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We will prove some new Opial dynamic inequalities involving higher order derivatives on time
scales. The results will be proved by making use of Hölder’s inequality, a simple consequence of
Keller’s chain rule and Taylormonomials on time scales. Some continuous and discrete inequalities
will be derived from our results as special cases.

1. Introduction

In the past decade a number of Opial dynamic inequalities have been established by some
authors which are motivated by some applications; we refer to the papers [1–3]. The general
idea is to prove a result for a dynamic inequality where the domain of the unknown function
is a so-called time scale T, which may be an arbitrary closed subset of the real numbers R,
to avoid proving results twice, once on a continuous time scale which leads to a differential
inequality and once again on a discrete time scale which leads to a difference inequality. The
three most popular examples of calculus on time scales are differential calculus, difference
calculus, and quantum calculus (see [4]), that is, when T = R, T = N and T = qN0 = {qt :
t ∈ N0} where q > 1. A cover story article in New Scientist [5] discusses several possible
applications of time scales. In this paper, we will assume that supT = ∞ and define the time
scale interval [a, b]

T
by [a, b]

T
:= [a, b] ∩ T. Since the continuous and discrete inequalities

involving higher order derivatives are important in the analysis of qualitative properties of
solutions of differential and difference equations [6–8], we also believe that the dynamic
inequalities involving higher order derivatives on time scales will play the same effective
act in the analysis of qualitative properties of solutions of dynamic equations [2, 3, 9]. To the
best of the author’s knowledge there are few inequalities involving higher order derivatives
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established in the literature [10–13]. In the following, we recall some of these results that
serve and motivate the contents of this paper.

In [13] the authors proved that if y : [a, b]
T

→ R is delta differentiable n times with
yΔi(a) = 0, for i = 0, 1, . . . , n − 1, and h is a positive rd-continuous function on [a, b]

T
, then

∫b

a

h(t)
∣

∣y(t)
∣

∣

p
∣

∣

∣yΔn(t)
∣

∣

∣

q
Δt ≤

(

q

p + q

)

(b − a)np
∫b

a

h(t)
∣

∣

∣yΔn(t)
∣

∣

∣

p+q
Δt. (1.1)

In [10] it is proved that if y : [a, b]
T
→ R is delta differentiable n times (n odd)with yΔi(a) =

0, for i = 0, 1, . . . , n − 1, then

∫b

a

∣

∣y(t)
∣

∣Δt ≤

⎛

⎝

∫b

a

(

∫ t

a

h
p

n−1(t, σ(s))Δs

)q/p

Δt

⎞

⎠

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

q
Δt, (1.2)

where p, q > 1 and satisfy 1/p + 1/q = 1. Also in [10] it is proved that if y : [a, b]
T

→ R is
delta differentiable n times with yΔi(a) = 0, for i = 0, 1, . . . , n − 1, and |yΔn(t)| is increasing,
then

∫b

a

∣

∣y(t)
∣

∣

∣

∣

∣yΔn(t)
∣

∣

∣Δt ≤ (b − a)1/q

⎛

⎝

∫b

a

(

∫ t

a

h
p

n−1(t, σ(s))Δs

)1/p

Δt

⎞

⎠

(

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

2q
Δt

)1/q

,

(1.3)

where p, q > 1 and satisfy 1/p+ 1/q = 1. As a generalization of (1.3) it is proved in [10] that if
y : [a, b]

T
→ R is delta differentiable n times with yΔm+i(a) = 0, for i = 0, 1, . . . , n −m − 1, and

|yΔn(t)| is increasing, then

∫b

a

∣

∣

∣yΔm(t)
∣

∣

∣

∣

∣

∣yΔn(t)
∣

∣

∣Δt

≤ (b − a)1/q

⎛

⎝

∫b

a

(

∫ t

a

h
p

n−m−1(t, σ(s))Δs

)1/p

Δt

⎞

⎠

(

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

2q
Δt

)1/q

,

(1.4)

where p, q > 1 and satisfy 1/p+ 1/q = 1. In [12] the authors proved that if r and s are positive
rd-continuous functions on [a, b]

T
such that s is nonincreasing, and y : [a, b]

T
→ R is delta

differentiable n times with yΔi(a) = 0, for i = 0, 1, . . . , n − 1, then

∫b

a

s(x)
∣

∣y(t)
∣

∣

p
∣

∣

∣yΔn(t)
∣

∣

∣Δt

≤
1

p + 1
(b − a)n−1

(

∫b

a

r1−γ(t)Δt

)(1+p)/γ(∫b

a

r(t)(s(t))p/(p+1)
∣

∣

∣yΔn(t)
∣

∣

∣

ν
Δt

)(1+p)/ν

,

(1.5)

where p > 0 and 1/γ + 1/ν = 1. For contributions of different types of dynamic inequalities
on time scales, we refer the reader to the papers [1, 2, 14–17] and the references cited therein.
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Following this trend, to develop the qualitative theory of dynamic inequalities on time
scales, wewill prove some new inequalities of Opial’s type involving higher order derivatives
by making use of the Hölder inequality (see, [18, Theorem 6.13]):

∫h

a

∣

∣f(t)g(t)
∣

∣Δt ≤

[

∫h

a

∣

∣f(t)
∣

∣

γ
Δt

]1/γ[∫h

a

∣

∣g(t)
∣

∣

ν
Δt

]1/ν

, (1.6)

where a, h ∈ T and f ; g ∈ Crd(I,R), γ > 1 and 1/ν + 1/γ = 1, the formula

(xγ(t))Δ = γ

∫1

0

[hxσ + (1 − h)x]γ−1dhxΔ(t), (1.7)

which is a simple consequence of Keller’s chain rule [18, Theorem 1.90], and the Taylor
monomials on time scales. The results in this paper extend and improve the pervious results
in the sense that our results contain two different weighted functions and do not require
the monotonicity condition on |yΔn(t)| (the results in [10] required that |yΔn(t)| should be
increasing). Some results on continuous and discrete spaces, which lead to differential and
difference inequalities, will be derived from our results as special cases. This paper is a
continuation of the papers [3, 10–13, 16].

