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Abstract

Some open questions in quantum information theory (QIT) are described.
Most of them were presented in Banff during the BIRS workshop on Operator
Structures in QIT 11-16 February 2007.

1 Extreme points of CPT maps

In QIT, a channel is represented by a completely-positive trace-preserving (CPT) map
Φ : Md1 7→Md2 , which is often written in the Choi-Kraus form

Φ(ρ) =
∑

k

AkρA
†
k with

∑
k

A†kAk = Id1 . (1)

The state representative or Choi matrix of Φ is

Φ(|β〉〈β|) = 1
d

∑
jk

|ej〉〈ek|Φ(|ej〉〈ek|) (2)

where |β〉 is a maximally entangled Bell state. Choi [3] showed that the Ak can be
obtained from the eigenvectors of Φ(|β〉〈β|) with non-zero eigenvalues. The operators
Ak in (1) are known to be defined only up to a partial isometry and are often called
Kraus operators. When a minimal set is obtained from Choi’s prescription using
eigenvectors of (2), they are defined up to mixing of those from degenerate eigenvalues
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and we will refer to them as Choi-Kraus operators. Choi showed that Φ is an extreme
point of the set of CPT maps Φ : Md1 7→Md2 if and only if the set {A†jAk} is linearly
independent in Md1 . This implies that the Choi matrix of an extreme CPT map has
rank at most d1. We will refer to the rank of (2) as the Choi rank of Φ. (Note that
this is not the same as the rank of Φ as a linear operator from Md1 to Md2 .)

It is often useful to consider the set of all CPT maps with Choi rank ≤ d1. In
[24] these were called “generalized extreme points” and shown to be equivalent to
the closure of the set of extreme points for qubit maps. This is true in general. Let
E(d1, d2) denote the extreme points of the convex set of CPT maps from Md1 to Md2 .

Theorem 1. The closure E(d1, d2) of the set of extreme points of CPT maps Φ :
Md1 7→Md2 is precisely the set of such maps with Choi rank at most d1.

Proof: Let Let Ak be the Choi-Kraus operators for a map Φ : Md1 7→ Md2 with
Choi rank r ≤ d1 which is not extreme, and let Bk be the Choi-Kraus operators for
a true extreme point with Choi-rank d1. When r < d1 extend Ak by letting Am = 0
for m = r+1, r+2, . . . d1 and define Ck(ε) = Ak + εBk. There is a number ε∗ such
that the d2

1 matrices C†j (ε)Ck(ε) are linear independent for 0 < ε < ε∗. To see this,

for each C†j (ε)Ck(ε) “stack” the columns to give a vector of length d2
1 and let M(ε)

denote the d2
1 × d2

1 matrix formed with these vectors as columns. Then detM(ε) is a
polynomial of degree d4

1, which has at most d4
1 distinct roots. Since the matrcies A†jAk

were assumed to be linearly dependent, one of these roots is 0; it suffices to take ε∗
the next largest root (or +1 if no roots are positive). Thus, the operators C†j (ε)Ck(ε)

are linearly independent for ε ∈ (0, ε∗). The map ρ 7→
∑

k Ck(ε)ρC
†
k(ε) is CP, with∑

k

C†k(ε)Ck = (1 + ε2)I + ε(A†kBk +B†kAk) ≡ S(ε).

For sufficiently small ε the operator S(ε) is positive semi-definite and invertible, and
the map Φε(ρ) = Ck(ε)S(ε)−1/2ρS(ε)−1/2C†k(ε) is a CPT map with Kraus operators
Ck(ε)S(ε)−1/2. Thus, one can find εc such that ε ∈ (0, εc) implies that Φε ∈ E(d1, d2).
It then follows from lim

ε→0+
Φε = Φ that Φ ∈ E(d1, d2). QED

When d1 = 2, one can use the singular value decomposition (SVD) to show that
that the Kraus operators of CPT maps with Choi rank at most two can be written in
the form

A1 =
∑
j=1,2

αj|vj〉〈uj| A2 =
∑
j=1,2

√
1− α2

j |wj〉〈uj| (3)

where 0 ≤ αj ≤ 1, |uj〉 is pair of orthonormal vectors in C2, and |vj〉, |wj〉 are two

pairs of orthonormal vectors in Cd2 . This gives all CPT maps in E(2, d2). Although it
may seem artificial from a physical point of view to consider d1 6= d2, several reduction
results in quantum Shannon theory require consideration of maps with d1 6= d2.
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Problem 1. Characterize, classify and/or parameterize the closure E(d1, d2) of the
set of extreme points of CPT maps Φ : Md1 7→Md2 for d1 > 2 and d2 arbitrary.

