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Abstract: Certain aspects of the history, derivation, and physical application of the

information-theoretic entropy concept are discussed. Pre-dating Shannon, the concept

is traced back to Pauli. A derivation from first principles is given, without use of

approximations. The concept depends on the underlying degree of randomness. In

physical applications, this translates to dependence on the experimental apparatus

available. An example illustrates how this dependence affects Prigogine’s proposal for

the use of the Second Law of Thermodynamics as a selection principle for the breaking

of time symmetry. The dependence also serves to yield a resolution of the so-called

“Gibbs Paradox.” Extension of the concept from the discrete to the continuous case

is discussed. The usual extension is shown to be dimensionally incorrect. Correction

introduces a reference density, leading to the concept of Kullback entropy. Practical

relativistic considerations suggest a possible proper reference density.
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1 Introduction

The aim of this note is to discuss certain aspects of the concepts of information-theoretic entropy

and randomness, particularly concerning their use in physics. Many of the points to be raised are

“well-known” in certain communities, but not necessarily appreciated outside those communities.

Thus the note is intended to further the dialogue about this deep and often controversial subject.

For a system with a finite set ξ = {C1, . . . , Cr} of macrostates, the (information-theoretic)

entropy is defined to be

H(ξ) = −
r∑
i=1

pi log pi, (1)

where pi is the probability of the i-th state Ci, and where pi log pi is zero if pi is zero. The quantity

(1) is often called “Shannon entropy”, with reference to Shannon’s (1948) work. However, Tolman

(1938) attributes the definition to Pauli (1933), where one already finds its application to statistical

mechanics and relation to thermodynamic entropy, as outlined briefly in Section 3 below. (This

pre-history spoils the otherwise amusing anecdote that use of the word “entropy” for (1) is the

result of a joke told by Neumann to Shannon.) Many derivations of (1) assume a large phase

space, and use Stirling’s formula to derive (1) and related formulae as the limit of combinatorial

counts involving factorials [cf. Rumer and Ryvkin (1977)]. In Section 2, a derivation of (1) from

first principles is given, inspired by Martin-Löf’s (1966) definition of the randomness of a sequence.

We interpret the sequence as the sequence of outcomes of an experiment. In this approach, the

concepts of entropy, probability, and randomness turn out to be mutually equivalent, in the sense

that a conceptual foundation for any one yields a foundation for the other two. The derivation

of (1) is completely valid for all discrete phase spaces, even small ones. No approximations are

involved.

An important and easily overlooked aspect of randomness is its dependence on the experimental

setup, and on the sophistication of the apparatus involved. In modern refinements of Martin-Löf’s

definition of randomness, this dependence is modelled by the complexity class of the algorithms

available to detect patterns in sequences. A macroscopic physical counterpart of this dependence

is discussed in Section 4, considering the applicability of the Second Law of Thermodynamics

as a “selection principle” in the sense of Prigogine and George (1983). Similar considerations

of the power of the available apparatus serve to resolve the so-called “Gibbs Paradox”. One

may summarize by saying that thermodynamic entropy measures the accessibility of energy to

extraction by the machinery involved. More sophisticated machinery may render more energy

accessible to extraction, and will thus correspond to a different count of thermodynamic entropy

from that obtained when using less sophisticated apparatus.
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The final topic discussed is the problem of extending the formula (1) from a finite sum to a

continuous integral for the purpose of physical applications. It is not sufficient just to regard sums

such as (1) as being Riemann sums or other similar approximations of integrals. Dimensional

analysis forces one to replace (1) by a relative entropy or “cross-entropy”. The choice of reference

distribution then depends on the experimental setup, in particular on the time available for the

experiment.

2 Randomness, probability, and entropy

Much of the controversy surrounding the information-theoretic entropy concept has arisen from the

long-standing lack of a solid basis for the understanding of randomness. Measure theory provided

a sound axiomatic foundation for probability theory from the pure mathematics standpoint, but

begged the question of the applicability of the axioms. Although the issue has by no means

been completely resolved, and much remains to be done (particularly in the area of quantum

probability and randomness), the general approach of Martin-Löf (1966) (see also Li and Vitanyi,

1997) suggests a practicable definition for the classical case along the following lines.

Consider a scientific experiment which may have any one of N possible outcomes. By con-

vention of modern science, a “scientific” experiment has to be repeatable and reproducible. The

experiment is said to be random if no statistical test available to the experimenter can detect any

pattern in repeated outcomes. It is very important to note that this definition is contingent on

the power of the apparatus available. Rolling a die under casino conditions should be random.

On the other hand, if equipment such as a high speed precision camera were available, it would be

possible to predict the outcome of each roll from the initial motion of the die, and the experiment

would no longer be random. A subtler distinction arises when rolling a very slightly loaded die

under casino conditions. If the number of rolls required for even a sophisticated statistical test to

reveal the bias is in excess of the number of rolls sufficient to wear the spots off the die, then the

experiment would still qualify as random.

