that the function

m

(2.1) E û./.w
t'-I

coincides with the values of a function / at the points xl,). The functions flt • • • , fm

should satisfy certain computational requirements and, ideally, resemble the function

being interpolated in global behavior.

On the other hand, precisely because of computational and other considerations,

it is often desirable to specify first the m linearly independent functions /1( • • • , /„.

One then forms the expression (2.1). To be able to determine the constants a, uniquely

from the requirement that the function (2.1) takes on prescribed values at the points

xa), it is necessary and sufficient that the determinant of the matrix (/¿(x'")) be dif-

ferent from zero. We shall refer to m points in S such that the determinant of (/.(x'1'))

is different from zero as interpolation points for the functions fu • • • , /„, or simply

as interpolation points when it is clear to what set of functions we are referring. The

general question of the existence of interpolation points for a given set of linearly

independent functions may be answered in the affirmative using an argument of

Davis [3].
We shall treat the special case of finding interpolation points so that the polynomial

of degree /,

x) =  2-1 aax...a.xx    ••• x, ,
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518 R. B. GUENTHER AND E. L. ROETMAN

the summation taken over all the a{, a¡ = 0,1, • • • , /, i = 1, ■ ■ • , n, with ax + • • • -f-

an = I, is uniquely determined by the requirement that it takes on specified values

at the interpolation points and we shall give a practical method for determining the

a«, . «„• For error estimates and methods for determining error estimates, we refer

to [7].

In the sequel we shall assume for convenience that S is a sufficiently large open

set in Rn which contains the origin.

3. Interpolation Points for Polynomials. We begin with the case « = 2, and, as

is customary, we set xx = x, x2 = y. A general /th order polynomial is of the form

(3.1) Pi(x, y) =  E a^x"y',

the summation being taken over p., v = 0, 1, • • • , / with p. + v á /. We give a re-

cursive method for generating the points. For / = 0, we may choose any point.

For / = 1, any three points in general position will serve as interpolation points.

In general suppose that in any subdomain of S, we can find interpolation points for

polynomials of degree ^ / — 1, / = 2. For p,ix, y) choose (0, 0) and any other /

distinct points on the x axis and any other / distinct points on the y axis. Prescribing

the values of p¡ix, y) at these points determines the coefficients a0n, a,n, • • • , a,„,

a0i, • • ■ , aol- We now write />;(x, y) in the form

i i

Piix, y) = a00 +  E a*ox" + E a<>y + xyqi^ix, y),
H-l V-l

where q¡-2ix, y) is a polynomial of degree / — 2. By our induction assumption we

may find interpolation points for g¡_2(x, y) subject to the condition that these points

do not lie on the x or y axes. Thus, we may find interpolation points for />,(*, y).

In the next section we shall show how this recursive procedure can be made into

a viable computational method for determining interpolation points and constructing

the corresponding interpolating polynomial. It should also be observed that this

discussion carries over to the case of polynomials of degree k in x and / in y.

Similar ideas carry over to the «-dimensional case except that the points are chosen

recursively with respect to the dimension as well as with respect to the degree. In

fact, let us again denote the polynomial of degree / by

(3.2) Piix) =  E aai...anxY ••• x°",

the sum taken over all the a,, i = I, ■ • • , n, running from 0 to / with at + • • • +

a„ Ú I.
In the case / = 0, any point is an interpolation point and in the case / = 1, any

set of n -f 1 points in general position is a set of interpolation points. The case 1 = 2

already illustrates the general technique. Suppose we can find interpolation points

for polynomials of degree 2 in « — 1 dimensions. Let x1 = (xx, • • • , x»_i, 0). Then

p2ix') is a polynomial of degree 2 in « — 1 dimensions so we can find interpolation

points for it on the hyperplane xn = 0. Next, observe that p2ix) can be written in

the form

P2ÍX) = P2Íx') + xnqxix)
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where q^x) is a linear polynomial in n dimensions. To determine the q^ix), we choose

n + 1 points in general position off the hyperplane xn = 0. Thus, we arrive at a set

of interpolation points for p2ix).

