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Abstract. The 128-bit block cipher TWIS was proposed by Ojha et al
in 2009. It is a lightweight block cipher and its design is inspired from
CLEFIA. In this paper, we first study the properties of TWIS structure,
and as an extension we also considered the generalized TWIS-type struc-
ture which can be called G-TWIS cipher, where the block size and round
number can be arbitrary values. Then we present a series of 10-round dif-
ferential distinguishers for TWIS and a n-round differential distinguisher
for G-TWIS whose probabilities are all equal to 1. Therefore, by utilizing
these kinds of differential distinguishers, we can break the full 10-round
TWIS cipher and n-round G-TWIS cipher.
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1 Introduction

Recently, researches on the design of lightweight cryptography have received
lots of attention. Lightweight cryptography mainly deals with designing ciphers
for extremely resource constrained environments, such as applications of RFID
tags and sensor networks. Considering that conventional algorithms such as AES
although quite secure, are not suitable for such environments, hence a number
of new symmetric lightweight block ciphers have been proposed in the open
literature, such as DESL [6], PRESENT [2], HIGHT [5], LCASE [10], Cobra [9]
and TWIS [7] et al.

TWIS is a lightweight block cipher designed by Ojha et al in 2009. Both of
its block size and key size are 128-bit and the total number of rounds is 10.
The overall structure of TWIS is a 2-branch generalized Feistel structure which
employs key whitening at the beginning and at the end of the cipher.

In this paper, we first study the properties of TWIS structure, and as an
extension we also considered the generalized TWIS-type structure which can
be called G-TWIS cipher, whose block size is 4m-bits and consists of n rounds
encryption in all, where n and m are arbitrary positive integers. Then we evaluate
the security of TWIS and G-TWIS against differential cryptanalysis respectively.
Our main results include: we present (23 − 1) differential distinguishers for 10-
round TWIS cipher and a differential distinguisher for n-round G-TWIS cipher
whose probabilities are both equal to 1. Based on these distinguishers, we can
break the full 10-round TWIS cipher and the full n-round G-TWIS cipher. Since



our analysis does not depend on any weak-key or weak-subkey assumptions,
these attacks can both be independent of the key schedule algorithm.

The rest of this paper is organized as follows. Section 2 gives a brief de-
scription of TWIS first and then gives the specification of the proposed cipher
G-TWIS. Section 3 and Section 4 present the differential attack on the full TWIS
cipher and on the full G-TWIS cipher respectively. Finally, Section 5 summarizes
the paper.

2 Descriptions of TWIS and G-TWIS

TWIS is a 128-bit block cipher which uses key of size 128-bit. It employs a 2-
branch Generalized Feistel structure and consists of 10 rounds. Each round of
TWIS uses two rounds of Feistel network which involves a 64-bit round function
called 𝐺-function. Furthermore, key whitening layers are employed both at the
beginning and at the end of the encryption procedure. Since the key scheduling is
not involved in out attack, we will omit the description of key schedule algorithm
here and interested readers can refer to [7] for more details.

As an extension of TWIS, we construct a generalized TWIS-type cipher called
G-TWIS. Its block size can be 4m-bit and consists of n rounds, where m and n
are arbitrary positive integers. Similar to the round function of TWIS, in each
round of G-TWIS we also use two rounds of Feistel network which involves a
2m-bit round function called 𝐺′-function. In the following, we will give detailed
descriptions of the encryption procedures of TWIS and G-TWIS.

2.1 Notation

In this subsection, we first introduce the following notations which are used
throughout this paper.
− 𝑍𝑚

2
: the set of 𝑚-bit words.

− 𝑎⊕ 𝑏: bitwise XOR of a and b.
− 𝑎 ∧ 𝑏: bitwise AND of a and b.
− 𝑎∣𝑏: concatenation of a and b.
−⋘ 𝑖: left rotation by i bits.
−⋙ 𝑖: right rotation by i bits.

