Some Orthogonal Designs and complex Hadamard matrices by using two Hadamard matrices

Jennifer Seberry and Xian-Mo Zhang

Department of Computer Science University College University of New South Wales Australian Defence Force Academy Canberra, ACT 2600, AUSTRALIA

May 20, 1991

Abstract

We prove that if there exist Hadamard matrices of order h and n divisible by 4 then there exist two disjoint $W(\frac{1}{4}hn, \frac{1}{8}hn)$, whose sum is a (1, -1) matrix and a complex Hadamard matrix of order $\frac{1}{4}hn$, furthermore, if there exists an $OD(m; s_1, s_2, \dots, s_l)$ for even m then there exists an $OD(\frac{1}{4}hnm; \frac{1}{4}hns_1, \frac{1}{4}hns_2, \dots, \frac{1}{4}hns_l)$.

1 Introduction and Basic Definitions

A complex Hadamard matrix (see [4]), say C, of order c is a matrix with elements 1, -1, i, -i satisfying $CC^* = cI$, where C^* is the Hermitian conjugate of C. From [4], any complex Hadamard matrix has order 1 or order divisible by 2. Let C = X + iY, where X, Y consist of 1, -1, 0 and $X \wedge Y = 0$ where \wedge is the Hadamard product. Clearly, if C is an complex Hadamard matrix then $XX^T + YY^T = cI$, $XY^T = YX^T$.

A weighing matrix [2] of order n with weight k, denoted by W = W(n,k), is a (1,-1,0) matrix satisfying $WW^T = kI_n$. W(n,n) is an Hadamard matrix.

Let A_j be a (1, -1, 0) matrix of order m and $A_j A_j^T = s_j I_m$. An orthogonal design $D = x_1 A_1 + x_2 A_2 + \cdots + x_l A_l$ of order m and type (s_1, s_2, \cdots, s_l) , written $OD(m; s_1, s_2, \cdots, s_l)$, on the commuting variables x_1, x_2, \cdots, x_l is a square matrix with entries $0, \pm x_1, \pm x_2, \cdots, \pm x_l$ where x_i or $-x_i$ occurs s_i times in each row and column and distinct rows are formally orthogonal. That is

$$DD^T = (\sum_{j=1}^l s_i x_j^2) I_m$$

Australasian Journal of Combinatorics 4(1991), pp 93-102

Let M be a matrix of order tm. Then M can be expressed as

$$M = \begin{bmatrix} M_{11} & M_{12} & \cdots & M_{1t} \\ M_{21} & M_{22} & \cdots & M_{2t} \\ & & \vdots \\ M_{t1} & M_{t2} & \cdots & M_{tt} \end{bmatrix}$$

where M_{ij} is of order $m(i, j = 1, 2, \dots, t)$. Analogously with Seberry and Yamada [3], we call this a t^2 block *M*-structure when *M* is an orthogonal matrix.

To emphasize the block structure, we use the notation $M_{(t)}$, where $M_{(t)} = M$ but in the form of t^2 blocks, each of which has order m.

Let N be a matrix of order tn. Then, write

$$N_{(t)} = \begin{bmatrix} N_{11} & N_{12} & \cdots & N_{1t} \\ N_{21} & N_{22} & \cdots & N_{2t} \\ & & \ddots & \\ N_{t1} & N_{t2} & \cdots & N_{tt} \end{bmatrix}$$

where N_{ij} is of order n $(i, j = 1, 2, \dots, t)$.

We now define the operation \bigcirc as the following:

$$M_{(t)} \bigcirc N_{(t)} = \begin{bmatrix} L_{11} & L_{12} & \cdots & L_{1t} \\ L_{21} & L_{22} & \cdots & L_{2t} \\ & & \ddots & \\ L_{t1} & L_{t2} & \cdots & L_{tt} \end{bmatrix}$$

where M_{ij} , N_{ij} and L_{ij} are of order of m, n and mn, respectively and

$$L_{ij} = M_{i1} \times N_{1j} + M_{i2} \times N_{2j} + \dots + M_{it} \times N_{tj},$$

 $i, j = 1, 2, \dots, t$. We call this the strong Kronecker multiplication of two matrices.