2. Main Results

In this section, we will prove the main results. For completeness, we recall the following
concepts related to the notion of time scales. A time scale T is an arbitrary nonempty closed
subset of the real numbers R. We assume throughout that T has the topology that it inherits
from the standard topology on the real numbers R. The forward jump operator and the
backward jump operator are defined by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, (2.1)

where sup ∅ = infT. A point t ∈ T is said to be left-dense if ρ(t) = t and t > infT, is right-
dense if σ(t) = t, is left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The three most
popular examples of calculus on time scales are differential calculus, difference calculus, and
quantum calculus (see [4]), that is, when T = R,T = N and T = qN0 = {qt : t ∈ N0} where
q > 1. For more details of time scale analysis we refer the reader to the two books by Bohner
and Peterson [18, 19]which summarize and organize much of the time scale calculus.

A function g : T → R is said to be right-dense continuous (rd-continuous) provided
g is continuous at right-dense points and at left-dense points in T; left-hand limits exist and
are finite. The set of all such rd-continuous functions is denoted by Crd(T).

The graininess function µ for a time scale T is defined by µ(t) := σ(t) − t, and for any
function f : T → R the notation fσ(t) denotes f(σ(t)). We will assume that supT = ∞ and
define the time scale interval [a, b]

T
by [a, b]

T
:= [a, b] ∩ T. Fix t ∈ T and let y : T → R.
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Define yΔ(t) to be the number (if it exists) with the property that given any ǫ > 0 there is a
neighborhood U of twith

∣

∣

∣

[

y(σ(t)) − y(s)
]

− yΔ(t)[σ(t) − s]
∣

∣

∣ ≤ ǫ|σ(t) − s|, ∀s ∈ U. (2.2)

In this case, we say yΔ(t) is the (delta) derivative of y at t and that y is (delta) differentiable
at t. We will frequently use the following results which are due to Hilger [20]. Assume that
y : T → R and let t ∈ T.

(i) If y is differentiable at t, then y is continuous at t.

(ii) If y is continuous at t and t is right-scattered, then y is differentiable at t with

yΔ(t) =
y(σ(t)) − y(t)

µ(t)
. (2.3)

(iii) If y is differentiable and t is right-dense, then

yΔ(t) = lim
s→ t

y(t) − y(s)

t − s
. (2.4)

(iv) If y is differentiable at t, then y(σ(t)) = y(t) + µ(t)yΔ(t).

We will make use of the following product and quotient rules for the derivative of
the product fg and the quotient f/g (where ggσ /= 0, here gσ = g ◦ σ) of two differentiable
functions f and g:

(

fg
)Δ

= fΔg + fσgΔ = fgΔ + fΔgσ ,

(

f

g

)Δ

=
fΔg − fgΔ

ggσ
. (2.5)

In this paper, we will refer to the (delta) integral which we can define as follows: if GΔ(t) =
g(t), then the Cauchy (delta) integral of g is defined by

∫ t

a

g(s)Δs := G(t) −G(a). (2.6)

It can be shown (see [18]) that if g ∈ Crd(T), then the Cauchy integralG(t) :=
∫ t

t0
g(s)Δs exists,

t0 ∈ T, and satisfies GΔ(t) = g(t), t ∈ T. An infinite integral is defined as

∫∞

a

f(t)Δt = lim
b→∞

∫b

a

f(t)Δt, (2.7)

and the integration on discrete time scales is defined by

∫b

a

f(t)Δt =
∑

t∈[a,b)

µ(t)f(t). (2.8)
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Now, we define the Taylor monomials or generalized polynomials as defined originally
by Agarwal and Bohner [21]. These types of monomials are important because they are
intimately related to Cauchy functions for certain dynamic equations which are important
in variations of constants formulas. The Taylor monomials hk : T × T → R, k ∈ N0 = N ∪ {0}
are defined recursively as follows. The function h0 is defined by

h0(t, s) = 1, ∀s, t ∈ T, (2.9)

and given hk for k ∈ N0, the function hk+1 is defined by

hk+1(t, s) =

∫ t

s

hk(τ, s)Δτ, ∀s, t ∈ T. (2.10)

If we let hΔ
k
(t, s) denote for each fixed s ∈ T, the derivative of h(t, s)with respect to t, then

hΔ
k (t, s) = hk−1(t, s), k ∈ N, t ∈ T, (2.11)

for each fixed s ∈ T. The above definition obviously implies

h1(t, s) = t − s, ∀s, t ∈ T. (2.12)

In the following, we give some formulas of hk(t, s) as determined in [18]. In the case when
T = R, then σ(t) = t, µ(t) = 0, yΔ(t) = y′(t), and

hk(t, s) =
(t − s)k

k!
, ∀s, t ∈ R. (2.13)

In the case when T = N, we see that σ(t) = t + 1, µ(t) = 1, yΔ(t) = Δy(t) = y(t + 1) − y(t), and

hk(n, s) :=
(n − s)(k)

k!
, k = 0, 1, 2, . . . , t > s, (2.14)

where t(k) = t(t − 1) · · · (t − k + 1) is the so-called falling function (cf. [22]). When T = {t : t =
qn, n ∈ N, q > 1}, we have σ(t) = qt, µ(t) = (q − 1)t, yΔ(t) = Δqy(t) = (y(q t) − y(t))/(q − 1)t,
and

hk(t, s) =
k−1
∏

m=0

t − qms
∑m

j=0 q
j
, ∀s, t ∈ T. (2.15)

If T = hN, h > 0,we see that σ(t) = t + h, µ(t) = h, yΔ(t) = Δhy(t) = (y(t + h) − y(t))/h, and

hk(t, s) =

∏k−1
i=0 (t − ih − s)

k!
, ∀s, t ∈ T, t > s. (2.16)
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In general for t ≥ s, we have that hk(t, s) ≥ 0, and

hk(t, s) ≤
(t − s)k

k!
, ∀t > s, k ∈ N0. (2.17)