The basic concepts of entropy and probability follow from the concept of randomness. For a

random experiment with N outcomes, the (natural) entropy is

H = logN (2)

(using natural logarithms) or the (binary)entropy

H = log2 N bits (3)

using logarithms to base 2 and bits as units. (Occasionally logarithms to base 10 are used, with

Hartleys as units.) The probability π(x) of any one particular outcome x of the random experiment
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is

π(x) = N−1. (4)

The probability π(x) and natural entropy H are connected by the mutually inverse relationships

(a) H = − log π(x), (b) π(x) = exp(−H). (5)

Using binary entropy H, these take the form

(a) H = − log2 π(x), (b) π(x) = 2−H . (6)

The probability π(x) represents a fair stake to buy into the following game: win one unit if the

outcome of the experiment is x. Randomness of the experiment means that there are no winning

strategies in this game. The entropies (2) and (3) measure one’s ignorance about the outcome of

the experiment. If you let someone else run the experiment, and instead question them afterwards

as to what the outcome was, then the number of yes/no questions required to elicit the outcome

would be given by (3).

The above model is too narrow for general use, when one wishes to deal with non-random

experiments. (By this, we mean general experiments that traditional statisticians might call

”random,” but having a non-uniform finite rational probability distribution.) These may be

modelled using an underlying random experiment (as in the preceding paragraph) whose set of

outcomes, called the phase space, has N elements. The phase space is completely partitioned

into a set ξ = {C1, . . . , Cr} of mutually exclusive subsets called states. The partition ξ represents

the non-random experiment (also denoted ξ) of sampling an outcome x from the phase space and

locating the state Ci in which it lies. If the state Ci contains ni outcomes of the underlying random

experiment, each of whose outcomes has probability N−1 according to (4), then the probability

p(Ci) of the state Ci is given as

p(Ci) = niN
−1. (7)

The state Ci may be regarded as a random experiment in its own right: select an outcome from

Ci. The entropy of this random experiment, according to (2), is

H(Ci) = log ni. (8)

If you perform experiment ξ and obtain the result Ci, then your ignorance will have been reduced

by logN − log ni = − log p(Ci). This happens with probability p(Ci). Thus the average loss of

ignorance or gain in knowledge obtained on performing experiment ξ is its entropy

H(ξ) = −
r∑
i=1

p(Ci) log p(Ci). (9)
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(Of course, one may take logarithms to base 2 and quoteH(ξ) in bits.) The mathematical discipline

of measure theory extends the definitions of probability and entropy to appropriate infinite phase

spaces, where “counting outcomes” may be replaced by “measuring volumes”. The entropy H(ξ)

satisfies the inequality

0 ≤ H(ξ) ≤ log r. (10)

Equality obtains on the left in (10) if and only if p(Ci) = 1 for some i: if you already know

in advance that ξ will come up with state Ci, then you gain no knowledge by performing the

experiment. Equality obtains on the right in (10) if and only if p(Ci) = r−1 for each i: the most

informative experiments are those designed so that all their different outcomes are equally likely.

In particular, randomness of an experiment is characterized by its entropy. Moreover, the three

concepts of “entropy”, “probability”, and “randomness” turn out to be equivalent, in the strict

mathematical sense that establishment of any one leads to establishment of the other two. For

example, formulae such as (5) establish mutual connections between entropy and probability. In

complexity theory, it is an entropy measure, namely the (relativised) self-delimiting algorithmic

complexity, which is usually taken as basic. Probability is then obtained via (6) (Uspenskĭı,

Semenov, and Shen’, 1990). The complexity class of the algorithms invoked corresponds to the

power of the apparatus used in the statistical tests for randomness above.

3 Statistical mechanics: the canonical ensemble

For the experiment ξ = {C1, . . . , Cr} considered in the previous section, absolute randomness –

complete ignorance about the outcome – was characterized by unconstrained maximization of the

entropy H(ξ), attaining the value log r according to (10). In practice it may be possible to assign

a numerical value Ei to each state Ci, e.g. the number of spots on the face of a die or an energy

in electron volts. If the expected value

E =
r∑
i=1

p(Ci)Ei (11)

is known, then the non-negative probabilities p(Ci), which have to satisfy the relationship

1 =
r∑
i=1

p(Ci), (12)

are determined by the assumption of relative randomness: no pattern is discernible in repeated

outcomes except for maintenance of the fixed value E. This is equivalent to maximization of

the entropy H(ξ) subject to the constraints (11) and (12). Setting g1 = E −
r∑
i=1

p(Ci)Ei, g2 =
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1−
r∑
i=1

p(Ci), and f = H(ξ) +βg1 +λg2 with Lagrange multipliers β, λ, the stationarity conditions