Generally, suppose we can find interpolation points for polynomials of degree / in

n — 1 dimensions and degree / — 1 in n dimensions in any subdomain of S. Again

letx' = (xx, ■■• , xn_x, 0). Then p¡ix') is a polynomial of degree linn — 1 dimensions

and by assumption we can find interpolation points for it. Write p¡ix) in the form

Pi(x) = Piix') + xnqt-xix),

where q¡-xix) is a polynomial of degree / — 1 in « dimensions. By assumption we

may choose interpolation points for c¡_i(x) off the hyperplane xn = 0 and thus

arrive at a set of interpolation points for p¡ix).

It should be pointed out that the problem of determining interpolation points for

polynomials has also been considered to some extent by Thacher and Milne. See

[6], [8] and [9]. Their result is that a set of points lying on a simplicial grid, or any

nonsingular linear transformation of these points is a suitable set of interpolation

points. The recursive procedure discussed above for determining interpolation points

for the piix) relies on the fact that such points can be determined for polynomials of

degree — I — 1 and for polynomials of degree /in n — 1 dimensions. Consequently,

if one can determine such interpolation points, either recursively as we have sug-

gested, or by the method suggested by Thacher and Milne, or by any other method,

the technique described above gives a method for determining interpolation points

for ptix).

4. Practical Determination of the Interpolating Polynomials. In this section we

shall treat the two-dimensional case in detail and simply comment on how to pro-

ceed in the «-dimensional case.

Consider again the polynomial (3.1). Suppose that the coefficients a„, are to be

chosen so that p¡ix, y) takes on prescribed values at the interpolation points, the

location of which will be specified below. Set first y = 0 and choose the origin and /

additional distinct points along the x axis. Use the Newton or Lagrange or any

other one-dimensional interpolation polynomial to interpolate these points. This

determines the coefficients ano, n10, • • • , aI0. Next set x = 0 and choose / distinct

points along the y axis excluding the origin. Then

[Pi(0, y) — a00]/y = X) ûor/-1
v-l

and the a01, • • • , a0i can be determined by using a one-dimensional interpolating

polynomial.
Having determined a0Q, axa, • • • , a¡o, a01, ■•• , a0i, write (3.1) in the form

Piix, y) — piix, 0) — pi(0, y) + a00 = xyq¡.2ix, y)

where

(4.1) qi-Âx, y) =  2~2 a,,**-1/-1,

the summation taken over p., v = 1, 2, ■ ■ ■ , I with 2 á /* -f- * á /. Next translate
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the x and y axes and then, possibly, rotate the axes. Thus we must find interpolation

points for the polynomial

Qi-áx, V) = X «„fV-1.

the summation taken over p, v = 1,2, ■ ■ ■ , I with 2 :£ ^ + v ^ /. Here qt _, is a

polynomial of degree / — 2 in the £ — y coordinate system which is obtained from

qt_2 after the translation and possible rotation of the coordinates.

We now proceed as before. We set first y = 0 and choose the origin in the £ — y

coordinate system and 1—2 additional points on the £ axis, none of which lie on

the old x or y axes. This allows us to determine the coefficients Su, â21, • • • , äi-i.i-

Next we set £ = 0 and choose 1—2 points on the y axis, none of which lie on the

old x or y axes and use these points to determine the coefficients 512, • • ■ , a,,¡_,.

Continuing in this way, we are able to determine the polynomial p¡ix, y). The real

effectiveness of the algorithm just described may be appreciated by realizing that we

simply displace the origin successively, choose appropriate interpolation points along

straight lines, and then use the one-dimensional interpolation theory.

A special case which is important for applications is the restriction to a rectangular

lattice with h and k the x and y periods, respectively, [2]. From the points (0,0), (A, 0).

(-A, 0), • ■ • , i[l/2]h, 0), i-[l/2]h, 0) if / is even, and if / is odd, the additional point
HV/2] + 1)«, 0), we can determine the coefficients a00, a10, ■ ■ • , at0, and by means

of the points (0, k), (0, -k), ■ ■ ■ , (0, [l/2]k), (0, ~[l/2]k) if / is even, and if / is odd,

the additional point (0, ([//2] + l)k), we can determine the coefficients a,n, • • • , a0¡.

