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Some Oscillation Theorems for a Class
of Quasilinear Elliptic Equations (*).

Hirovuk: Usami

Abstract. - Oscillation criteria are obtained for quasilinear elliptic equations of the form (E)
below. We are mainly interested in the case where the coefficient function oscillates near in-
finity. Generalized Riccati inequalities are employed to establish our results.

1. — Introduction.

In this paper we treat quasilinear elliptic equations of the form
(E) div(|Du|™ 2 Du) + a(x) |u|™ 2u=0

in an exterior domain 2 c RY, where x = («;), Du = (8u/8x;). We note that the exponent
of the leading term of (E) coincides with that of the nonlinear term. Such quasilinear
equations are sometimes called half-linear equations. We always assume that
N=2,m>1,and aeC(£). By a solution of (E) we mean a function # which is of class
C' together with |Du|™ 2Du, and satisfies (E) near o.

DEFINITION. — (i) A nontrivial solution % of (E) (defined near ) is called oscillatory
if the set {xe 2 Ndomu: u(x) =0} is unbounded.

(i)) Equation (E) is called oscillatory if every nontrivial solution (defined near
) of (E) is oscillatory.

When m =2 or N =1, there are many works in which oscillatory properties of (E)
are treated; see e.g.[1,5,6,7]. However, as far as the author knows, there are few re-
sults concerning equation (E) with m # 2 and N = 2, even though a is nonnegative near
o , Motivated by this fact, we intend here to establish sufficient conditions for (E) to be
oscillatory. We are especially interested in the case where a may take on negative
values for arbitrarily large |x]|.

(*) Entrata in Redazione il 29 marzo 1997 e, in versione riveduta, il 25 giugno 1997.
Indirizzo degll’A.: Department of Mathematics, Faculty of Integrated Arts and Sciences, Hi-
roshima University, Higashi-Hiroshima 739-8521, Japan.



278 Hiroyuxrl Usaml: Sowme oscillation theorems, etc.

The paper is organized as follows. In Section 2, we show that the osciliatory proper-
ty of (E) is closely related to the nonexistence of solutions near « of certain one-di-
mensional generalized Riceati inequalities. We discuss these inequalities in Section 3.
Our main results, as well as an illustrative example, are given in Section 4.

2. - Reduction to one-dimesional problems.

In the paper we employ the notation

a(r) =

where wy = j dS, the area of the unit sphere in RY. This function is called the
jel=1
spherical mean of a.
Let us begin with a preparatory consideration. Let u be a positive solution of (E)
defined for |x|= R. Then, the change of variable given by

v=logu
converts (E) into
(E) div (| Dv|™ " 2Dv) + (m — 1) |Dv|™ + a(x) =0 .
Furthermore, introducing the function w by w= —|Dv|™ %Dv, we get from (E’)
o)) divw = a(x) + (m — 1) |w|™™" 1 |z|=2R.

It should be noted that such a simple identity will not be obtainable if the exponent of
the leading term and that of the nonlinear term do not coincide. The following lemma is
suggested by[8].

LEMMA 1. — Let u be a positive solution of (E) defined for |x|= R, and w be as
above. Then, the function defined by

z2(r) = J (w(x), %) dsS

|2} =r
for r = R, satisfies the generalized Riccati inequality

m—1 |
,,.N—l)l/(m—l)

@ 2/ (r) =

2(r) |™m = 4 @ r¥ - lar)

(wn

for r= R. Here (,) denotes the inner product between vectors.
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PRrOOF. - Integrating both sides of (1) over the sphere |x|=r, we obtain
3 I divwdS = w yrV1a(r) + (m - 1) J' || ™D dS .
o =7 .

provided r = R. The divergence theorem shows that

iy = & LA
@ 2= I(’M)(r),r)dS

e| =7

= % (Rs,xjm divau(x) do + f (w(x), %)ds) = j diva(x) dS ,

let=E [#]=r

if = R. On the other hand, Hélder’s inequality implies that
(m-1)/m /
Iz(fr)ls I |'M)|1 dSs( f lle(m_l)dS)m 1 ( I dS)lm,
2] =7

e] = o] =r

which is equivalent to

®) ( [ ]wl"”(m-l)ds)(’”‘”/’”a(riN—l)-“m|z(r)|, r=R.

|2 =7
Inequality (2) follows from (3), (4) and (5). The proof is complete.

Lemma 1 immediately gives the following key result on which our oscillation theory
is based. When N =1 and m =2, it is well known that a similar relationship holds be-
tween (E) and the Riccati equation associated to (E); see e.g. [3, Theorem 7.2].