∂f/∂p(Ci) = 0 lead to log p(Ci) = −βEi− (1+λ) or p(Ci) = exp(−βEi)/ exp(1+λ). Substituting

into (12), noting that λ is independent of i, one obtains

p(Ci) = Z(β)−1 exp(−βEi) (13)

with the partition function or Zustandsumme

Z(β) =
r∑
i=1

exp(−βEi). (14)

The fixed value E from (11) is recovered as

E = −d logZ(β)

dβ
; (15)

on the other hand this equation may yield β if the partition function is continuous and strictly

logarithmically convex. The entropy (9) may be recovered via

−
r∑
i=1

p(Ci) log p(Ci) =
r∑
i=1

p(ci)[βEi + (1 + λ)] (16)

as

H(ξ) = βE + logZ(β). (17)

Note that (13)–(17) are just consequences of the assumption of randomness of ξ relative to (11)

and the attribution of the numerical value Ei to each state Ci. There is no inherent reason for such

an experiment ξ to be inappropriate as a model in certain ”non-equilibrium” circumstances. (In

many cases additional numbers Fi, Gi, etc. may be assigned to each state, with known expected

values F,G, etc. The Lagrange multiplier method readily extends to such cases, using vectors in

place of scalars.) An experiment ξ with random probabilities subject to (11) is called a canonical

ensemble, since it generalizes the models of that name in (equilibrium) statistical mechanics. A

correspondence with thermodynamics arises when the Ei and E are energies in suitable units.

Introducing Boltzmann’s constant k, the thermodynamic entropy is

S = kH. (18)

The temperature is

T = 1/kβ. (19)

The thermodynamic potential is

Ψ = logZ(β). (20)
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The Helmholtz free energy is

F = −kTΨ. (21)

Equation (17) then reduces to

F = E − TS. (22)

Note that (13) and (19–21) yield the probability of the state Ci as

p(Ci) =
e−Ei/kT

e−F/kT
. (23)

This gives an immediate derivation of the formulae of kinetic theory such as those in Chapter 42

of the “red book” (Feynman, Leighton, and Sands, 1963).

4 Dependence on the apparatus

In Section 2, the mutual equivalence of the concepts of entropy, probability, and randomness was

adumbrated. It was also pointed out that these concepts are contingent upon the power of the

apparatus available. Prigogine and George (1983) have suggested the use of the Second Law of

Thermodynamics as a selection principle, breaking the microscopic time symmetry of physical

laws expressed by differential equations. Suppose that a differential equation is invariant under

time reversal, say because it only involves even time derivatives. Then it may formally possess

solutions going both forward and backward in time. Somehow, the solutions going backward in

time are to be eliminated. The idea of the Second Law as a selection principle is to dismiss the

backward solutions as being “improbable”. Echoing the point made early in Section 2, we wish

to emphasize here that the improbability of the backward solutions also depends critically on the

sophistication of the experimental apparatus.

The use of the Second Law of Thermodynamics as a selection principle may be illustrated by

the wave equation, as the differential equation

∂2φ

∂r2
+

2

r

∂φ

∂r
=

1

c

∂2φ

∂t2
(24)

for the spherically symmetric air pressure φ(r, t) at time t and distance r from the centre of the

symmetry, c being the speed of sound. There are two basic types of solutions: expanding or

“retarded” waves

φ =
1

r
f(r − ct) (25)

for a suitable function f(x), and contracting or “advanced” waves

φ =
1

r
f(r + ct). (26)
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A solution of the retarded type might describe sound waves emanating from a whistle at the centre

of symmetry. On the other hand, solutions of the advanced type are generally an embarrassment

to the theory, as they describe spherical waves converging coherently on the centre of symmetry.

Note how time reversal interchanges the retarded and advanced waves. Invocation of the Second

Law of Thermodynamics as a selection principle excludes advanced waves as being improbable.

However, in the presence of sufficiently sophisticated apparatus, advanced waves as in (26) may

actually occur. One example is given by the firing of the detonation lens of an atomic bomb,

clearly a very special arrangement. Another example occurs at one focus of an ellipsoidal (or

semi-ellipsoidal) “whispering gallery,” if sound waves are emanating from a “whisperer” located

at the other focus. For this situation to arise, the ceiling of the gallery has to be specially designed

and carefully constructed.

The so-called “Gibbs Paradox” may be resolved by similar considerations of the power of the

apparatus involved. Consider a chamber containing two different gases. Configurations with one

gas entirely on one side of the chamber and the other gas on the other side are clearly improbable.