2 Preliminaries

Theorem 1 Let A be an $OD(tm; p_1, \dots, p_l)$ with entries x_1, \dots, x_l and B be an $OD(tn; q_1, \dots, q_s)$ with entries y_1, \dots, y_s then

$$(A_{(t)} \bigcirc B_{(t)})(A_{(t)} \bigcirc B_{(t)})^T = (\sum_{j=1}^l p_j x_j^2)(\sum_{j=1}^s q_j y_j^2)I_{tmn}.$$

 $(A_{(t)} \bigcirc B_{(t)})$ is not an orthogonal design but an orthogonal matrix.)

Proof.

$$A_{(t)} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ & & \ddots & \\ A_{t1} & A_{t2} & \cdots & A_{tt} \end{bmatrix}$$
$$B_{(t)} = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1t} \\ B_{21} & B_{22} & \cdots & B_{2t} \\ & & \ddots & \\ B_{t1} & B_{t2} & \cdots & B_{tt} \end{bmatrix}$$

where A_{ij} and B_{ij} are of orders m and n respectively $(i, j = 1, 2, \dots, t)$.

Write

 and

$$C = (A_{(t)} \bigcirc B_{(t)})(A_{(t)} \bigcirc B_{(t)})^{T} = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1t} \\ C_{21} & C_{22} & \cdots & C_{2t} \\ & & \cdots \\ C_{t1} & C_{t2} & \cdots & C_{tt} \end{bmatrix}$$

where C_{ij} is of order mn.

We first prove $C_{13} = 0$. It is easy to calculate $C_{13} =$

$$= \sum_{j=1}^{t} (A_{11} \times B_{1j} + A_{12} \times B_{2j} + \dots + A_{1t} \times B_{tj}) (A_{31}^{T} \times B_{1j}^{T} + A_{32}^{T} \times B_{2j}^{T} + \dots + A_{3t}^{T} \times B_{tj}^{T})$$

$$= \sum_{j=1}^{t} [(A_{11}A_{31}^{T}) \times (B_{1j}B_{1j}^{T}) + (A_{12}A_{32}^{T}) \times (B_{2j}B_{2j}^{T}) + \dots + (A_{1t}A_{3t}^{T}) \times (B_{tj}B_{tj}^{T})]$$

$$= (A_{11}A_{31}^{T} + A_{12}A_{32}^{T} + \dots + A_{1t}A_{3t}^{T}) \times (\sum_{j=1}^{s} q_{j}y_{j}^{2})I_{n}.$$

But

$$A_{11}A_{31}^T + A_{12}A_{32}^T + \dots + A_{1t}A_{3t}^T = 0,$$

so

 $C_{13} = 0.$

Similarly,

$$C_{ij} = 0 \ (i \neq j).$$

We now calculate C_{ii} .

$$C_{ii} = \sum_{j=1}^{t} (A_{i1} \times B_{1j} + A_{i2} \times B_{2j} + \dots + A_{it} \times B_{tj}) (A_{i1}^{T} \times B_{1j}^{T} + A_{i2}^{T} \times B_{2j}^{T} + \dots + A_{it}^{T} \times B_{tj}^{T})$$

$$= \sum_{j=1}^{t} [(A_{i1}A_{i1}^{T}) \times (B_{1j}B_{1j}^{T}) + (A_{i2}A_{i2}^{T}) \times (B_{2j}B_{2j}^{T}) + \dots + (A_{it}A_{it}^{T}) \times (B_{tj}B_{tj}^{T})]$$

$$= (A_{i1}A_{i1}^{T} + A_{i2}A_{i2}^{T} + \dots + A_{it}A_{it}^{T}) \times (\sum_{j=1}^{s} q_{j}y_{j}^{2})I_{n}.$$

$$= (\sum_{j=1}^{l} p_j x_j^2) I_m \times (\sum_{j=1}^{s} q_j y_j^2) I_n$$
$$= (\sum_{j=1}^{l} p_j x_j^2) (\sum_{j=1}^{s} q_j y_j^2) I_{mn}.$$

Thus

$$(A_{(t)} \bigcirc B_{(t)})(A_{(t)} \bigcirc B_{(t)})^T = (\sum_{j=1}^l p_j x_j^2)(\sum_{j=1}^s q_j y_j^2)I_{tmn}.$$

Corollary 2 Let A and B be the matrices of orders tm and tn respectively, consist of 1, -1, 0 satisfying $AA^T = pI_{mt}$ and $BB^T = qI_{nt}$. Then

$$(A_{(t)} \bigcirc B_{(t)})(A_{(t)} \bigcirc B_{(t)})^T = pqI_{tmn}.$$

Proof. In this case, A = OD(tm; p), B = OD(tn; q) and $x_1 = y_1 = 1$.