We also consider the Taylor monomials gk : T × T → R, k ∈ N0 = N ∪ {0}, which are defined
recursively as follows. The function g0 is defined by

g0(t, s) = 1, ∀s, t ∈ T, (2.18)

and given gk for k ∈ N0, the function gk+1 is defined by

gk+1(t, s) =

∫ t

s

gk(σ(τ), s)Δτ, ∀s, t ∈ T. (2.19)

If we let gΔ
k
(t, s) denote for each fixed s ∈ T, the derivative of g(t, s) with respect to t, then

gΔ
k (t, s) = gk−1(σ(t), s), k ∈ N, t ∈ T, (2.20)

for each fixed s ∈ T. By Theorem 1.112 in [18], we see that

hk(t, s) = (−1)kgk(s, t). (2.21)

We denote by C
(n)

rd
(T) the space of all functions f ∈ Crd(T) such that fΔi ∈ Crd(T) for i =

0, 1, 2, . . . , n for n ∈ N. For the function f : T → R, we consider the second derivative fΔ2

provided fΔ is delta differentiable on T with derivative fΔ2 = (fΔ)Δ. Similarly, we define the
nth order derivative fΔn = (fΔn−1)Δ. Now, we are ready to state the Taylor formula that we
will need to prove the main results in this paper. This formula as proved in [23] states the

following. Assuming that f ∈ C
(n)

rd
(T) and s ∈ T, then

f(t) =
n−1
∑

k=0

fΔk(s)hk(t, s) +

∫ t

s

hn−1(t, σ(τ))f
Δn(τ)Δτ. (2.22)

As a special case if m < n, then

fΔm(t) =
n−m−1
∑

k=0

fΔk+m(s)hk(t, s) +

∫ t

s

hn−m−1(t, σ(τ))f
Δn(τ)Δτ. (2.23)

Now, we are ready to state and prove our main results in this paper. Throughout the
rest of the paper, we will assume that all the integrals that will appear in the inequalities exist
and are finite.
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Theorem 2.1. Letting T be a time scale with a, b ∈ T and y ∈ C
(n)

rd
([a, b] ∩ T). If yΔi(a) = 0, for

i = 0, 1, . . . , n − 1, then

∫b

a

∣

∣y(t)
∣

∣

∣

∣

∣yΔn(t)
∣

∣

∣Δt ≤

√

1

2

(

∫b

a

(

∫ t

a

|hn−1(t, σ(s))|
2Δs

)

Δt

)1/2 ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

2
Δt. (2.24)

Proof. From the Taylor formula (2.22), since yΔi(a) = 0, for i = 0, 1, . . . , n − 1, we have

y(t) :=

∫ t

a

hn−1(t, σ(s))y
Δn(s)Δs. (2.25)

This implies that

∣

∣

∣yΔn(t)
∣

∣

∣

∣

∣y(t)
∣

∣ ≤
∣

∣

∣yΔn(t)
∣

∣

∣

∫ t

a

|hn−1(t, σ(s))|
∣

∣

∣yΔn(s)
∣

∣

∣Δs. (2.26)

Applying the Hölder inequality (1.6) with γ = ν = 2, we have

∣

∣

∣yΔn(t)
∣

∣

∣

∣

∣y(t)
∣

∣ ≤
∣

∣

∣yΔn(t)
∣

∣

∣

(

∫ t

a

|hn−1(t, σ(s))|
2Δs

)1/2(∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣

2
Δs

)1/2

. (2.27)

Then

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

∣

∣y(t)
∣

∣Δt ≤

∫b

a

(

∫ t

a

|hn−1(t, σ(s))|
2Δs

)1/2
∣

∣

∣yΔn(t)
∣

∣

∣

(

∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣

2
Δs

)1/2

Δt. (2.28)

Define z(t) :=
∫ t

a
|yΔn(s)|

2
Δs. This implies that z(a) = 0 and |yΔn(t)|

2
= zΔ(t). From this and

(2.28), we have

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

∣

∣y(t)
∣

∣Δt ≤

∫b

a

(

∫ t

a

|hn−1(t, σ(s))|
2Δs

)1/2
(

z(t)zΔ(t)
)1/2

Δt. (2.29)

Applying the Hölder inequality again γ = ν = 2, we obtain

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

∣

∣y(t)
∣

∣Δt ≤

(

∫b

a

(

∫ t

a

|hn−1(t, σ(s))|
2Δs

)

Δt

)1/2(∫b

a

z(t)zΔ(t)Δt

)1/2

. (2.30)

From (1.7), we have (note that z(t) > 0 and zΔ(t) > 0) that

(

z2(t)
)Δ

= 2 zΔ(t)

∫1

0

[hzσ + (1 − h)z]dh ≥ 2zΔ(t)z(t). (2.31)
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Then

∫b

a

z(t)zΔ(t)Δt ≤
1

2

∫b

a

(

z2(t)
)Δ

Δt =
1

2
z2(b), (2.32)

where z(a) = 0. Substituting (2.32) into (2.30), we have

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

∣

∣y(t)
∣

∣Δt ≤

√

1

2

(

∫b

a

(

∫ t

a

|hn−1(t, σ(s))|
2Δs

)

Δt

)1/2

z(b)

=

√

1

2

(

∫b

a

(

∫ t

a

|hn−1(t, σ(s))|
2Δs

)

Δt

)1/2 ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

2
Δt,

(2.33)

which is the desired inequality (2.24). The proof is complete.

Remark 2.2. Let 0 ≤ k < n, but fixed, and let x(t) ∈ C
(n−k)

rd
([a, b] ∩ T) be such that x(Δi)(a) = 0,

0 ≤ i ≤ n − k − 1. Then from (2.24) it follows that

∫b

a

|x(t)|
∣

∣

∣xΔn−k(t)
∣

∣

∣Δt ≤

√

1

2

(

∫b

a

(

∫ t

a

|hn−k−1(t, σ(s))|
2Δs

)

Δt

)1/2 ∫b

a

∣

∣

∣xΔn−k(t)
∣

∣

∣

2
Δt. (2.34)

Thus for x = yΔk , where y ∈ C
(n−k)

rd
[a, b], y(Δi) = 0, k ≤ i ≤ n − 1; then we have the following

result.