Now translate the origin to (A, k) and repeat the process using the points (A, k), (2«, k),

i-h, k), ■■■ , (-[(/ - 2)/2]h, k), (2 + [(/ - 2)/2]A, k) if / is even, and if / is odd, the
additional point ((3 + [(/ - 2)/2])A, k) and also the points (A, 2k), (A, -k), ■■■ ,
(A, 2 + [(/ - 2)/2]k), (A, [(/ - 2)/2]k) if / is even, and if / is odd, the additional point

(A, (3 + [(/ — 2)/2])k). In this way the coefficients flu, a21, • • • , at_i.i, al2, • • ■ , Oi,i_i

of the polynomial qt-2ix, y) may be determined. Clearly, we may proceed in this way

to determine completely the interpolating polynomial p¡ix, y) using only points from

the lattice {(/'A, jk), i, j = 0, ± 1, ±2, • • •}. Note that this procedure can be organized

so that all the coefficients are determined by inverting a block triangular matrix

(compare [7]) instead of applying one-dimensional interpolation at each stage.

We now turn to the higher-dimensional problem and apply the same techniques.

To develop efficient computational techniques for finding interpolation points and

computing the interpolating polynomial, p¡ix), in « dimensions, one must first develop

methods for treating this problem in « — 1 dimensions. For example, in the case of

three dimensions, choose the origin and additional interpolation points in the xx — x2

plane, the Xi — x3 plane and the x2 — x3 plane so that the respective polynomials

Piixx, x2, 0), p¡ix„ 0, x3), p¡i0, x„ x3) may be determined. Those are two-dimensional

problems which may in turn be reduced to one-dimensional problems as we have

seen. Then form

Piixx, x2, x3) = piixi, x2, 0) + piixx, 0, x3) + PAO, x2, x3)

— 2aoo T XxX2X3qi-.3(Xx, x2, x3),

where Çi_3(jci, x2, x3) is a polynomial of degree / — 3. The discussion from this

point on is analogous to that given in the two-dimensional case. It is also clear how
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to proceed in the «-dimensional case. Thus, even in the «-dimensional case, by

choosing interpolation points appropriately on lines, we may ultimately reduce the

problem to a set of one-dimensional problems.

5. Concluding Remarks. Using the idea outlined above, it is possible to obtain

interpolation points for other types of polynomial interpolation problems, e.g.

Hermite interpolation. The discussion parallels that already given for polynomials of

degree /.

There is another type of polynomial approximation problem, however, which is

of interest and which we illustrate briefly by means of an example. Consider a regular

lattice in two dimensions with periods A and k. Interpolation points for the polynomial

Pix, y) = aQ0 + flio* + a0iy + a20x2 + a^xy + a02y2

are, e.g. (0, 0), (A, 0), (—A, 0), (0, k), (0, —k) plus any one of the additional points

(A, k), (—A, k), (A, —k), (—A, —k). No matter which of the points we choose, we are

led to an asymmetric distribution of the interpolation points. In many applications,

however, it is desirable that the interpolation points be symmetrically distributed.

If we give up the requirement that pix, y) actually takes on specified values at the four

points (A, k), (—A, k), (A, —k), (—A, —k) and simply require that pix, y) approximates

a function fix, y) in some reasonable sense, let us say for example in the least squares

sense, we obtain the formula

,       ,      „ix  m -L /(A, 0) - fi-h, 0)          /(0, k) - /(0, -k)
P(x, y) = /(0, 0) H-—-x H-—-y

.   /(A, 0)- 2/(0,0) + fi-h, 0)   2
+ 2/r x

,   /(A, k) - f(-h, k) - fjh, -k) + f(-h, -k)
+-YiYk-xy

,   /(0, Ac) - 2/(0, 0) + /(0, -k)   2

+ 2k2 y ■

The values oipix, y) coincide with those of fix, y) at the points (0, 0), (A, 0), (—A, 0),

(0, k), (0, —k), pix, y) approximates fix, y) in the least squares sense at (A, k), (—A, k),

(A, —k), (—A, —k), and the "approximation" points are symmetrically distributed,

which leads to a symmetric formula for pix, y).
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