In the remainder of this paper let $H = (H_{ij})$ and $N = (N_{ij})$ of order h and n respectively be 16 block M-structures [3]. So

$$H = \begin{bmatrix} H_{11} & H_{12} & H_{13} & H_{14} \\ H_{21} & H_{22} & H_{23} & H_{24} \\ H_{31} & H_{32} & H_{33} & H_{34} \\ H_{41} & H_{42} & H_{43} & H_{44} \end{bmatrix}$$

where

$$\sum_{j=1}^{4} H_{ij} H_{ij}^{T} = h I_h = \sum_{j=1}^{4} H_{ji} H_{ji}^{T},$$

for i = 1, 2, 3, 4 and

$$\sum_{j=1}^{4} H_{ij} H_{kj}^{T} = 0 = \sum_{j=1}^{4} H_{ji} H_{jk}^{T},$$

for $i \neq k, i, k = 1, 2, 3, 4$.

$$N = \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{14} \\ N_{21} & N_{22} & N_{23} & N_{24} \\ N_{31} & N_{32} & N_{33} & N_{34} \\ N_{41} & N_{42} & N_{43} & N_{44} \end{bmatrix}$$

where

$$\sum_{j=1}^{4} N_{ij} N_{ij}^{T} = n I_n = \sum_{j=1}^{4} N_{ji} N_{ji}^{T},$$

for i = 1, 2, 3, 4 and

$$\sum_{i=1}^{4} N_{ij} N_{kj}^{T} = 0 = \sum_{j=1}^{4} N_{ji} N_{jk}^{T},$$

for $i \neq k$, i, k = 1, 2, 3, 4.

For ease of writing we define $X_i = \frac{1}{2}(H_{i1} + H_{i2})$, $Y_i = \frac{1}{2}(H_{i1} - H_{i2})$, $Z_i = \frac{1}{2}(H_{i3} + H_{i4})$, $W_i = \frac{1}{2}(H_{i3} - H_{i4})$, where i = 1, 2, 3, 4. Then both $X_i \pm Y_i$ and $Z_i \pm W_i$ are (1, -1)-matrices with $X_i \wedge Y_i = 0$ and $Z_i \wedge W_i = 0$, \wedge the Hadamard product.

Let

$$S = \frac{1}{2} \begin{bmatrix} H_{11} + H_{12} & -H_{11} + H_{12} & H_{13} + H_{14} & -H_{13} + H_{14} \\ H_{21} + H_{22} & -H_{21} + H_{22} & H_{23} + H_{24} & -H_{23} + H_{24} \\ H_{31} + H_{32} & -H_{31} + H_{32} & H_{33} + H_{34} & -H_{33} + H_{34} \\ H_{41} + H_{42} & -H_{41} + H_{42} & H_{43} + H_{43} & -H_{43} + H_{44} \end{bmatrix}$$

Then S can be rewritten as

$$S = \frac{1}{2} \begin{bmatrix} H_{11} & H_{12} & H_{13} & H_{14} \\ H_{21} & H_{22} & H_{23} & H_{24} \\ H_{31} & H_{32} & H_{33} & H_{34} \\ H_{41} & H_{42} & H_{43} & H_{44} \end{bmatrix} \bigcirc \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & +1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & +1 \end{bmatrix}$$

or

$$S = \begin{bmatrix} X_1 & -Y_1 & Z_1 & -W_1 \\ X_2 & -Y_2 & Z_2 & -W_2 \\ X_3 & -Y_3 & Z_3 & -W_3 \\ X_4 & -Y_4 & Z_4 & -W_4 \end{bmatrix}.$$

Obviously, S is a (0, 1, -1) matrix.

Write

$$R = \left[\begin{array}{ccccc} Y_1 & X_1 & W_1 & Z_1 \\ Y_2 & X_2 & W_2 & Z_2 \\ Y_3 & X_3 & W_3 & Z_3 \\ Y_4 & X_4 & W_4 & Z_4 \end{array} \right],$$

also a (0, 1, -1) matrix.