Although this problem is of some interest in its own right, we will give additional
motivation in Section 5.4 where we observe that certain conjectures for CPT maps
with d1 = d2 can be reduced to case of the channels in the closure of extreme points
with d1 ≥ d2.

2 Convex decompositions of CPT maps or

A block matrix generalization of Horn’s lemma

(with K. Audenaert)

Since the set of CPT map Φ : Md1 7→ Md2 is convex, it can be written as a convex
combination of extreme maps, and one expects that d2

1(d
2
2 − 1) will suffice. For maps

on qubits, it was shown in [24] that if all maps in E(d1, d2) are permitted, then only
two are needed and they can be chosen so that the weights are even. This result
generalizes to any CPT map with qubit output, i.e., for Φ : Md 7→M2 one can always
write

Φ = 1
2
(Φ1 + Φ2) (4)

where Φ1 and Φ2 have Choi rank ≤ d. We conjecture that this result extends to
arbitrary CPT maps.

Conjecture 2. (Audenaert-Ruskai) Let Φ : Md1 7→Md2 be a CPT map. One can find
d2 CPT maps Φm with Choi rank at most d2 such that

Φ =

d2∑
m=1

1
d2

Φm. (5)

The adjoint or dual of a CPT map is a unital CP map and it is useful to restate
the conjecture in this form.

Conjecture 3. Let Φ : Md2 7→ Md1 be a CP map with Φ(I2) = I1. One can find d2

unital CP maps Φm with Choi rank at most d1 such that

Φ =

d2∑
m=1

1
d2

Φm. (6)

In this form, the conjecture can be viewed as a statement about block matrices,
and it is useful to restate it explicitly in that form.
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Conjecture 4. Let A be a d1d2 positive semi-definite matrix consisting of d2 × d2

blocks Ajk each of size d1×d1, with
∑

j Ajj = M . Then one can find d2 block matrices
Bm, each of rank at most d1, such that

∑
j Bjj = M , and

A =

d2∑
m=1

1
d2

Bm (7)

If Conjecture 4 holds, then Conjecture 3 (and hence Conjecture 2) follows immedi-
ately. One need only let A = Φ(|β〉〈β|) be the Choi matrix of Φ for which M = 1

d2
Id2 .

It would suffice to prove Conjecture 5 for the case M = Id2 . The general case then
follows by multiplying on the right and left by the matrix 1√

d2

√
M ⊗ Id2 . (May be

some subtleties if M is non-singular.)

When d1 = 1, Conjecture 4 is a consequence of Horn’s Lemma1 [12, 13] which
states that a necessary and sufficient condition for the existence of a positive semi-
definite matrix A with eigenvalues λk and diagonal elements akk is that λk majorizes
akk.

Corollary 2. Let A be a d × d positive semi-definite matrix with TrA = 1. Then
there are d normalized vectors xm such that

A =
d∑

m=1

1
d
xmx†m (8)

Proof: Note that any set of non-negative eigenvalues λk with
∑

k λk = 1 majorizes
the vector (1

d
, 1

d
, . . . , 1

d
). Therefore, by Horn’s lemma, one can find a unitary U and a

self-adjoint matrix B such that A = UB2U † and the diagonal elements of B2 are all
1
d
. (In fact, U,B can be chosen to have real elements.) Write U =

∑
k uke

†
k where uk

denotes the k-th column of U and ek the standards basis. Let xm =
√
d

∑
j ujbjm.

Then

A =
∑
jk

uj〈ejB
2ek〉u†k

=
∑
jk

∑
m

uj〈ejBem〉〈em, Bek〉u†k

=
∑
m

1
d
xmx†m (9)

1See Theorem 4.3.32 of [13]. Note that [12] is by Alfred Horn, but that [13] is co-authored by
Roger A. Horn.
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and, since the columns of a unitary matrix are orthonormal,

‖xm‖2 = d
∑
jk

u†jbjmbkmuk = d
∑
jk

bjmbkmu†juk

=
∑
jk

δjkbjmbkm = d(B2)mm = d1
d

= 1. QED (10)

This suggests that we restate the conjecture (7) using vectors of block matrices of
the form X†

m =
(
X†

1m X†
2m . . . X†

d2m

)
with each block d1 × d1.

