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Abstract: Infertility is defined as the inability of couples to have a baby after one year of

regular unprotected intercourse, affecting 10 to 15% of couples. According to the latest

WHO statistics, approximately 50–80 million people worldwide sufer from infertility, and

male factors are responsible for approximately 20–30% of all infertility cases. The diagnosis

of infertility in men is mainly based on semen analysis. The main parameters of semen

include: concentration, appearance and motility of sperm. Causes of infertility in men include

a variety of things including hormonal disorders, physical problems, lifestyle problems,

psychological issues, sex problems, chromosomal abnormalities and single-gene defects.

Despite numerous efforts by researchers to identify the underlying causes of male infertility,

about 70% of cases remain unknown. These statistics show a lack of understanding of the

mechanisms involved in male infertility. This article focuses on the histology of testicular

tissue samples, the male reproductive structure, factors affecting male infertility, strategies

available to find genes involved in infertility, existing therapeutic methods for male inferti-

lity, and sperm recovery in infertile men.
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Introduction
Infertility is defined as the inability of couples to have a baby after one year of regular

unprotected intercourse, affecting 10–15 percent of couples.1–4 According to the latest

WHO statistics, about 50–80 million people worldwide suffer from infertility.5,6 Large-

scale studies have shown that about half of all cases of infertility occur due to female

factors, 20 to 30 percent male factors, and 20 to 30 percent due to common causes of

both gender.6–8 Recent meta-analysis studies by researchers show that male’s factors are

present in 20–70 percent of infertility cases.7,9 These findings are significantly broader

than previously reported. However, the wide range of male infertility in meta-analysis

studies may not reflect the prevalence of this complication in all parts of the world

because of reasons such as the lack of rigorous statistical methods that include bias,

heterogeneity in data collection, and cultural constraints. Given the significant contribu-

tion of male factors to infertility in couples, as well as high levels of unknown factors in

male infertility, a lack of understanding of the underlying mechanisms seems to be one

of the most important challenges facing this problem. In this article, we have reviewed

the histological studies of testicular tissue specimens, male reproductive structure,

factors influencing male infertility, strategies to find genes involved in infertility, avail-

able therapeutic methods for male infertility, sperm recovery methods in infertile men,

and assisting reproductive method (Figure 1).
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Male’s Reproductive Organ
In order to better understand the issues and problems asso-

ciated with infertility, we first discuss some of the key

elements involved in male fertility. Human reproductive

organs include the primary and secondary organs. Primary

reproductive organs include the gonads (responsible for

gamete and hormone production), while the secondary

organs include the ducts and glands, which play a role in

the growth, maturation and transmission of gametes.10,11

The testicles are the primary male reproductive organs

enclosed by the tunica albuginea capsule in the testicle

sack. Two morphologically and functionally separated

parts are in the testis. Tubular components include semini-

ferous tubules and intercellular portions between seminifer-

ous tubules. The intertubular portions of the seminiferous

tubules are involved in providing blood and immune

responses.12–14 Leydig cells are one of the most important

cells in testis that are the source of testicular testosterone and

insulin-like factor 3. In addition to Leydig cells, intercellular

components include immune cells, lymphatic and blood

vessels, nerves, connective tissue, and fibroblasts.15–18 The

seminiferous tubules are functional units in the testis,

accounting for 60–80 percent of testicular volume.19–21

These tubes are surround by epithelial tissue and include

two types of cells: Sertoli cells and spermatogenic cells. The

function of Sertoli cells is to nourish and develop sperm

through the stages of spermatogenesis and their mechanical

support.22–24 These cells produce two types of inhibin and

activin hormone that have positive and negative feedback to

FSH.25–27 In addition, Sertoli cells control the stages of

sperm release into the lumen, phagocytosis of the degraded

germ cells and additional cytoplasm resulting from sperm

release. In adulthood, Sertoli cells are meiotically

inactive.28–30 Sertoli cell division terminates concurrently

with the first meiotic division of the germ cells, giving rise

to tight junctions between these cells, known as the Blood-

Testis Barrier (BTB) (Figure 2).31,32 The epithelium of

seminiferous tubules is divided into two (functionally dif-

ferent) regions by BTB. Two important functions for BTB

are: (a) the physical separation of the germ cells that protect

them against the immune system; (b) providing an environ-

ment for meiosis and sperm development.33–35

Spermatogenesis
Spermatogenesis is one of the most crucial stages in male

fertility.36–39 The slightest deviation from the natural course
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Figure 1 Main factors involved in male infertility.
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of spermatogenesis can lead to infertility in men. The term