We note $S \pm R$ is a (1, -1) matrix, $R \wedge S = 0$ and by Corollary 1

$$SS^T = RR^T = \frac{1}{2}hI_h.$$

Lemma 3 If there exists an Hadamard matrix of order h divisible by 4, there exists an $OD(h; \frac{1}{2}h, \frac{1}{2}h)$.

Proof. From S and R as above. Now H = S + R. Note $HH^T = SS^T + RR^T + SR^T + RS^T = hI_h$ and $SS^T = RR^T = \frac{1}{2}hI_h$. Hence $SR^T + RS^T = 0$. Let x and y be commuting variables then E = xS + yR is the required orthogonal design.

3 Weighing Matrices

Lemma 4 If there exist Hadamard matrices of order h and n divisible by 4, there exists a $W(\frac{1}{4}hn, \frac{1}{8}hn)$.

Proof. Let H and N as above be the Hadamard matrices of order h and n respectively. Let

$$P = \frac{1}{2} \begin{bmatrix} X_1 & Y_1 & Z_1 & W_1 \\ X_2 & Y_2 & Z_2 & W_2 \\ X_3 & Y_3 & Z_3 & W_3 \\ X_4 & Y_4 & Z_4 & W_4 \end{bmatrix} \bigcirc \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{14} \\ N_{21} & N_{22} & N_{23} & N_{24} \\ N_{31} & N_{32} & N_{33} & N_{34} \\ N_{41} & N_{42} & N_{43} & N_{44} \end{bmatrix}$$

Rewrite

$$P = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix}$$

Consider

$$P_{11} = \frac{1}{2} (X_1 \times N_{11} + Y_1 \times N_{21} + Z_1 \times N_{31} + W_1 \times N_{41}),$$

where both $X_1 \times N_{11} + Y_1 \times N_{21}$ and $Z_1 \times N_{31} + W_1 \times N_{41}$ are (1, -1) matrices. So P_{11} has entries 1, -1, 0 and similarly for other P_{ij} . By Lemma 1,

$$PP^T = \frac{1}{8}hnI_{\frac{1}{4}hn}.$$

Then P is a $W(\frac{1}{4}hn, \frac{1}{8}hn)$.

Corollary 5 There exists a $W(h, \frac{1}{2}h)$ (h > 1) if there exists an Hadamard matrix of order h.

Proof. If h > 2 let n = 4 in Theorem 1. For the case h = 2, note W(2,1) is the identity matrix.

We also note that if

$$Q = \frac{1}{2} \begin{bmatrix} X_1 & Y_1 & Z_1 & W_1 \\ X_2 & Y_2 & Z_2 & W_2 \\ X_3 & Y_3 & Z_3 & W_3 \\ X_4 & Y_4 & Z_4 & W_4 \end{bmatrix} \bigcirc \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{14} \\ N_{21} & N_{22} & N_{23} & N_{24} \\ -N_{31} & -N_{32} & -N_{23} & -N_{34} \\ -N_{41} & -N_{42} & -N_{43} & -N_{44} \end{bmatrix}$$

Then Q is also a $W(\frac{1}{4}hn, \frac{1}{8}hn)$.

Theorem 6 Suppose h and n divisible by 4, are the orders of Hadamard matrices then there exist two disjoint $W(\frac{1}{4}hn, \frac{1}{8}hn)$, whose sum and difference are (1, -1) matrices. Rewrite

$$Q = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} & Q_{14} \\ Q_{21} & Q_{22} & Q_{23} & Q_{24} \\ Q_{31} & Q_{32} & Q_{33} & Q_{34} \\ Q_{41} & Q_{42} & Q_{43} & Q_{44} \end{bmatrix}.$$

We note

$$P_{ij} = \frac{1}{2} (X_i \times N_{1j} + Y_i \times N_{2j} + Z_i \times N_{3j} + W_i \times N_{4j}),$$

and

$$Q_{ij} = \frac{1}{2} (X_i \times N_{1j} + Y_i \times N_{2j} - Z_i \times N_{3j} - W_i \times N_{4j}).$$

Since $P_{ij} + Q_{ij} = X_i \times N_{1j} + Y_i \times N_{2j}$ and $P_{ij} - Q_{ij} = Z_i \times N_{3j} + W_i \times N_{4j}$ we conclude that $P_{ij} \pm Q_{ij}$ are (1, -1) matrices and $P_{ij} \wedge Q_{ij} = 0$. Thus $P \pm Q$ is a (1, -1) matrix and $P \wedge Q = 0$. P and Q are both $W(\frac{1}{4}hn, \frac{1}{8}hn)$ by Corollary 1.