2.2 Encryption Procedure of TWIS

For the encryption procedure of TWIS, let 𝑃 = (𝑃0, 𝑃1, 𝑃2, 𝑃3) ∈ (𝑍32

2
)4 denote

a 128-bit plaintext, and 𝐶 = (𝐶0, 𝐶1, 𝐶2, 𝐶3) ∈ (𝑍32

2
)4 denote the corresponding

ciphertext. Let 𝑅𝐾𝑖 ∈ 𝑍32

2
(𝑖 = 0, 1, . . . , 10) denote the round subkeys provided

by the key scheduling part. First of all, two 32-bit whitening subkeys 𝑅𝐾0 and
𝑅𝐾1 are XORed to 𝑃0 and 𝑃3 respectively, and the resulted intermediate value
is denoted as (𝑇0, 𝑇1, 𝑇2, 𝑇3). Then the same round transformation is iterated for
10 times, and the operations in each round is defined as follows.



For the 𝑖−th round, 1 ≤ 𝑖 ≤ 10
a) 𝑋0∣𝑋1 ← 𝐺 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝐾𝑖−1, 𝑇0∣𝑇1)
b) 𝑇2 ← 𝑋0 ⊕ 𝑇2, 𝑇3 ← 𝑋1 ⊕ 𝑇3

c) 𝑇1 ← 𝑇1 ⋘ 8, 𝑇3 ← 𝑇3 ⋙ 1
d) 𝑇0∣𝑇1∣𝑇2∣𝑇3 ← 𝑇2∣𝑇3∣𝑇0∣𝑇1

e) 𝑋0∣𝑋1 ← 𝐺 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝐾𝑖, 𝑇0∣𝑇3)
f) 𝑇1 ← 𝑋0 ⊕ 𝑇1, 𝑇2 ← 𝑋1 ⊕ 𝑇2

g) 𝑇2 ← 𝑇2 ⋙ 1, 𝑇3 ← 𝑇3 ⋘ 8

In the end, two whitening subkeys 𝑅𝐾2 and 𝑅𝐾3 are XORed to 𝑇0 and 𝑇3

respectively, and the result is just the ciphertext 𝐶 = (𝐶0, 𝐶1, 𝐶2, 𝐶3). The
detailed encryption procedure of TWIS is also illustrated in Fig. 1.
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Fig. 1. The Encryption Process of TWIS

For the 𝐺-function used in each round, it is defined as follows. It takes 64-bit
data and 32-bit round subkey as inputs and produces 64-bit output, and this
transformation can be written as the following expressions.

1. 𝑇0∣𝑇1 ← 𝑋0∣𝑋1

2. 𝑇0 ← 𝑇1⊕ F function(𝑅𝐾,𝑇0)



3. 𝑌0∣𝑌1 ← 𝑇1∣𝑇0

Here it calls another transformation named 𝐹 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 which takes 32-bit in-
termediate state 𝑋 and 32-bit round subkey 𝑅𝐾 as inputs, and produces 32-bit
output 𝑌 . The transformation of 𝐹 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is defined as follows:

1. 𝑇0∣𝑇1∣𝑇2∣𝑇3 ← 𝑅𝐾 ⊕𝑋
2. 𝑇0 ← 𝑆𝑏𝑜𝑥(𝑇0 ∧ 0𝑥3𝑓)

𝑇1 ← 𝑆𝑏𝑜𝑥(𝑇1 ∧ 0𝑥3𝑓)
𝑇2 ← 𝑆𝑏𝑜𝑥(𝑇2 ∧ 0𝑥3𝑓)
𝑇3 ← 𝑆𝑏𝑜𝑥(𝑇3 ∧ 0𝑥3𝑓)

3. 𝑌0∣𝑌1∣𝑌2∣𝑌3 ← 𝑇2∣𝑇3∣𝑇0∣𝑇1

Note that the Sbox used in 𝐹 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 takes 6-bit input and yields 8-bit output,
and the specific Sbox table can be obtained in [7].