spermatogenesis is a description of the development of male

gametes in the seminiferous epithelial tissue from diploid

spermatogonia that results in the release of differentiated

haploid germ cells into the seminiferous tubules. Each

cycle of spermatogenesis in humans requires 16 days and

almost 4.6 cycles for development and differentiation of

spermatogenic cells into adult sperm, which takes approxi-

mately 74 days in humans.40–42 The regulation of spermato-

genesis occurs in two main stages: a) hormonal and

endocrine b) paracrine and autocrine. Many studies have

shown that testosterone and FSH are required to successfully

complete spermatogenesis.22,43 The spermatogenesis process

divided into four general phases: 1) mitotic proliferation and

spermatogonial differentiation into pre-leptotene spermato-

cytes (spermatogoniogenesis); 2) Meiotic division of sper-

matocytes that leads to spermatids (meiosis); 3) Conversion

of round spermatids into adult spermatids (spermogenesis); 4)

Release of elongated spermatids into the lumen (spermato-

genesis) (Figure 3).44Considering the importance of sperma-

togenesis and since the disorder at any of its stages can have

irreversible consequences, below are some of the most

important features of each stage.

Spermatogoniogenesis
The germ cell lines originate from the primary germ cell

(PGC).45 In humans, PGCs develop between endoderm

cells at the end of the third week of development, and by

the fifth week they migrate to the genital tract, where the

presence of the Y chromosome results in the proliferation

and transformation of the genital tract into primary male

sexual organs.46–48 PGCs are commonly called gonocytes

during the first trimester of mitosis, then stop in the G3

phase of the cell cycle and remain silent until birth (i.e.,

when they become spermatogonia).49–51 Spermatogonia

remain silent until puberty. Spermatogenesis begins with

the mitotic proliferation of spermatogonia after birth.52–54

Spermatogonia

Blood-Testis Barrier

Spermatocytes

SpermatidsSpermigenesis

Basal Lamina

Sertoli Cell

Sertoli Cell

Figure 2 Schematic of the Blood-Testis Barrier.
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Figure 3 Spermatogenesis process.
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Spermatogenesis during puberty is probably initiated by the

production of bone morphogenetic protein 8B (BMP8B).

Mice with lack of Bmp8b do not initiate spermatogenesis at

puberty and consequently are infertile.55–57 Two distinct

fates await reproductive cells: (a) self-renewal by replica-

tion; (b) becomes spermatozoa. Apoptosis in spermatogonia

rarely occurs in the human seminiferous epithelial tissue,

but the rate of apoptosis is increased in patients with

impaired spermatogenesis, especially in spermatocytes

and spermatids.58,59

Meiotic Division
Meiosis is the distinction between sexual reproduction and

non-sexual reproduction.60,61 Meiosis eventually results in

the production of haploid gametes from diploid cells. During

mammalian meiosis, nuclear division is done twice in a cycle

of DNA replication. Each meiosis division is generally

divided into two stages Meiosis I and Meiosis II.62–64 In

meiosis I, also called subtractive division, the microtubules

are attached to sister chromatids via the kinetochore and

transported to opposite poles.65–67 This transition leads to

a decrease in the number of chromosomes from diploid to

haploid. Meiosis II is an equal division, in which the micro-

tubules attach to the kinetochore of centromere and separate

the sister chromatids, resulting in the formation of four

daughter haploid cells. Meiosis begins with the production

of two pre-leptotene spermatocytes from spermatogonia. In

meiosis I, primary spermatocytes become two secondary

spermatocytes, and these cells then form spermatids in meio-

sis II. The result of meiosis is four different (genetically) cell

types.68–70

Spermogenesis
Spermogenesis is a process that transforms the meiosis II

final product (i.e., spherical spermatids) without splitting

into specialized elongated spermatids. This process

requires the development of the cytoplasm and nucleus

regeneration, which can comprise four distinct phases:

the Golgi phase, the capping phase, the acrosomal phase,

and the maturation phase.71–73

Spermatogenesis
Sperm production is the final stage of spermatogenesis,

which mature spermatids are released from the somatic

supporting Sertoli cells into the lumen of the seminiferous

tubules. At this stage, the cells are known as spermatozoa

and continue their journey to epididymis. Seminiferous

spermatozoa have low motility and fertility. Spermatozoa

passage through the epididymal duct is crucial for final

maturation and ability to move.74–76 A small amount of

cytoplasmic content, cytoplasmic droplets remain in the

neck region and the middle segment of the spermatozoa,

which facilitates the achievement of epididymis. During

the transition from epididymis, which takes approximately

two weeks, the cytoplasmic droplets move and exit during

the spermatozoa tail, which is associated with increased

spermatozoa movement. This event is associated with an

increase in the movement of spermatozoa.77–79

Main Causes of Infertility
As mentioned, infertility can have a feminine or masculine

origin, with the male factor only present in one third of

cases. The diagnosis of infertility in men is mainly based

on semen analysis. Unusual parameters of semen include:

sperm concentration, appearance and motility.80,81 There

are seven main cases of semen-related abnormalities.

Infertility in men can be due to a variety of causes, how-

ever, in almost 40% of infertile men there is no clear

etiology. There are various reasons for male infertility,

the most important of which are: Hormonal deficits, phy-

sical causes, sexually transmitted problems, environment

and lifestyle, and genetic factors.82–85

Hormonal Defects
The male reproductive hormone axis is known as the

hypothalamic-pituitary-gonadal axis. It consists of 3 major

components: the hypothalamic, pituitary and testicular

glands (Figure 4).86,87 This axis works very regularly to

provide the right concentration of hormones for male sexual

development and function. Any abnormality in the system

can lead to infertility.88–90 If the brain is unable to produce

gonadotropic releasing hormone (GnRH), this disorder

results in a lack of testosterone and stopping sperm

production.91,92 Lack of GnRH causes a group of disorders

known as hypogonadotropic hypogonadism.93,94 One of

them is known as Kallmann syndrome, which is associated

with a change in sense of smell and immaturity.95 Treatment

options for gonadotropin-releasing hormone deficiency

include: Use of sex steroids, gonadotropins and injection

of gonadotropin releasing hormone. Testosterone injections

are mainly used to improve testicular growth, normalize

testosterone concentration, and stimulate the development

of secondary sexual traits.96–98 Similarly, the pituitary’s

inability to produce sufficient amounts of luteinizing hor-

mone and follicular stimulating hormone results in a failure

to stimulate the testes and to produce testosterone and
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sperm.99,100 Patients with pituitary deficiency require long-

term hormonal therapy, which can lead to complications

such as diabetes mellitus, heart disease and bone defects.

Conversely, elevated concentrations of LH and FSH are

associated with low concentrations of testosterone, leading

to defects in spermatogenesis.101,102 Therefore, using high

doses of testosterone and estrogen can be a viable treatment

option because it suppresses the production of LH and FSH.

Increased prolactin can also lead to reduced sperm produc-

tion, libido and impotence. Hyperprolactemia leads to infer-

tility in 11% of people with oligospermia.103 In many cases,

a dopamine agonist can be a good treatment.

Physical Reasons
Physical problems can disrupt sperm production and block-

age of the ejaculatory pathway. Enlargement of the sperm

vessels known as varicocele is one of the most common

male infertility problems affecting about 40% of men.104,105

Testicular torsion within the testicle sac can cause testicular

damage due to pressure on the sperm vessels and impaired

testicular circulation. Chronic and acute genital tract infec-

tions can also be common causes of infertility in men.106

Mumps viral infection can lead to testicular atrophy and

infertility.107 Sexually transmitted diseases such as

Gonorrhea and Chlamydia can also lead to infertility in

men due to obstruction in the epididymis.108 In some

cases, semen is ejaculated in the bladder, known as recur-

rent ejaculation, and accounts for about 2% of infertility

cases that can be caused by anatomical problems of the

bladder sphincter.109

Sexual Problems
Many sexual problems are both physical and psychologi-

cal. Erectile dysfunction, known as impotence, early eja-

culation and inability to ejaculate are examples of

intercourse problems.110,111

Brain-pituitary-testicular axis 

Infection

Physical obstruction

Hormonal defects

Spermatogenesis disorders

Genetic & Epigenetic factors

Environmental disorders

Figure 4 Brain-pituitary-testicular axis.
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Environment and Lifestyle
Men exposed to hazardous substances in their workplace,