4 Complex Hadamard Matrices

Ŧ.

Lemma 7 $PQ^T = QP^T$.

Proof. Write

$$PQ^{T} = \begin{bmatrix} E_{11} & E_{12} & E_{13} & E_{14} \\ E_{21} & E_{22} & E_{23} & E_{24} \\ E_{31} & E_{32} & E_{33} & E_{34} \\ E_{41} & E_{42} & E_{43} & E_{44} \end{bmatrix}$$

and

$$QP^{T} = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} \\ F_{21} & F_{22} & F_{23} & F_{24} \\ F_{31} & F_{32} & F_{33} & F_{34} \\ F_{41} & F_{42} & F_{43} & F_{44} \end{bmatrix}$$

We first prove $E_{13} = F_{13}$. We note

 $E_{13} =$

$$=\frac{1}{4}\sum_{j=1}^{4} (X_1 \times N_{1j} + Y_1 \times N_{2j} + Z_1 \times N_{3j} + W_1 \times N_{4j}) (X_3^T \times N_{1j}^T + Y_3^T \times N_{2j}^T - Z_3^T \times N_{3j}^T - W_3^T \times N_{4j}^T)$$

 and

 $F_{13} =$

$$= \frac{1}{4} \sum_{j=1}^{4} (X_1 \times N_{1j} + Y_1 \times N_{2j} - Z_1 \times N_{3j} - W_1 \times N_{4j}) (X_3^T \times N_{1j}^T + Y_3^T \times N_{2j}^T + Z_3^T \times N_{3j}^T + W_3^T \times N_{4j}^T).$$

Obviously, $E_{13} = F_{13}$ if and only if

$$\sum_{j=1}^{4} (X_1 \times N_{1j} + Y_1 \times N_{2j}) (Z_3^T \times N_{3j}^T + W_3^T \times N_{4j}^T)$$
(1)
=
$$\sum_{j=1}^{4} (Z_1 \times N_{3j} + W_1 \times N_{4j}) (X_3^T \times N_{1j}^T + Y_3^T \times N_{2j}^T).$$
(2)

To show this, note

$$\sum_{j=1}^{4} (X_1 \times N_{1j}) (Z_3^T \times N_{3j}^T) = \sum_{j=1}^{4} (X_1 Z_3^T) \times (N_{1j} N_{3j}^T) = X_1 Z_3^T \times \sum_{j=1}^{4} N_{1j} N_{3j}^T = 0,$$

and similarly for other parts in (1) and (2). Thus $E_{13} = F_{13}$. Similarly, $E_{ij} = F_{ij}$, for other $i \neq j$.

We now prove $E_{ii} = F_{ii}$. We see

$$= \frac{1}{4} \sum_{j=1}^{4} (X_i \times N_{1j} + Y_i \times N_{2j} + Z_i \times N_{3j} + W_i \times N_{4j}) (X_i^T \times N_{1j}^T + Y_i^T \times N_{2j}^T - Z_i^T \times N_{3j}^T - W_i^T \times N_{4j}^T)$$

 $E_{ii} =$

and

 $F_{ii} =$

$$=\frac{1}{4}\sum_{j=1}^{4}(X_{i}\times N_{1j}+Y_{i}\times N_{2j}-Z_{i}\times N_{3j}-W_{i}\times N_{4j})(X_{i}^{T}\times N_{1j}^{T}+Y_{i}^{T}\times N_{2j}^{T}+Z_{i}^{T}\times N_{3j}^{T}+W_{i}^{T}\times N_{4j}^{T}).$$

Obviously, $E_{ii} = F_{ii}$ if and only if

$$\sum_{j=1}^{4} (X_i \times N_{1j} + Y_i \times N_{2j}) (Z_i^T \times N_{3j}^T + W_i^T \times N_{4j}^T)$$
(3)

$$=\sum_{j=1}^{4} (Z_i \times N_{3j} + W_i \times N_{4j}) (X_i^T \times N_{1j}^T + Y_i^T \times N_{2j}^T).$$
(4)

The proof is the same as in (1) and (2). Hence $E_{ii} = F_{ii}$. Finally, we conclude $PQ^T = QP^T$.