If the available apparatus is able to detect the difference between the two gases, then it could

extract work along with the thermodynamic entropy gain that would ensue as the gases mixed

together. On the other hand, if the apparatus was not sophisticated enough to detect the difference

between the two gases, it could not distinguish separated configurations from those in which the

two gases were mixed indiscriminately. Under these conditions, the thermodynamic entropy of a

separated configuration would be the same as the thermodynamic entropy of a mixed state.

5 Continuous distributions

Equation (1) represents the information-theoretic entropy of the discrete probability distribution

ξ = (p1, . . . , pr). In the literature, one often encounters an extension of (1) to the case of a

one-dimensional random variable X with density function p(x) in the form

H(X) = −
∫ ∞
−∞

p(x) log p(x)dx (27)

[e.g §8.3 of Ash (1965), p.541 of Rumer and Ryvkin (1977), §20 of Shannon (1948)]. There is

nothing wrong with (27) as a pure-mathematical formula (assuming convergence of the integral

and absolute continuity of the density p with respect to Lebesgue measure). However, in physical

applications, the coordinate x in (27) represents an abscissa, a distance from a fixed reference

point. This distance x has the dimensions of length. The density function p(x) is specified so that

P (a ≤ X < b) =

∫ b

a

p(x)dx (28)
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is the probability that the random variable X falls within the interval [a, b). As a probability, the

left hand side of (28) is dimensionless. Since the infinitesimal dx on the right hand side has the

dimensions of length, it follows that the density p(x) has the dimensions of (length)−1. Now for

0 ≤ z < 1, one has the series expansion

− log(1− z) = z +
1

2
z2 +

1

3
z3 + . . . . (29)

For consistency in (29), it is necessary that the argument of a logarithm be dimensionless. The

formula (27) is then seen to be dimensionally incorrect, since the argument of the logarithm on its

right hand side has the dimensions of a probability density. [Interestingly enough, although Shan-

non (1948) uses the formula (27), he does note its lack of invariance with respect to changes in the

coordinate system, and shows how to transform the formula (27). The dimensional incorrectness

of Shannon’s formula was also noted by O’Neill (1963), using a somewhat different argument to

the one given above.]

In order to make the continuous entropy definition (27) consistent, one has to normalize the

argument of the logarithm by dividing p(x) by another density. Let this density be the reference

density q(x). Formula (27) then becomes

−
∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (30)

Now if η is a probability distribution (q1, . . . , qr), one defines the “cross-entropy” or “Kullback

entropy” or entropy of ξ relative to η as

H(ξ|η) = −
r∑
i=1

pi log
pi
qi

=
r∑
i=1

pi(log qi − log pi) (31)

in the finite case (Kullback, 1959). Note that if η is the entropy-maximizing uniform distribution

or “microcanonical” distribution µ with qi = 1/r for 1 ≤ i ≤ r, then (31) reduces to

H(ξ|µ) = − log r +H(ξ), (32)

a non-positive quantity by (10). Maximization of H(ξ) is equivalent to maximization of (32).

Returning to the continuous case, suppose that the reference density determines the distribution

of a random variable Y according to the analogue

P (a ≤ Y < b) =

∫ b

a

q(x)dx (33)

of (28). One may then interpret the dimensionally correct quantity (30) as the entropy

H(X|Y ) = −
∫ ∞
∞

p(x) log
p(x)

q(x)
dx (34)
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of X relative to the reference random variable Y . There remains the problem of choosing an

appropriate reference random variable. From a Bayesian standpoint, Jaynes (1963) and Garrett

(1991) discuss the use of an “improper prior”, taking q(x) to be a Lebesgue measure justified by

symmetry considerations. This prior is “improper” to the extent that Lebesgue measure is not

normalizable to a probability density, so it does not correspond to a reference random variable

Y . A more satisfactory choice of reference density follows from physical considerations. Since one

only has a finite time t in which to carry out an experiment, one can only scan an interval of

length 2ct, where c is the speed of light. (In higher dimensions, this length should be replaced

by an appropriate volume, such as 4
3
πc3t3 in three dimensions.) One knows that no information

can be extracted during the experiment from events outside this window. Thus the most random

density subject to the given constraint is the density that is uniform inside the window, and zero

outside. This is a true (i.e. normalizable) density, corresponding to a proper reference random

variable M . With this choice, (34) reduces to

H(X|M) = −
∫ x0+ct

x0−ct
p(x) log 2ctp(x)dx, (35)

where x0 is the location of the scanning device.

6 Conclusion

The entropy concept, be it information-theoretic or thermodynamic, depends critically on the

nature of the apparatus used. In apparently pure mathematical formulae such as (1), this depen-

dence is built in to the definition of the underlying probabilities. Awareness of the dependence

on the experimental setup allows one to avoid many of the paradoxes associated with the entropy

concept. It also yields a well-defined and dimensionally correct entropy for continuous distri-

butions, namely the entropy (35) relative to a reference distribution representing the maximum

information obtainable within the duration of an experiment.
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