2.3 Encryption Procedure of G-TWIS

As an extension of TWIS, we construct a generalized TWIS-type cipher called
G-TWIS. Its block size can be 4m-bit and consists of n rounds, where m and n are
arbitrary values. Let 𝑃 = (𝑃0, 𝑃1, 𝑃2, 𝑃3) ∈ (𝑍𝑚

2
)4 and 𝐶 = (𝐶0, 𝐶1, 𝐶2, 𝐶3) ∈

(𝑍𝑚
2
)4 denote the plaintext and its corresponding ciphertext respectively. Let

𝑅𝐾𝑖 ∈ 𝑍𝑚
2

(𝑖 = 0, . . . , 𝑛 − 1) denote the round subkeys provided by the key
scheduling part. The key whitening layers at the beginning and at the end of
G-TWIS are exactly the same with TWIS, and the round transformation used
in each round is defined as follows. The encryption procedure of G-TWIS is also
illustrated in Fig. 2.

For the 𝑖−th round, 1 ≤ 𝑖 ≤ 𝑛

a) 𝑋0∣𝑋1 ← 𝐺′ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝐾𝑖−1, 𝑇0∣𝑇1)
b) 𝑇2 ← 𝑋0 ⊕ 𝑇2, 𝑇3 ← 𝑋1 ⊕ 𝑇3

c) 𝑇1 ← 𝑇1 ⋘ 𝑟0, 𝑇3 ← 𝑇3 ⋙ 𝑟1
d) 𝑇0∣𝑇1∣𝑇2∣𝑇3 ← 𝑇2∣𝑇3∣𝑇0∣𝑇1

e) 𝑋0∣𝑋1 ← 𝐺′ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝐾𝑖, 𝑇0∣𝑇3)
f) 𝑇1 ← 𝑋0 ⊕ 𝑇1, 𝑇2 ← 𝑋1 ⊕ 𝑇2

g) 𝑇2 ← 𝑇2 ⋙ 𝑟2, 𝑇3 ← 𝑇3 ⋘ 𝑟3

For the 𝐺′-function used in each round, it takes 2m-bit data and m-bit
round subkey as inputs and produces 2m-bit output. Similar to the 𝐺-function
in TWIS, 𝐺′-function can be written as the following expressions.

1. 𝑇0∣𝑇1 ← 𝑋0∣𝑋1

2. 𝑇0 ← 𝑇1 ⊕ 𝐹 ′ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝐾,𝑇0)
3. 𝑌0∣𝑌1 ← 𝑇1∣𝑇0

Here it calls 𝐹 ′ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 which takes m-bit intermediate state 𝑋 and m-bit
round subkey 𝑅𝐾 as inputs, and produces m-bit output 𝑌 .

𝐹 ′ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

{

{0, 1}𝑚 × {0, 1}𝑚 → {0, 1}𝑚,

(𝑅𝐾,𝑋) 7→ 𝑌



RKi-1

RKi

Repeat for

n rounds 

Final Key 

Whitening

P0 P1 P2 P3

RK0 RK1

T0 T1 T2 T3

Initial Key 

Whitening 

G`-

func

>>>r4i-3<<<r4(i-1)

T0 T1 T2 T3

G`-

func

>>>r4i-2 <<<r4i-1

T0 T1 T2 T3

RK2 RK3

C0 C1 C2 C3

4m-Bit Plaintext 

4m-Bit Ciphertext 

Fig. 2. The Encryption Process of G-TWIS

3 10-Round Differential Distinguishers for TWIS

In this section, we present (23−1) 10-round differential distinguishers for TWIS
whose probabilities are all equal to 1. These differential distinguishers are mainly
based on the following one-round iterative differential characteristic with prob-
ability 1.