Corollary 2.3. Let T be a time scale with a,b ∈ T and y ∈ C
(n)

rd
([a, b] ∩ T). If y(Δi)(a) = 0,

k ≤ i ≤ n − 1, then

∫b

a

∣

∣

∣yΔk(t)
∣

∣

∣

∣

∣

∣yΔn(t)
∣

∣

∣Δt ≤

√

1

2

(

∫b

a

(

∫ t

a

|hn−k−1(t, σ(s))|
2Δs

)

Δt

)1/2 ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

2
Δt. (2.35)

Note that Theorem 2.1 can be extended to a general inequality with two different
constants p and q that satisfy 1/p + 1/q = 1, to obtain the following result.

Theorem 2.4. Letting T be a time scale with a, b ∈ T and y ∈ C
(n)

rd
([a, b] ∩ T). If yΔi(a) = 0, for

i = 0, 1, . . . , n − 1, then

∫b

a

∣

∣y(t)
∣

∣

∣

∣

∣yΔn(t)
∣

∣

∣Δt ≤

(

1

2

)1/q
(

∫b

a

(

∫ t

a

|hn−1(t, σ(s))|
pΔs

)

Δt

)1/p ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

q
Δt. (2.36)
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Theorem 2.5. Let T be a time scale with a, b ∈ T and let l,m be positive real numbers such that

l +m > 1, and y ∈ C
(n)

rd
([a, b] ∩ T). If yΔi(a) = 0, for i = 0, 1, . . . , n − 1; then

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤

(

m

l +m

)m/(l+m)
(

∫b

a

H(l+m−1)(t, s)Δt

)l/(l+m) ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

l+m
Δt,

(2.37)

where

H(t, s) :=

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs. (2.38)

Proof. From the Taylor formula (2.22) and since yΔi(a) = 0, for i = 0, 1, . . . , n − 1, we have

∣

∣y(t)
∣

∣ ≤

∫ t

a

hn−1(t, σ(s))
∣

∣

∣yΔn(s)
∣

∣

∣Δs. (2.39)

Applying the Hölder inequality with γ = l +m and ν = (l +m)/(l +m − 1), we have

∣

∣y(t)
∣

∣ ≤

(

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs

)(l+m−1)/(l+m)(∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣

l+m
Δs

)1/(l+m)

. (2.40)

This implies that

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m

≤
∣

∣

∣yΔn(t)
∣

∣

∣

m
(

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs

)l((l+m−1)/(l+m))(∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣

l+m
Δs

)l/(l+m)

.

(2.41)

Then

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

m∣
∣y(t)

∣

∣

l
Δt

≤

∫b

a

(

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs

)l((l+m−1)/(l+m))
∣

∣

∣yΔn(t)
∣

∣

∣

m
(

∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣

l+m
Δs

)l/(l+m)

Δt.

(2.42)

Define z(t) :=
∫ t

a
|yΔn(s)|

l+m
Δs. This implies that z(a) = 0, and

∣

∣yΔn(t)
∣

∣

m
=
(

zΔ(t)
)m/(l+m)

> 0. (2.43)
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From this and (2.42), we have

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt

≤

∫b

a

(

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs

)l((l+m−1)/(l+m))
(

zΔ(t)
)m/(l+m)

(z(t))l/(l+m)Δt.

(2.44)

Applying the Hölder inequality again γ = (l +m)/l and ν = (l +m)/m, we have

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt

≤

⎛

⎝

∫b

a

(

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs

)l((l+m−1)/(l+m))((l+m)/l)

Δt

⎞

⎠

l/(l+m)

×

(

∫b

a

zΔ(t)(z(t))(l/m)Δt

)m/(m+l)

.

(2.45)

From (1.7), we have (note that z(t) and zΔ(t) > 0; see also, page 116 [17]) that

(

z(l+m)/m(t)
)Δ

≥
l +m

m

∫1

0

[hzσ + (1 − h)z]((l+m)/m)−1zΔ(t)

≥
l +m

m
(z(t))(l/m)zΔ(t).

(2.46)

Then

∫b

a

z(l/m)(t)zΔ(t)Δt ≤
m

l +m

∫b

a

(

z(l+m)/m(t)
)Δ

Δt =
m

l +m
z(l+m)/m(b), (2.47)
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where z(a) = 0. Substituting (2.47) into (2.45), we have

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt

≤

(

m

l+m

)m/(l+m)
⎛

⎝

∫b

a

(

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs

)l((l+m−1)/(l+m))((l+m)/l)

Δt

⎞

⎠

l/(l+m)

z(b)

=

(

m

l +m

)m/(l+m)
⎛

⎝

∫b

a

(

∫ t

a

(hn−1(t, σ(s)))
(l+m)/(l+m−1)Δs

)(l+m−1)

Δt

⎞

⎠

l/(l+m)

×

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

l+m
Δt,

(2.48)

which is the desired inequality (2.37). The proof is complete.

Following Remark 2.2, we can obtain the following result.

Corollary 2.6. Let T be a time scale with a, b ∈ T and let l,m be positive real numbers such that

l +m > 1 and y ∈ C
(n)

rd
([a, b] ∩ T). If y(Δi)(a) = 0, k ≤ i ≤ n − 1; then

∫b

a

∣

∣

∣yΔk(t)
∣

∣

∣

l∣
∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤

(

m

l +m

)m/(l+m)
(

∫b

a

H(l+m−1)(t, s)Δt

)l/(l+m) ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

l+m
Δt,

(2.49)

where

H(t, s) :=

∫ t

a

(hn−k−1(t, σ(s)))
(l+m)/(l+m−1)Δs. (2.50)

Note that Theorem 2.5 cannot be applied when l +m = 1. In the following theorem we prove
a new inequality which can be applied in this case.