Conjecture 5. Let A be a d1d2 positive semi-definite matrix consisting of d2 × d2

blocks Ajk each of size d1 × d1, with
∑

j Ajj = M . Then one can find d2 vectors Xm

composed of d2 blocks Xjm of size d1 × d1 such that

A =

d2∑
m=1

1
d2

XmX†
m, and (11)

∑
k

XkmX
†
km = M ∀ m (12)

There is no loss of generality in replacing Bm by XmX†
m with Xm of the above form.

If X is d1d2 × d1d2 with rank d1, then by the SVD it can be written as X = UDV †

with U, V unitary and D diagonal with djj = 0 for j > d. If D̃ retains only the

first d1 columns of D, then X̃ = UD̃ has the desired form and X̃X̃† = XX†. thus,
Conjecture 5 is clearly a generalization of Horn’s lemma to block matrices.

When d2 = 2, the argument in [24] (due to S. Szarek) is easily extended to give a
proof of Conjecture 4 . Then A > 0 is equivalent to

A =

(√
A11 0
0

√
A22

) (
I W
W † I

) (√
A11 0
0

√
A22

)
(13)

with W a contraction. Write the SVD of W as

W = U


cos θ1 0 0 . . . 0

0 cos θ2 0 . . . 0
... 0

. . .
...

0 0 . . . 0 cos θd

V †

= 1
2
U


eiθ1 0 0 . . . 0
0 eiθ2 0 . . . 0
... 0

. . .
...

0 0 . . . 0 eiθd

V † + 1
2
U


e−iθ1 0 0 . . . 0

0 e−iθ2 0 . . . 0
... 0

. . .
...

0 0 . . . 0 e−iθd

V †

= 1
2
(W1 +W2) (14)
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with W1 and W2 unitary. When W is a d1 × d1 unitary,

(
I W
W † I

)
has rank d1.

Therefore, substituting (14) into (13) shows that A is the midpoint of two matrices
with rank at most d1 and the same blocks on the diagonal as A.

This argument suggests that one might strengthen the conjecture to require that
each Bm have the same diagonal blocks as A. However, this does not appear to hold
in the limiting case d1 = 1 with d2 > 2. In the proof of Corollary 2, it is tempting to
replace B by C = BV with V unitary. However, in (10) we would obtain (C†C)mm

which, unlike CC† need not have diagonal elements 1
d
.

The original proof of Horn’s lemma used a complicated induction argument based
on the properties of augmenting a matrix by a row and column. Since we know
that (11) holds when d2 = 2 or d1 = 1, we have the starting points for a (probably
non-trivial) double induction argument. Although Audenaert has found extensive
numerical evidence for the validity of Conjectures 2-5, a proof seems to be elusive.

3 Depolarized Werner-Holevo channels

The Werner-Holevo channel W(ρ) = 1
d−1

(
(Tr ρ) I − ρT

)
has been extensively studied,

especially in connection with the conjectured mutliplicativity of the maximal output
p-norm, defined as νp(Φ) = supρ ‖Φ(ρ)‖p. For d = 3, the maximal output p-norm is
not multiplicative for p > 4.79. However, it is known that νp(W ⊗ (W) = [νp(W)]2

for 1 ≤ p ≤ 2. For larger d one obtains a counter-example to multiplicativity only
for correspondingly large p. In fact, it has been argued [11] that for d > 2p the WH
channel is multiplicative.

W maps any pure state |ψ〉〈ψ| to 1
d−1

E with E = I − |ψ〉〈ψ|. Therefore, when d
is large, W behaves much like the completely noisy map (although it is never EB). It
is natural to consider channels of the form

Φx = xI + (1− x)W (15)

and ask if they also satisfy the multiplicativity conjecture (23) for 1 ≤ p ≤ 2. Channels
of the form (15) were considered by Ritter [23] in a different context.

Problem 6. Show that the channel Φx = xI + (1− x)W satisfies the multiplicativity
property νp(Φx ⊗ (Φx) = [νp(Φx)]

2 for 1 ≤ p ≤ 2.

When d = 3 and x = 1
3
, the channel (15) becomes

Φ1/3(ρ) = 1
3

(
I + ρ− ρT ) (16)

which has many interesting properties. It seems to have been first considered by Fuchs,
Shor and Smolin, who published only an oblique remark at the end of [8]. They wrote
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it in a very different form, which is also given in [15]. Let |1〉, |2〉, |3〉 be an orthonormal
basis for C3 and define

|ψ0〉 = 3−1/2
(
|1〉+ |2〉+ |3〉

)
|ψ1〉 = 3−1/2

(
|1〉 − |2〉 − |3〉

)
|ψ2〉 = 3−1/2

(
|1〉 − |2〉+ |3〉

)
|ψ3〉 = 3−1/2

(
|1〉+ |2〉 − |3〉

)
.