including solvents, insecticides, adhesives, silicones and

radiation, exposure to these and similar substances can

lead to infertility.82,112,113 Exposure to radiation can lead

to reduced sperm production, and exposure to high doses

can lead to complete infertility. Overuse of the sun bath

can also lead to a temporary decrease in sperm count.114

Occupations that require prolonged sitting (such as driv-

ing) or being exposed to high temperatures (such as bak-

eries) can have negative effects on fertility.115 Concerning

alcohol consumption and smoking, there is no definite

agreement regarding their effect on sperm parameters

and fertility outcomes.116,117 However, progressive degra-

dation in sperm quality may be associated with cigarette

smoking and alcohol consumption. Poor nutrition can also

play an important role in male infertility. There has been

a recent report of a decrease in sperm concentration in men

with an increase in saturated fat intake.118 Repeated use of

drugs such as cocaine and cannabinoids is associated with

a significant decrease in sperm concentration, and urinary

testosterone in men.119 In addition, studies have also

shown that air pollution in men reduces sperm motility,

and the way to deal with and prevent this problem is to

continually use antioxidants and vitamin C-containing sub-

stances. Moreover the presence of pollutants and sulfur

dioxide in the air changes the natural shape of sperm and

also has a detrimental effect on sperm motility.120–123

Genetic Factors
Genetic factors are detected in 15% of male infertility cases

and can be classified into two groups: chromosomal abnorm-

alities and single-gene mutations.124,125 Any lack or acquisi-

tion of unusual rearrangements in genetic material at the

chromosomal level is known as chromosomal abnormalities

and is one of the major genetic causes involved in male

infertility.126 About 14% of men with azoospermia and 2%

of men with oligospermia have chromosomal abnormalities,

which is much higher than the general population (about

0.6%).127,128 Some chromosomal abnormalities are inherited

and some are acquired. The most common genetic cause of

azoospermia in the aneuploid sex chromosome is Klinefelter

syndrome, which accounts for about 14% of male infertility

cases. 47,XYY, chromosomal defects can cause spermatogen-

esis malfunction due to increased FSH and Y chromosome

disomy.129,130 Noonan syndrome in men, such as Turner syn-

drome in women, which is XO/XY mosaic, can lead to

cryptocidism and spermatogenesis deficiency due to increased

FSH.131,132 Translocations occur in 3% of patients with severe

oligozoospermia, the most important is Robertsonian and

bilateral translocation.133,134 Inversion is called chromosomal

translocation, in which a fragment of the chromosome is

broken and rearrangement within itself.135 Autosomal inver-

sions are eight times more frequent in infertile men,136

although these rearrangements are balanced, in some

cases leading to severe oligoasthenoteratozoospermia or

azoospermia.137 The role of the Y chromosome was identified

by Zofardi and colleagues by karyotype analysis of deletions

in the long arm of the Y chromosome in six infertile men, they

termed the deletion region as azoospermic factor (AZF).138

This region contains three zones AZFa, AZFb, and AZFc.139

Micro-deletions occur following the recombination of similar

fragments in palindromic sequences. Y chromosome micro-

deletions are present in 10% of infertile men, whereas in

oligozoospermic males, the prevalence is 7%.140,141 The

most common microdeletion occurs in the AZFc region,

accounting for 80% of cases.142 Deletions that encompass

the entire AZFa region result in the Sertoli cell phenotype.139

Intra-AZFb deletion usually results in azoospermia.143

Deletion in the AZFc region can lead to a wide range of

infertility phenotypes including azoospermia, Sertoli cell syn-

drome and oligozoospermia.144 Some gene mutations with

pathological syndromes can be associated with infertility,

such as congenital bilateral absence of the vas deferens

(CBAVD), which cause obstructive azoospermia in 80 to

90% of cases.145 This defect is caused by a mutation in the

Cystic fibrosis transmembrane regulator (CFTR).146 Primary

ciliary defects are an autosomal recessive heterogeneous

defect caused by a lack of normal eyelash function and present

in half of men with asthenospermia. Little has been known so

far about non-syndromic infertility.147

Epigenetic Factor
Acetylation and methylation are two effective factors in

epigenetic modifications that cause different expression of

genes. Epigenetic factors act a critical role in male inferti-

lity, and numerous studies have been devoted to it. During