Theorem 2.7. Let T be a time scale with a, b ∈ T and let l, m be positive real numbers such that

l +m = 1 and y ∈ C
(n)

rd
([a, b] ∩ T). If yΔi(a) = 0, for i = 0, 1, . . . , n − 1, then

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤ mm

(

∫b

a

hn−1(t, a)Δt

)l ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣Δt. (2.51)
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Proof. Using the fact that |hn(t, s)| is increasing with respect to its first component for t ≥

σ(s) > a, we have from the Taylor formula (2.22) and yΔi(a) = 0, for i = 0, 1, . . . , n − 1, that

∣

∣y(t)
∣

∣ ≤ hn−1(t, a)

∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣Δs. (2.52)

This implies that

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
≤ (hn−1(t, a))

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
(

∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣Δs

)l

. (2.53)

Now applying the Hölder inequality (1.6)with γ = 1/l and ν = 1/m, we obtain

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤

(

∫b

a

hn−1(t, a)Δt

)l
⎛

⎝

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

(

∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣Δs

)l/m

Δt

⎞

⎠

m

. (2.54)

Let z(t) =
∫ t

a
|yΔn(s)|Δs. Then z(a) = 0 and zΔ(t) = |yΔn(t)| so that

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

(

∫ t

a

∣

∣

∣yΔn(s)
∣

∣

∣Δs

)l/m

Δt =

∫b

a

zΔ(t)(z(t))l/mΔt, (2.55)

and hence

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤

(

∫b

a

hn−1(t, a)Δt

)l(∫b

a

zΔ(t)(z(t))l/mΔt

)m

. (2.56)

As in the proof of Theorem 2.5, we have that

∫b

a

zΔ(t)(z(t))l/mΔt ≤

∫b

a

zl/m(t)zΔ(t)Δt ≤ m

∫b

a

(

z(l+m)/m(t)
)Δ

Δt

= mz1/m(b) = m

(

∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣Δt

)1/m

.

(2.57)

Substituting into (2.56), we have

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤ mm

(

∫b

a

hn−1(t, a)Δt

)l(∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣Δt

)

, (2.58)

which is the desired inequality (2.51). The proof is complete.

Following Remark 2.2, we can obtain the following result.
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Corollary 2.8. Let T be a time scale with a, b ∈ T and let l, m be positive real numbers such that

l +m = 1, and y ∈ C
(n)

rd
([a, b] ∩ T). If y(Δi)(a) = 0, k ≤ i ≤ n − 1, then

∫b

a

∣

∣

∣yΔk(t)
∣

∣

∣

l∣
∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤ mm

(

∫b

a

|hn−k−1(t, a)|Δt

)l(∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣Δt

)

. (2.59)

In the following, we will prove some inequalities with two different weighted func-
tions.

Theorem 2.9. Let T be a time scale with a, b ∈ T and let l, m, r be positive real numbers such that
l + m > 1 and r > 1. Further, let p(t) and q(t) be positive rd-continuous functions defined on

[a, b] ∩ T and y ∈ C
(n)

rd
([a, b] ∩ T). If yΔi(a) = 0, for i = 0, 1, . . . , n − 1, then

∫b

a

q(t)
∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤ Λ1

(

l,m, r, p, q
)

(

∫b

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs

)(l+m)/r

, (2.60)

where

Λ1

(

l,m, p, q, r
)

:=

(

m

l +m

)m/r
(

∫b

a

qr/(r−m)(t)p−m/(r−m)(t)(P(t))l((r−1)/(r−m))Δt

)(r−m)/r

,

P(t) :=

∫ t

a

p−1/(r−1)(s)(hn−1(t, σ(s)))
r/(r−1)Δs.

(2.61)

Proof. From the Taylor formula (2.22), we see that

∣

∣y(t)
∣

∣ ≤

∫ t

a

p−1/r(s)(hn−1(t, σ(s)))p
l/r(s)

∣

∣

∣yΔn(s)
∣

∣

∣Δs. (2.62)

Applying the Hölder inequality on the right hand side with r and r/r − 1, we have

∣

∣y(t)
∣

∣ ≤

∫ t

a

p−1/r(s)hn−1(t, σ(s))p
l/r(s)

∣

∣

∣yΔn(s)
∣

∣

∣Δs

≤

(

∫ t

a

p−1/(r−1)(s)(hn−1(t, σ(s)))
r/(r−1)Δs

)(r−1)/r(∫ t

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs

)1/r

.

(2.63)

This implies that

q(t)
∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
≤ q(t)P l((r−1)/r)(t)

∣

∣

∣yΔn(t)
∣

∣

∣

m
(

∫ t

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs

)l/r

. (2.64)
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Integrating from a to b, we have

∫b

a

q(t)
∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt

≤

∫b

a

q(t)P l((r−1)/r)(t)
∣

∣

∣yΔn(t)
∣

∣

∣

m
(

∫ t

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs

)l/r

Δt.

(2.65)

Let

z(t) :=

∫ t

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs. (2.66)

Then z(a) = 0, zΔ(t) = p(t)|yΔn(t)|
r
and |yΔn(t)|

m
= (zΔ(t))m/rp−m/r(t). This implies that

∫b

a

q(t)
∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt

≤

∫b

a

q(t)P l((r−1)/r)(t)p−m/r(t)
(

zΔ(t)
)m/r

(z(t))l/rΔt.

(2.67)

Applying the Hölder inequality (1.6) with indices r/m and r/r −m, we obtain

∫b

a

q(t)P l((r−1)/r)(t)p−m/r(t)
(

zΔ(t)
)m/r

(z(t))l/rΔt

≤

(

∫b

a

(

zΔ(t)
)

(z(t))l/mΔt

)m/r(∫b

a

qr/(r−m)(t)P l((r−1)/(r−m))(t)p−m/(r−m)(t)Δt

)(r−m)/r

.