Now let Ψ be the channel whose Kraus operators are
√

3
2
|ψk〉〈ψk| for k = 0, 1, 2, 3.

This channel has the following properties:

1. Ψ = Φ1/3 = 1
3
I + 2

3
W . Although this is not obvious, it is easily verified and

implies (16). Thus, Ψ maps every real density matrix to the maximally mixed
state.

2. Ψ is unital and the Holevo capacity satisfies

CHv(Φ) = log 3− Smin(Φ) (17)

but requires 6 (non-orthogonal) input states to achieve this capacity. It is
not hard to see that Smin(Φ) is achieved on inputs which are permutations of
(1,±i, 0)T .

3. Ψ is an extreme point of the EB channels which is neither CQ nor an extreme
point of the CPT maps [15].

A solution of Problem 6 in the case p = 2 was recently reported by Michalakis [21].

4 Random sub-unitary channels

The Kraus operators for the WH channels with d = 3 can be written as

Ak = 1
2
Xk

 0 1 0
−1 0 0
0 0 0

 k = 0, 1, 2 (18)

where X is the shift operator X|ej〉 = |ej+1〉. This suggests a natural generalization
to channels with Kraus operators

Ak = 1
2
Xk

u11 u12 0
u21 u22 0
0 0 0

 = 1
2
Xk

(
U 0
0 0

)
k = 0, 1, 2 (19)
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with ujk the elements of a 2 × 2 unitary U . The choice U =

(
0 1
1 0

)
does not give

a counterexample to (23), although the effect of a tensor product on a maximally
entangled state is the same as the WH channel. This is because changing −1 to +1
allows a “purer” optimal output for a single use of the channel; to be precise, for +1 the
input 1√

3
(1, 1, 1) yields an output with eigenvalues 2

3
, 1

6
, 1

6
as compared to eigenvalues

1
2
, 1

2
, 0 for −1.

By contrast, the standard generalization of the WH channel to d > 3 involves
(

d
2

)
choices of

(
0 1
−1 0

)
as the only non-zero block of a d × d matrix. It would seem

natural to study channels with d Kraus operators of the form

1
d−1

Xk

(
U 0
0 0

)
k = 0, 1, . . . d−1. (20)

where U is a d−1× d−1 unitary matrix. Such channels are generically extreme and
always in the closure E(3, 3). Limited attempts to find new counter-examples of this
type have found similar behavior to changing +1 to −1 does; they have outputs which
are “too pure” for a single use of the channel.

Nevertheless, channels with Kraus operators of the form (20) have interesting prop-
erties that makes them worth further study. Moreover, it is not necessary to use the
same U in every Kraus operator. One can choose

Ak = 1
d−1

Xk

(
Uk 0
0 0

)
k = 0, 1, . . . d−1. (21)

with Uk any set of unitaries in Md−1. With a few exceptions, channels whose Kraus
operators have the form (21) are extreme points of the CPT maps on M3, and are
always in E(3, 3).

The WH channel gives a counter-example to multiplicativity for large p because
maximally entangled states have outputs whose p-norms are relative maxima of
‖(W ⊗ W)(ρ)‖p, Nathanson [22] has shown analytically that for any p the output
of any maximally entangled state gives a critical point, but Shor has found numerical
evidence [28] that this is a relative maximum only for p ≥ 3. This suggests that one
look at other random sub-unitary channels.

Problem 7. Let Φ be a channel with Kraus operators of the form (21). Does the set
of relative maxima of ‖(Φ⊗Φ)(ρ)‖p always include outputs whose input is maximally
entangled? If not, for what p and under what circumstances do maximally entangled
inputs yield outputs which are relative maxima?

Moreover, despite the failure of Ruskai’s very limited attempt to find new counter-
examples of this type for d = 4, 5, more extensive numerical investigations, perhaps
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with different, randomly chosen, Uk, could be worthwhile. Further suggestions about
numerical searches are given in Section 5.2. Even a negative result could provide some
insight.

Problem 8. Search for new counterexamples to (23) with Φ be a channel with Kraus
operators of the form (21).

In addition to looking at the optimal output purity of these channels, one can also
ask about their coherent information and quantum capacity.

Problem 9. What are the properties of the coherent information of random sub-
unitary channels? When are they degradable? When is their coherent information
additive?