Fig. 3 illustrates this kind of one-round iterative differential characteristic
in detail. Note here we choose both the input and output differences of the
𝑖-th round as 𝛥𝑋 = (𝛥𝑋0, 𝛥𝑋1, 𝛥𝑋2, 𝛥𝑋3) ∈ (𝑍32

2
)4 which denotes a 128-

bit nonzero difference. Then the input and output differences of 𝐹0 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

are equal to 𝛥𝑋0 and 𝛥𝑋1 ⊕ (𝛥𝑋1 ⊕ (𝛥𝑋1 ⋘ 8)) ⋘ 1 ⊕ 𝛥𝑋3 respectively.
Similarly, the input and output differences of 𝐹1 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are equal to 𝛥𝑋0 and
𝛥𝑋0 ⊕ (𝛥𝑋2 ⋘ 1)⊕ (𝛥𝑋1 ⋘ 8) respectively. Furthermore, we can obtain the
following equations.

𝛥𝑋1 ⋘ 16 = 𝛥𝑋3 (1)

𝛥𝑋1 ⊕𝛥𝑋2 = 𝛥𝑋0 (2)



If we set the input and output differences of 𝐹0 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and 𝐹1 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 be
zero, then we can obtain the following three equations.

𝛥𝑋0 ∧ 0𝑥3𝑓3𝑓3𝑓3𝑓 = 0 (3)

𝛥𝑋1 ⊕ (𝛥𝑋1 ⊕ (𝛥𝑋1 ⋘ 8)) ⋘ 1⊕𝛥𝑋3 = 0 (4)

𝛥𝑋0 ⊕ (𝛥𝑋2 ⋘ 1)⊕ (𝛥𝑋1 ⋘ 8) = 0 (5)

F0-

func

<<<8 >>>1

<<<8>>>1

X0 X1 X2 X3

X0 X1 X2 X3

F1-

func

K0

K1

Fig. 3. one-round iterative differential characteristic of TWIS

By solving the above system of equations (1)-(5), we find that there are
(23 − 1) non-zero solutions in all. Since all these solutions satisfy that the input
and output differences of 𝐹0 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and 𝐹1 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 equal to zero, we can
construct (23 − 1) one-round iterative differential characteristics which all hold
with probability 1. Then by iterating this kind of one-round differential charac-
teristic 10 times, we can obtain (23 − 1) 10-round differential distinguishers for
TWIS whose probabilities are all equal to 1. Table 1 contains all the (23−1) = 7
one-round iterative differential characteristics.

Table 1. one-round iterative differential characteristics for TWIS

No. 𝛥𝑋 = 𝛥𝑋0,𝛥𝑋1,𝛥𝑋2,𝛥𝑋3 Pr(𝛥𝑋 → 𝛥𝑋)

1 (0𝑥𝑐0𝑐0𝑐0𝑐0, 0𝑥𝑐0𝑐0𝑐0𝑐0, 0𝑥00000000, 0𝑥𝑐0𝑐0𝑐0𝑐0) 1
2 (0𝑥80808080, 0𝑥80808080, 0𝑥00000000, 0𝑥80808080) 1
3 (0𝑥40404040, 0𝑥40404040, 0𝑥00000000, 0𝑥40404040) 1
4 (0𝑥40404040, 0𝑥𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓, 0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 0𝑥𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓) 1
5 (0𝑥80808080, 0𝑥7𝑓7𝑓7𝑓7𝑓, 0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 0𝑥7𝑓7𝑓7𝑓7𝑓) 1
6 (0𝑥𝑐0𝑐0𝑐0𝑐0, 0𝑥3𝑓3𝑓3𝑓3𝑓, 0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 0𝑥3𝑓3𝑓3𝑓3𝑓) 1
7 (0𝑥00000000, 0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 1



4 n-Round Differential Distinguisher for G-TWIS

In this section, we present an 𝑛-round differential distinguisher for G-TWIS
whose probability is also equal to 1. This 𝑛-round differential distinguisher is
based on the following one-round iterative differential characteristic with prob-
ability 1.