spermatogenesis, germ cells face major epigenetic repro-

gramming that includes the organization of sex-specific

designs in the sperm, which substitution of histone to

protamine is one of them.148–150 Numerous experiments

have revealed altered epigenetic function in sperm from

men with oligozoospermia and oligoasthenoteratozoosper-

mia. Besides, many studies have been reported that
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hypermethylation in several genes, lead to deficiency in

semen parameters or male infertility.151–153

Strategies for Finding Genes Involved in

Infertility
There are two general approaches to infertility studies for

finding genes involved in infertility: the candidate gene

approach and the whole genome approach. A) The candidate

gene approach; Identification of genes that lead to impaired

fertility in model animals (mostly mice), and assuming that

their function is maintained during evolution, these genes are

selected and their roles and effects in human infertility are

studied. It is important to note that in this method, the func-

tion and expression of candidate genes in model animals and

their effect on infertility have already been proven, and given

the foregoing, it is possible to predict the gene involved in

human infertility. B)Whole-genome approach; technological

advances in whole-genome studies such as single-nucleotide

polymorphism (SNP) microarray, high-throughput sequen-

cing technologies such as exome or whole-genome sequen-

cing, and their use for finding effective genes in infertility has

been considered.154,155 In single nucleotide polymorphisms

or SNPs, the difference in one nucleotide causes different

phenotypes. SNPs are classified into common and non-

common groups based on allele frequency. Sequencing tech-

nologies enable researchers to perform high-throughput

sequencing, which allows millions of pieces of DNA to be

sequenced. Exome sequencing is another field that has revo-

lutionized the study of a variety of disorders, including

infertility. Exom covers about 1% of the entire human gen-

ome but accounts for about 85% of the pathogenic

mutations.156 Exome sequencing allows us to identify muta-

tions in the protein coding region. On the other hand, whole-

genome sequencing can identify potentially susceptible

mutations throughout the genome. Genome-wide association

studies (GWAS) have been able to identify different poly-

morphisms related to defects in spermatogenesis. Until now,

however, genetic risk factors identified with this technique

have shown poor association.

After introducing some of the influencing factors in

infertility and exploring its identification methods, the

challenge that remains to be resolved is how to use the

information obtained to treat diagnosed infertility.

Following some of the most up-to-date and important

strategies for treating infertility with a specific cause, are

mentioned.

Fertility Assistance Techniques
Although different definitions have been proposed,

assisted reproductive techniques refer to a range of meth-

ods generally used to treat infertility problems in humans

and help infertile couples to have a healthy child. There

are three main stages of progressive intervention in this

area. A) Stimulation of ovulation during intercourse. B)

Stimulation of ovulation and injection of sperm into the

female reproductive tract. C) Artificial fertilization in

which the egg and sperm are fertilized outside the body

and the resulting embryo is transferred into the uterus.

Each of these steps is discussed below.

Auxiliary Fertilization
This process involves controlled ovarian stimulation to

increase the maturation of several oocytes, egg harvest

through follicle aspiration, sperm recovery, laboratory

inoculation, and embryo transfer and culture. Although

assistant fertilization can be performed in the normal sex

cycle, the most common protocol involves the daily injec-

tion of recombinant human FSH to stimulate follicle

growth to obtain the most oocytes.157,158 The follicles are

monitored by serum estradiol and uterine ultrasound. Once

the follicles have reached the appropriate size, human

chorionic gonadotropin (HCG) is injected to stimulate

follicle maturation and is collected 32 to 36 hrs after

injection. Although frozen sperm can also be used accord-

ing to WHO guidelines; Generally, on the day that eggs are

collected, semen is also collected by masturbation after

a period of 2 to 7 days of abstinence for artificial insemi-

nation, After egg stimulation and sperm recovery, two

methods of fertilization are used: IVF and ICSI.159,160

Sperm Recovery in Infertile Men
For infertile men, sperm must be recovered directly from