5 Maximal p-norm multiplicativity

5.1 Additivity and multiplicativity conjectures

One of the outstanding open problems in quantum information is the additivity of
minimal output entropy, i.e.,

Smin(Φ⊗ Ω) = Smin(Φ) + Smin(Ω) (22)

where Smin(Φ) = inf
γ
S[Φ(γ) where the infimum is taken over the set of density matrices

γ so that γ > 0 and Tr γ = 1. This conjecture has considerable importance because
Shor [27] has shown that it is globablly equivalent to the conjectured additivity of
Holevo capacity and several conjectures about entanglement of formation. Shirokov
[25, 26] has even shown that additivity in all finite dimensions would have implications
for certain infinite dimensional channels. Fukuda [9] and Wolf [10] have given some
additional reductions.

Amosov, Holevo and Werner [1] realized that (22) would follow if the following
conjecture holds for p ∈ (1, 1 + ε) with ε > 0.

νp(Φ⊗ Ω) = νp(Φ)νp(Ω) (23)

where νp(Φ) = inf
γ
‖Φ(γ)‖p. Although, Werner and Holevo [29] found a counter-example

to (23) for large p, it seems reasonable to conjecture that (23) holds for 1 ≤ p ≤ 2.

5.2 Finding counter-examples

It is surprising that no counter-example to (23) is known other than the WH channel
[29] and very small perturbations of it. Moreover, one has no counter-example for
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p < 4.79. Some authors [18] have conjectured that (23) holds for 1 ≤ p ≤ 2. If so, one
would expect to have a family of counter-examples for p > 2. More generally, if the
conjecture hold for 1 < p < pc, one would expect to find counter-examples for p > pc

arbitrarily close to to pc.

Problem 10. Find more counter-examples to (23). Do they suggest that the conjecture
holds for 1 ≤ p ≤ 2?

One strategy for finding new counter-examples, is to first search numerically for
additional counter-examples for very large p using Theorem 3 below. For any new
examples found, study the critical points numerically and determine the values of p
for which one ceases to have a counter-example and for which one ceases to even have
a relative maximum for entangled inputs. Perhaps this will give some insight into the
nature of counter-examples that will allow one to find some in the range 2 < p < 4.79.
The reason for starting with large p is that the algorithm for finding relative maxima
using Theorem 3 is faster and more robust for large p.

The following extension of Shor algorithm for finding relative minima of the mini-
mal ouput entropy (see Appendix of [6]) is due to C. King.

Theorem 3. (King-Shor) Let Ω be a CPT map and Ω̂ its adjoint with respect to the
Hilbert-Schmidt inner product. For fixed ρ = |ψ0〉〈ψ0|, let ψ1 be the eigenvector corre-

sponding to the largest eigenvalue of Ω̂
[
Ω(ρ)

]p−1
. Then ‖Ω(|ψ1〉〈ψ1|)‖p > ‖Ω(ψ0)‖p

Proof: By the max min principle,

〈ψ1Ω̂
[
Ω

(
|ψ0〉〈ψ0|

)]p−1
ψ〉 ≥ 〈ψ0Ω̂

[
Ω

(
|ψ0〉〈ψ0|

)]p−1
ψ0〉. (24)

Then Hölder’s inequality implies

Tr
[
Ω

(
|ψ0〉〈ψ0|

)]p ≤ Tr
[
Ω

(
|ψ1〉〈ψ1|

)][
Ω

(
|ψ0〉〈ψ0|

)]p−1

≤
[
Tr

[
Ω

(
|ψ1〉〈ψ1|

)]p
]1/p[

Tr
[
Ω

(
|ψ0〉〈ψ0|

)]p]1−1/p
(25)

which gives (
Tr

[
Ω

(
|ψ0〉〈ψ0|

)]p
)1/p

≤
(
Tr

[
Ω

(
|ψ1〉〈ψ1|

)]p
)1/p

(26)

or, equivalently,

‖Ω
(
|ψ0〉〈ψ0|

)
‖p ≤ ‖Ω

(
|ψ1〉〈ψ1|

)
‖p. QED (27)

Using this result repeatedly with ψk+1 the eigenvector corresponding to the largest

eigenvalue of Ω̂
[
Ω(|ψk〉〈ψk|)

]p−1
, gives a sequence converging to a relative maximum

of ‖Φ(ρ)‖p.