Similar to the analysis in Sect. 3, we also choose the input and output dif-
ferences of the 𝑖-th round as 𝛥𝑋 = (𝛥𝑋0, 𝛥𝑋1, 𝛥𝑋2, 𝛥𝑋3) ∈ (𝑍𝑚

2
)4, which

denotes a 4m-bit nonzero difference. Then the input and output differences of
𝐹 ′

0
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are equal to (𝛥𝑋0, 𝛥𝑋1 ⊕ (𝛥𝑋1 ⊕ (𝛥𝑋1 ⋘ 𝑟0)) ⋘ 𝑟1 ⊕𝛥𝑋3),

and the input and output differences of 𝐹 ′

1
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are equal to (𝛥𝑋0, 𝛥𝑋0⊕

(𝛥𝑋2 ⋘ 𝑟2)⊕(𝛥𝑋1 ⋘ 𝑟0)) respectively. Similarly, we can obtain the following
equations.

𝛥𝑋1 ⋘ (𝑟0 + 𝑟3) = 𝛥𝑋3 (6)

𝛥𝑋1 ⊕𝛥𝑋2 = 𝛥𝑋0 (7)

Then by setting the input and output differences of 𝐹 ′

0
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and 𝐹 ′

1
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

as zero, we can obtain the following equations.

𝛥𝑋0 = 0 (8)

𝛥𝑋1 ⊕ (𝛥𝑋1 ⊕ (𝛥𝑋1 ⋘ 𝑟0)) ⋘ 𝑟1 ⊕𝛥𝑋3 = 0 (9)

𝛥𝑋0 ⊕ (𝛥𝑋2 ⋘ 𝑟2)⊕ (𝛥𝑋1 ⋘ 𝑟0) = 0 (10)

Considering the above system of equations (6)-(10), it is easy to see that
(0, 𝛼, 𝛼, 𝛼) is a solution of the system, where 𝛼 = 2𝑚−1. Hence we can construct
an iterative differential characteristic (0, 𝛼, 𝛼, 𝛼)→ (0, 𝛼, 𝛼, 𝛼) where 𝛼 = 2𝑚−1,
and it holds with probability 1. Then by iterating this differential characteristic 𝑛
times, we can obtain the following 𝑛-round differential distinguisher for G-TWIS
whose probability is equal to 1.

(0, 𝛼, 𝛼, 𝛼)
𝑛 𝑅
−→ (0, 𝛼, 𝛼, 𝛼). 𝛼 = 2𝑚 − 1

The following Fig. 4 illustrates this one-round iterative differential characteristic
of G-TWIS in detail.

5 Summary

In this paper, we first study the properties of TWIS structure, and as an ex-
tension we also considered the generalized TWIS-type structure which can be
called G-TWIS cipher, where the block size and round number can be arbitrary
values. Then we present (23 − 1) 10-round differential distinguishers for TWIS
and an 𝑛-round differential distinguisher for G-TWIS whose probabilities are
all equal to 1. Therefore, by utilizing these kinds of differential distinguishers,
the full-round TWIS and G-TWIS are distinguishable from an ideal cipher, and
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<<<r0 >>> r1

<<< r3
>>> r2
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Fig. 4. one-round iterative differential characteristic of G-TWIS

hence we can break the full 10-round TWIS cipher and n-round G-TWIS cipher
very efficiently.

Our results demonstrate that the design of TWIS-type structure has fatal
weakness, and no matter how security the internal building blocks such as Sbox
and diffusion matrix are used and even how many rounds are used, the overall ci-
pher is still vulnerable to differential attack. Furthermore, the reuse of whitening
subkeys as round subkeys may endanger the cipher, too. Therefore, we suggest
that this kind of TWIS-type cipher should be carefully used in a cryptographic
system.
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