Theorem 8 If there exist Hadamard matrices of order h and n divisible by 4 then there exists a complex Hadamard matrix of order $\frac{1}{4}hn$.

Proof. By the proof of Theorem 2, P and Q are the two disjoint $W(\frac{1}{4}hn, \frac{1}{8}hn)$ i.e. $P \wedge Q = 0$ and $P \pm Q$ is a (1, -1) matrix. Furthermore by Lemma 3, $PQ^T = QP^T$. Thus P + iQ is a complex Hadamard matrix of order $\frac{1}{4}hn$.

5 Orthogonal Designs

Theorem 9 If there exist Hadamard matrices of order h, n divisible by 4 and an $OD(m; s_1, s_2, \dots, s_l)$, where m is even, then there exists an

$$OD(\frac{1}{4}hnm;\frac{1}{4}hns_1,\frac{1}{4}hns_2,\cdots,\frac{1}{4}hns_l).$$

Proof. Let

$$D = \left[\begin{array}{cc} D_1 & D_2 \\ D_3 & D_4 \end{array} \right],$$

be the $OD(m; s_1, s_2, \dots, s_l)$ on the commuting variables x_1, \dots, x_l , where D_j is of order $\frac{1}{2}m$. Let

$$D' = \left[\begin{array}{cc} P & Q \\ -Q & P \end{array} \right] \bigcirc \left[\begin{array}{cc} D_1 & D_2 \\ D_3 & D_4 \end{array} \right]$$

where P and Q, constructed above, are from the Hadamard matrices of order h and n.

Then by Theorem 3 and Corollary 1,

$$D'D'^{T} = \frac{1}{4}hn(\sum_{j}^{l}s_{j}x_{j}^{2})I_{\frac{1}{4}hnm}.$$

Since $P \wedge Q = 0$, if D consists of $0, \pm x_1, \dots, \pm x_l$ then D' also consists of $0, \pm x_1, \dots, \pm x_l$ so D' is an

$$OD(\frac{1}{4}hnm;\frac{1}{4}hns_1,\frac{1}{4}hns_2,\cdots,\frac{1}{4}hns_l).$$

Corollary 10 If there exist Hadamard matrices of order h and n divisible by 4 then there exists an $OD(\frac{1}{2}hn; \frac{1}{4}hn, \frac{1}{4}hn)$.

Proof. Let

$$D = \left[\begin{array}{cc} x & y \\ -y & x \end{array} \right]$$

in the proof of Theorem 4, where x and y are commuting variables, put m = l = 2 and $s_1 = s_2 = 1$.

6 Remark

Theorem 1 cannot be replaced by Corollary 1 because the existence of Hadamard matrices of order h and n does not imply the existence of an Hadamard matrix of order $\frac{1}{4}hn$. For example, there exist Hadamard matrices of order $4 \cdot 3$ and $4 \cdot 71$ but no Hadamard matrix of order $4 \cdot 213$ has been found [1], however, by Theorem 1, we have a $W(4 \cdot 213, 2 \cdot 213)$.

By the same result, there exists a W(4k, 2k) and a complex Hadamard matrix of order 4k, where k is

781	789	917	1315	1349	1441	1633	1703	2059	2227	2489	2515
2627	2733	3013	3273	3453	3479	3715	4061	4331	4435	4757	4781
4899	4979	4997	5001	5109	5371	5433	5467	5515	5533	5609	5755
5767	5793	5893	6009	6059	6177	6209	6333	6377	6497	6539	6575
6801	6881	6887	6943	7233	7277	7387	7513	7555	7663	7739	7811
7989	8023	8057	8189	8549	8591	8611	8633	8809	8879	8927	9055
9097	9167	9557	9563	9573	9659	9727	9753	9757	9869	9913	9991

References

- Leisa Condie, Jennifer Seberry, and Mieko Yamada. Table of the existence of Hadamard matrices. Technical Report, University College, The University of New South Wales, Australian Defence Force Academy, 1990.
- [2] A. V. Geramita and J. Seberry. Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel, 1979.
- [3] Jennifer Seberry and Mieko Yamada. On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures. JCMCC, 7:97-137, 1990.
- [4] W. D. Wallis, A. Penfold Street, and J. Seberry Wallis. Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, volume 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg- New York, 1972.