Remarks on critical points.
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5.3 Specific multiplicativity problems

Proving multiplicativity of the depolarized WH channel was already mentioned as
an open problem in Section 3. Recently, Michalakis reported [21] a proof for p =
2. In view of the fact that some depolarized WH channels do not satisfy the very
unappealing conditions based on positive entries used in [18, 16], this suggests that
one revisit the general case of p = 2.

Problem 11. Prove (23) for p = 2 and arbitrary CPT maps.

In [22], a class of channels is defined using mutually unbiased bases, with each
basis defining an“axis”. These channels can be described by “multipliers” in a manner
similar to unital qubits channels, and when all multipliers are non-negative they seem
very similar. However, even for a single use of a channel some questions are open. See
Conjecture 9 of [22]. If this conjecture is true, then additivity and multiplicativity can
be reduced to the case of “maximally squashed” channels which are generalizations of
the two-Pauli qubit channel.

Problem 12. Find a proof of multiplicativity for the two-Pauli qubit channel, which
does not use unitary equivalence to channels with negative multipliers.

5.4 Reduction to extreme points

Although the set of CPT maps Φ : MdA
7→ MdB

is convex, one can not use convexity
to reduce additivity or multiplicativity to that of the extreme channels. One can,
however, use the notion of complementary channels to obtain a kind of global reduction
to extreme channels.

The notion of complementary channel was first used in quantum information theory
in a paper of Devetak and Shor [7] and then studied in detail in [14, 17]. This channel
is equivalent to one obtained much earlier in a more general context by Arveson [2]
by his commutant lifting theorem.

If Φ : MdA
7→ MdB

, its complement is a CPT map ΦC : MdA
7→ MdE

with Choi
rank dB. Whenever dB ≤ dA, the complement belongs to the class of generalized
extreme points. Therefore, by the results in [14, 17] if we can prove additivity or
multiplicativity for all maps in E(d1, d2), it will hold for all CPT maps with dB ≤ dA.
Moreover, Shor’s channel extensions [27] used to establish the equivalence of various
additivity results increase only dA. Hence, additivity for tensor products of all extreme
maps with dA ≥ dB would imply it for all maps with dA = dB.

Problem 13. Identify new classes of extreme CPT maps for which multiplicativity
can be proved.

Problem 14. Prove (23) for random sub-unitary channels, at least for p = 2.
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5.5 Coherent information and degradability

In the note [5] on degradability, the following question was raised.

Problem 15. When are pairs of channels M,N mutually degradable in the sense
that there exist channels X ,Y such that

X ◦M = NC Y ◦ N = MC . (28)

At present, the only examples known have M = I which is universal in the sense
thatN is arbitrary. This works because I is universally degradable and its complement
Tr is a universal degrador. Can other examples be found?

6 Local invariants for N-representability

In the 1960’s a variant of the quantum marginal problem known as N -representability
attracted considerable interest. The question is to find necessary and sufficient con-
ditions on a p-particle reduced density matrix ρ1,2,...t in order that there exists an
anti-symmetric (or symmetric for bosons) N -particle density matrix ρ = ρ1,2...N such
that Trt+1,t+2,...Nρ1,2...N = ρ1,2,...t. The pure N -representability problem, for which
one requires that the preimage ρ1,2...N = |Ψ〉〈Ψ| come from an anti-symmetric (or
symmetric) pure state |Ψ〉 is also of interest.

A full solution was found only to the mixed state problem for the one-particle
density matrix, for which it is necessary and sufficient that the eigenvalues of ρ1 are
≤ 1

N
when Tr ρ1 = 1. Other results were obtained for a few very special situations,

and some reformulations were found. For the two-particle reduced density matrix, a
collection of necessary inequalities were obtained, but little else was known. For over
30 years, there was very little progress until two recent breakthroughs. Klyachko [19]
solved the pure state 1-representability problems. Liu, Christandl and Verstraete [20]
showed that some version are QMA complete.

Although many open questions remain, we consider only one which may be amenable
to quantum information theorists. As Coleman pointed out, N -representability must
be independent of the 1-particle basis used to write the density matrix, i.e., the solution
can be expressed in terms of what one might call local invariants. These are param-
eters which are invariant under transformations of the form U ⊗ U ⊗ . . .⊗ U = U⊗p.
For the 1-matrix, these are just unitary invariants, which are known to be the eigen-
values. For p = 2 the set of local invariants includes the eigenvalues, but must contain
other parameters as well. Surprisingly, no complete set of local invariants in which
N -representability conditions for the 2-matrix can be expressed is known.

Problem 16. Find a minimal complete set of local invariants for an anti-symmetric
(or symmetric) 2-particle density matrix.
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