(2.68)

Substituting into (2.67), we have

∫b

a

q(t)
∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt

≤

(

∫b

a

qr/(r−m)(t)P l((r−1)/(r−m))(t)p−m/(r−m)(t)Δt

)(r−m)/r(∫b

a

(

zΔ(t)
)

(z(t))l/mΔt

)m/r

.

(2.69)
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As in the proof of Theorem 2.5, we have

(

∫b

a

zΔ(t)(z(t))l/mΔt

)m/r

≤

(

m

l +m

∫b

a

(

z(l+m)/m(t)
)Δ

Δt

)m/r

=

(

m

l +m

)m/r

(z(b))(l+m)/r =

(

m

l +m

)m/r
(

∫b

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs

)(l+m)/r

.

(2.70)

This implies that

∫b

a

q(t)
∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤ Λ1

(

l,m, p, q, r
)

(

∫b

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs

)(l+m)/r

, (2.71)

which is the desired inequality (2.60) where Λ1(l,m, p, q, r) is defined as in (2.61). The proof
is complete.

Following Remark 2.2, we can obtain the following result.

Theorem 2.10. Let T be a time scale with a, b ∈ T and let l, m be positive real numbers such that
l + m > 1 and r > 1. Further, let p(t) and q(t) be positive rd-continuous functions defined on

[a, b] ∩ T and y ∈ C
(n)

rd
([a, b] ∩ T). If y(Δi)(a) = 0, k ≤ i ≤ n − 1, then

∫b

a

q(t)
∣

∣

∣yΔk(t)
∣

∣

∣

l∣
∣

∣yΔn(t)
∣

∣

∣

m
Δt ≤ Λ2

(

l,m, r, p, q
)

(

∫b

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

r
Δs

)(l+m)/r

, (2.72)

where

Λ2

(

l,m, p, q, r
)

:=

(

m

l +m

)m/r
(

∫b

a

qr/(r−m)(t)p−m/(r−m)(t)(P(t))l((r−1)/(r−m))Δt

)(r−m)/r

,

P(t) :=

∫ t

a

p−1/(r−1)(s)h
r/(r−1)
n−k−1 (t, σ(s))Δs.

(2.73)

Note that Theorem 2.10 cannot be applied when r = 1 and r < m. In the following
theorem we prove an inequality which can be applied in this case.
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Theorem 2.11. Let T be a time scale with a, b ∈ T and let α, β be positive real numbers such that

α+β > 1, and let p, q be nonnegative rd-continuous functions on (a, b)
T
and y ∈ C

(n)

rd
([a, b]∩T).

If yΔi(a) = 0, for i = 0, 1, . . . , n − 1, then

∫b

a

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣yΔn(t)
∣

∣

∣

β
Δt ≤ Λ3

(

a, b, α, β
)

∫b

a

p(t)
∣

∣

∣yΔn(t)
∣

∣

∣

α+β
Δt, (2.74)

where

Λ3

(

a, b, α, β
)

=

(

β

α + β

)β/(α+β)
⎛

⎝

∫b

a

q(α+β)/α(t)

pβ/α(t)

(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

p1/(α+β−1)(s)
Δs

)(α+β−1)

Δt

⎞

⎠

α/(α+β)

.

(2.75)

Proof. From the Taylor formula, we see that

∣

∣y(t)
∣

∣ ≤

∫ t

a

hn−1(t, σ(s))
∣

∣

∣yΔn(s)
∣

∣

∣Δs =

∫ t

a

hn−1(t, σ(s))
(

p(s)
)1/(α+β)

(

p(s)
)1/(α+β)

∣

∣

∣yΔn(s)
∣

∣

∣Δs. (2.76)

Now, since p is nonnegative on (a, b)
T
, it follows from the Hölder inequality (1.6) with

f(s) =
hn−1(t, σ(s))
(

p(s)
)1/(α+β)

, g(s) =
(

p(s)
)1/(α+β)

∣

∣

∣yΔn(s)
∣

∣

∣,

γ =
α + β

α + β − 1
, ν = α + β

(2.77)

that

∣

∣y(t)
∣

∣ ≤

(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

(

p(s)
)1/(α+β−1)

Δs

)(α+β−1)/(α+β)(∫ t

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

α+β
Δs

)1/(α+β)

.

(2.78)

Then, we get that

∣

∣y(t)
∣

∣

α
≤

(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

(

p(s)
)1/(α+β−1)

Δs

)α((α+β−1)/(α+β))(∫ t

a

p(s)
∣

∣

∣yΔn(s)
∣

∣

∣

α+β
Δs

)α/(α+β)

.

(2.79)

Setting z(t) :=
∫ t

a
p(s)|yΔn(s)|

α+β
Δs, we see that z(a) = 0, and

zΔ(t) = p(t)
∣

∣

∣yΔn(t)
∣

∣

∣

α+β
> 0. (2.80)
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This gives us

∣

∣

∣yΔn(t)
∣

∣

∣

β
=

(

zΔ(t)

p(t)

)β/(α+β)

. (2.81)

Since q is nonnegative on (a, b)
T
, we have from (2.79) and (2.81) that

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣yΔn(t)
∣

∣

∣

β

≤q(t)

(

1

p(t)

)β/(α+β)
(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

p1/(α+β−1)(s)
Δs

)α((α+β−1)/(α+β))

(z(t))α/(α+β)
(

zΔ(t)
)β/(α+β)

.

(2.82)

This implies that

∫b

a

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣yΔn(t)
∣

∣

∣

β
Δt

≤

∫b

a

q(t)

(

1

p(t)

)β/(α+β)

×

(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

p1/(α+β−1)(s)
Δs

)α((α+β−1)/(α+β))

(z(t))α/(α+β)
(

zΔ(t)
)β/(α+β)

Δt.

(2.83)

Applying the Hölder inequality (1.6) with indices (α + β)/α and (α + β)/β, we have

∫b

a

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣yΔn(t)
∣

∣

∣

β
Δt

≤

⎛

⎝

∫b

a

s(α+β)/α(t)

pβ/α(t)

(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

p1/(α+β−1)(s)
Δs

)(α+β−1)

Δt

⎞

⎠

α/(α+β)

×

(

∫b

a

zα/β(t)zΔ(t)Δt

)β/(α+β)

.