the testicles or epididymis. Obstructive azoospermia (OA)

and non-obstructive azoospermia51 are two major cate-

gories of azoospermia.161 Obstructive azoospermia is the

result of physical obstruction of the male genital tract,

which may be due to or acquired factors (i.e., infection,

vasectomy or physical injury to the genital tract), conge-

nital absence of the vas deferens (congestion of the vas

deferens, which accounts for about 60% of men with

azoospermia), epididymal obstruction.162 On the other

hand, NOA is due to the lack of testicular sperm produc-

tion in the ejaculate.163,164 The best way to treat NOAs is

to extract sperm from the testis (TESE) and done
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intracytoplasmic sperm injection (ICSI). However, in half

of the cases of azoospermia, sperm cannot be found as

a result of TESE.165 Unfortunately, serum hormone levels

such as FSH and inhibin B and noninvasive assessments

such as testicular volume cannot predict sperm recovery

and to date only testicular histopathology can be used as

a predictor of successful sperm recovery rate (SSR).166 In

the conventional TESE method, spermatozoa are extracted

from testicular biopsies by local or general anesthesia.167

On the other hand, sperm extraction is much safer and

more successful by micro-TESE.168

The purpose of the micro-TESE is to identify the nuclear

regions of testicular sperm production based on the size

and appearance seminiferous tubules with the aid of

a microscope, in which spermatozoa can be recovered from

open seminiferous tubules, the whole process being visible

under the microscope. Micro-TESE is a better alternative to

TESE because of the increased chance of sperm recovery and

reduced testicular damage due to the smaller size of the

harvested tissue. In general, testicular tissue resection for

histopathologic evaluation can potentially eliminate sites

that still produce sperm, despite abnormalities.169,170 Testis

biopsy before sperm recovery is generally not recommended.

Testicular biopsy is usually performed on the day of egg

retrieval. Biopsy specimens are examined for the presence

of sperm. A small sample is taken from an accessible area

and evaluated for histopathology.170–172 Due to the uncer-

tainty of sperm retrieval and failure of sperm retrieval, egg

retrieval will be unnecessary. This can cause emotional,

economic, and physical stress for couples, so sperm retrieval

requires the use of predictive factors, and this will not be

possible unless you have in-depth knowledge of all the steps

that can lead to Infertility in men.

Discussion
Today, around 10–15% of couples around the world are

experiencing infertility (60–80 million people). In half of

cases, male infertility is the cause. Disruption of spermatogen-

esis is a major cause of infertility, and genetic abnormalities

affecting spermatogenesis can be the cause of many unknown

male infertility cases. Therefore, identifying and presenting

prognostic biomarkers as well as finding non-invasive thera-

peutic techniques seem necessary. In hormonal investigations,

themicro-TESE technique can increase the biomarker value of

FSH to predict sperm recovery; because the results of hormo-

nal studies show the whole process of spermatogenesis in all

areas of the testis. Given that the testicular tissue is hetero-

geneous, the micro-TESE technique can increase the

likelihood of sperm retrieval despite inadequate levels of the

FSH hormone, due to sampling small areas of testicular tissue.

Conclusion
Given that male infertility in many cases remains unknown.

Therefore, it is necessary to introduce new key factors and

diagnostic and noninvasive biomarkers. Over the past few

years, the identification and evaluation of small noncoding

RNAs in many diseases, including infertility, has helped

greatly in understanding the underlying mechanisms of dis-

ease. But this alone is not enough, and through increased

insight into the complex stages and processes of pregnancy

in humans, more key elements must be identified so that

infertile couples can enjoy the chance of a natural pregnancy

in addition to reducing costs and problems. With the

advances in technology and the introduction of new methods

and approaches, it is hoped that many of the causes of male

infertility will soon be identified and treated.
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