(2.84)

From (2.80), the chain rule (1.7) and the fact that zΔ(s) > 0, we obtain

zα/β(t)zΔ(t) ≤
β

α + β

(

z(α+β)/β(t)
)Δ

. (2.85)
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Substituting (2.85) into (2.84) and using the fact that z(a) = 0, we have

∫b

a

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣yΔn(t)
∣

∣

∣

β
Δt

≤

⎛

⎝

∫b

a

q(α+β)/α(t)

pβ/α(t)

(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

p1/(α+β−1)(s)
Δs

)(α+β−1)

dt

⎞

⎠

α/(α+β)

×

(

α

α + β

)β/(α+β)
(

∫b

a

(

z(α+β)/β(s)
)Δ

Δs

)β/(α+β)

=

⎛

⎝

∫b

a

q(α+β)/α(t)

pβ/α(t)

(

∫ t

a

(hn−1(t, σ(s)))
(α+β)/(α+β−1)

p1/(α+β−1)(s)
Δs

)(α+β−1)

Δt

⎞

⎠

α/(α+β)

×

(

β

α + β

)β/(α+β)

z(b).

(2.86)

Using z(b) :=
∫b

a
p(s)|yΔn(s)|

α+β
Δs, we have from the last inequality that

∫b

a

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣yΔn(t)
∣

∣

∣

β
Δt ≤ Λ3

(

a, b, α, β
)

∫b

a

p(t)
∣

∣

∣yΔn(t)
∣

∣

∣

α+β
Δt, (2.87)

which is the desired inequality (2.74). The proof is complete.

Following Remark 2.2, we can obtain the following result.

Theorem 2.12. Let T be a time scale with a, b ∈ T and let α, β be positive real numbers such that

α+β > 1, and let p, q be nonnegative rd-continuous functions on (a, b)
T
and y ∈ C

(n)

rd
([a, b]∩T).

If y(Δi)(a) = 0, k ≤ i ≤ n − 1, then

∫b

a

q(t)
∣

∣

∣yΔk(t)
∣

∣

∣

α∣
∣

∣yΔn(t)
∣

∣

∣

β
Δt ≤ Λ4

(

a, b, α, β
)

∫b

a

p(t)
∣

∣

∣yΔn(t)
∣

∣

∣

α+β
Δt, (2.88)

where

Λ4

(

a, b, α, β
)

=

(

β

α + β

)β/(α+β)
⎛

⎝

∫b

a

q(α+β)/α(t)

pβ/α(t)

(

∫ t

a

(hn−k−1(t, σ(s)))
(α+β)/(α+β−1)

p1/(α+β−1)(s)
Δs

)(α+β−1)

Δt

⎞

⎠

α/(α+β)

.

(2.89)
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Instead of (2.25), we can use the relation between gn and hn and define

y(t) := (−1)n
∫b

t

gn−1(σ(s), t)y
Δn(s)Δs. (2.90)

Proceeding as pervious by using the same arguments and using (2.90) one can obtain some
results when yΔi(b) = 0, for i = 0, 1, . . . , n − 1. For example one can get the following results.

Theorem 2.13. Letting T be a time scale with a, b ∈ T and y ∈ C
(n)

rd
([X, b] ∩ T). If yΔi(b) = 0, for

i = 0, 1, . . . , n − 1, then

∫b

a

∣

∣y(t)
∣

∣

∣

∣

∣yΔn(t)
∣

∣

∣Δt ≤

√

1

2

(

∫b

a

(

∫b

t

g2
n−1(σ(s), t)Δs

)

Δt

)1/2 ∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

2
Δt. (2.91)

Theorem 2.14. Let T be a time scale with a, b ∈ T and let l, m be positive real numbers such that

l +m > 1. Let y ∈ C
(n)

rd
([a, b] ∩ T). If yΔi(b) = 0, for i = 0, 1, . . . , n − 1, then

∫b

a

∣

∣y(t)
∣

∣

l
∣

∣

∣yΔn(t)
∣

∣

∣

m
Δt

≤

⎛

⎝

∫b

a

(

∫b

t

g
(l+m)/(l+m−1)
n−1 (σ(s), t)Δs

)(l+m−1)

Δt

⎞

⎠

l/(l+m)
∫b

a

∣

∣

∣yΔn(t)
∣

∣

∣

l+m
Δt.

(2.92)

Remark 2.15. Similar results as in Theorems 2.13 and 2.14 can be obtained from the results in
the rest of the paper, but in this case one will use yΔi(b) = 0, for i = 0, 1, . . . , n − 1, instead of If
yΔi(a) = 0, for i = 0, 1, . . . , n − 1, and gn(s, t) instead of hn(t, s).

Remark 2.16. It is worth mentioning here that the results in this paper can be used to derive
some inequalities on different time scales based on the definition of the corresponding
function hk(t, s).

For example ifT = R, then fromCorollary 2.8, Theorems 2.11 and 2.12 and using (2.13),
we get the following inequalities of Opial’s type in R.

Theorem 2.17. Let a, b ∈ R and let l, m be positive real numbers such that l + m = 1, and y ∈

C(n)([a, b] ∩ R). If y(i)(a) = 0, k ≤ i ≤ n − 1, then

∫b

a

∣

∣

∣y(k)(t)
∣

∣

∣

l∣
∣

∣y(n)(t)
∣

∣

∣

m
dt ≤

mm(b − a)l(n−k)

((n − k)!)l

(

∫b

a

∣

∣

∣y(n)(t)
∣

∣

∣dt

)

. (2.93)
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Theorem 2.18. Let a, b ∈ R and let α, β be positive real numbers such that α + β > 1, and let
p, q be nonnegative continuous functions on (a, b) and y ∈ C(n)([a, b] ∩ R). If y(i)(a) = 0, for
i = 0, 1, . . . , n − 1, then

∫b

a

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣yΔn(t)
∣

∣

∣

β
dt ≤ Λ5

(

a, b, α, β
)

∫b

a

p(t)
∣

∣

∣yΔn(t)
∣

∣

∣

α+β
dt, (2.94)

where

Λ5

(

a, b, α, β
)

=

(

β

α + β

)β/(α+β)
⎛

⎝

∫b

a

q(α+β)/α(t)

pβ/α(t)

(

∫ t

a

(t − s)(n−1)(α+β)/(α+β−1)

(n − 1)!p1/(α+β−1)(s)
ds

)(α+β−1)

dt

⎞

⎠

α/(α+β)

.

(2.95)

Theorem 2.19. Let a, b ∈ R and let α, β be positive real numbers such that α + β > 1, and let p, q be
nonnegative continuous functions on (a, b) and y ∈ C(n)([a, b] ∩ R). If y(i)(a) = 0, k ≤ i ≤ n − 1,
then

∫b

a

q(t)
∣

∣

∣y(k)(t)
∣

∣

∣

α∣
∣

∣y(n)(t)
∣

∣

∣

β
dt ≤ Λ6

(

a, b, α, β
)

∫b

a

p(t)
∣

∣

∣y(n)(t)
∣

∣

∣

α+β
dt, (2.96)

where

Λ6

(

a, b, α, β
)

=

(

β
(

α + β
)

)β/(α+β)
(

1

(n − k − 1)!

)β/(α+β)

×

⎛

⎝

∫b

a

q(α+β)/α(t)

pβ/α(t)

(

∫ t

a

(t − s)(n−k−1)(α+β)/(α+β−1)

p1/(α+β−1)(s)
ds

)(α+β−1)

dt

⎞

⎠

α/(α+β)

.

(2.97)

When T = Z, we have yΔ(t) = Δy(t) = y(t+1)−y(t) andΔ(i) = Δ(Δ(i−1)). Using the fact

that hk(t, s) ≤ (t−s)k/k!, we get from Corollary 2.8 and Theorems 2.11 and 2.12 the following
discrete inequalities.

Theorem 2.20. Let a, b ∈ N and let l,m be positive real numbers such that l+m = 1. IfΔ(i)y(a) = 0,
k ≤ i ≤ n − 1, then

b−1
∑

t=a

∣

∣

∣Δ(k)y(t)
∣

∣

∣

l∣
∣

∣Δ(n)y(t)
∣

∣

∣

m
≤

mm(b − a)l(n−k)

((n − k)!)l

b−1
∑

t=a

∣

∣

∣Δ(n)y(t)
∣

∣

∣. (2.98)
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Theorem 2.21. Let a, b ∈ N and let α, β be positive real numbers such that α + β > 1, and let p, q be
nonnegative sequences. If Δ(i)y(a) = 0, for i = 0, 1, . . . , n − 1, then

b−1
∑

t=a

q(t)
∣

∣y(t)
∣

∣

α
∣

∣

∣Δ(n)y(t)
∣

∣

∣

β
≤ Λ7

(

a, b, α, β
)

b−1
∑

t=a

p(t)
∣

∣

∣Δ(n)y(t)
∣

∣

∣

α+β
, (2.99)

where

Λ7

(

a, b, α, β
)

=

(

β

α + β

)β/(α+β)
⎛

⎝

b−1
∑

t=a

q(α+β)/α(t)

pβ/α(t)

(

t−1
∑

s=a

(t − s)(n−1)(α+β)/(α+β−1)

(n − 1)!p1/(α+β−1)(s)

)(α+β−1)
⎞

⎠

α/(α+β)

.
(2.100)

Theorem 2.22. Let a, b ∈ N and let α, β be positive real numbers such that α + β > 1, and let p, q be
nonnegative sequences. If Δ(i)y(a) = 0, 0 ≤ k ≤ i ≤ n − 1, then

b−1
∑

t=a

q(t)
∣

∣

∣Δ(k)y(t)
∣

∣

∣

α∣
∣

∣Δ(n)y(t)
∣

∣

∣

β
dt ≤ Λ8

(

a, b, α, β
)

b−1
∑

t=a

p(t)
∣

∣

∣Δ(n)y(t)
∣

∣

∣

α+β
, (2.101)

where

Λ8

(

a, b, α, β
)

=

(

β
(

α + β
)

)β/(α+β)
(

1

(n − k − 1)!

)β/(α+β)

×

⎛

⎝

b−1
∑

t=a

q(α+β)/α(t)

pβ/α(t)

(

t−1
∑

s=a

(t − s)(n−k−1)(α+β)/(α+β−1)

p1/(α+β−1)(s)

)(α+β−1)
⎞

⎠

α/(α+β)

.

(2.102)

Similar results when T = hZ and T = qN0 = {qt : t ∈ N0}where q > 1 and different time
scales can be obtained as in Theorems 2.17 and 2.22. The details are left to the reader.

Problem 1. It will be interesting to extend the pervious results and prove some inequalities of
the form

∫X

a

q(t)
∣

∣

∣yΔk(t)
∣

∣

∣

α∣
∣

∣yΔk+1(t)
∣

∣

∣

β
Δt ≤ Λ

(

a, b, α, β
)

∫ t

a

p(t)
∣

∣

∣yΔn(t)
∣

∣

∣

α+p
Δt, (2.103)

where Λ is the constant of the inequality that needs to be determined.
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[15] M. Bohner and B. Kaymakçalan, “Opial inequalities on time scales,” Annales Polonici Mathematici, vol.
77, no. 1, pp. 11–20, 2001.

[16] S. H. Saker, “Some Opial-type inequalities on time scales,” Abstract and Applied Analysis, vol. 2011,
Article ID 265316, 19 pages, 2011.

[17] H. M. Srivastava, K. L. Tseng, S. J. Tseng, and J. C. Lo, “Some weighted Opial-type inequalities on
time scales,” Taiwanese Journal of Mathematics, vol. 14, no. 1, pp. 107–122, 2010.

[18] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,
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