PROPOSITION 2. — Equation (E) is oscillatory if the generalized Riccati inequality
(2) has no solutions near + «,

3. - Generalized Ricecati inequalities.

By Proposition 2, oscillation criteria for (E) follow from conditions which imply the
nonexistence of solutions near + o of inequality (2). For the sake of completeness, we
will consider the inequality

® h’BMMI(r),
(1)

more general than (2). We assume that a > 1, p is a positive continuous function, and ¢
is a continuous function defined near + «. We emphasize that ¢ need not be nonnega-

o«

tive. Infinite integrals appearing in the sequel are improper: I = ,,li,"&,, f
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PROPOSITION 3. - Inequality (6) has no solutions defined near + « if there is a po-
sitive C'-function ¢ satisfying

© ]0(7")|(P'(7')|a 1Aa-1) .
- dr
(8) _ = ,
f P (]!
and
) j o(r) g(r) dr= o .

PROOF. — Suppose on the contrary that (6) admits a solution he C![R, »). We may
assume that ¢ is defined for » = R. Multiplying (6) by ¢, and integrating both sides of
the resulting inequality on [R, 7], we have

r r h a T
(10) Mﬂﬂﬂ?q+!@ﬂ@+f£LL@+fwm&
P
R R R

where ¢; is a constant. By Holder’s inequality we have

r TP p \ve " o|h|® la
[ing1as=[{ L) a1 L) e 1ds el [ Zolas] = ctmone,
5 p % E p

R
Ny 1/(a—-1) (a~1)a
Cz=(f(£) |q3:'a/(a-—1)ds)
R (p

is finite by (7), and the function H is defined by the last equality. Hence (10) implies
that

where

aD M) - GUHWI 4 D HOY+ o j‘p' ds+j 9qds,

for every r=R. Since a > 1, the function —c, £V + &/2 is bounded from below on
[0, ). Then, assumption (9) shows that the right hand side of (11) tends to + » as r—
— + oo, It follows that a(r) > 0, if » = ry, for some sufficiently large r,. Again from (11)
we have

12) ) o(r) = = j Ph” s
2R P
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if =7, for some sufficiently large r, = r,. Differentiating H, we obtain by (12)

[A(r) p(r)]* 27 [H(n))"

H' () = > , >, .
D e mE T g o

Dividing the both sides by [H(¥)]* and integrating, we have

ds

—7> r21,

1 r
—— [H)P =27
a-1 n PP

which contradicts (8). The proof is complete.

4. ~ Oscillation criteria for equation (E).
Now we are in a position to state our main results.

THEOREM 4. — Equation (E) is oscillatory if there exists a positive C-function o
satisfying '
® N-1 ’ m o
IT e dr< o, I = -
[o(m1™~* [N~ o(r) e~ D

and

co

JTN_IQ(T) a(r) dr= o .

COROLLARY 5. ~ (i) Equation (E) is oscillatory if

jrm_l_fﬁ(T)d’i"=°° fo’r‘ some £>0.

(i) Let N <m. Then, equation (E) is oscillatory if

o

J’}"N_IE(T) dr= oo,

(ifi) Let N =m. Then, equation (E) is oscillatory if

ij_l(logT)m_l_sﬁ(r) dr= o for some ¢>0.

Since these results can be easily proved by combining Propositions 2 and 3, the
proofs are left to the readers.
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REMARK 6. — The assumption ¢ > 0 in the statement of Corollary 5 can not be weak-
ened to €2 0. In fact, if N+ 1—2m >0, the equation

div(|Du|™ 2Du) + (N +1—2m) |z| ™™ |u|™ 2u=0,

has the positive solution u(z) = |x| !, and for this equation, obviously

©

[rrtamy dr= .

REMARK 7. - Let us consider the case where a has radial symmetry: a(x) = ao(|z|)
for some ay(r). In this case, obviously @ = a,. Suppose moreover that ay(r) =0 near
+ o, Then, it has been shown [2,4] that:

(i) Let N > m. Then, equation (E) has positive radial solutions defined near o if

o«

Jfr’”‘lao(r) dr < o .

(ii) Let N = m. Then, equation (E) has positive radial solutions defined near « if

-]

frm“l(logr)m‘lao(r) dr<o.

Comparing Remarks 6 and 7 with Corollary 5, we find that our results are optimal
in some sense.

ExAMPLE 8. — Let us consider the equation

1+ ksin |z|
——L
||

where k> 1 is a fixed constant, and ve R is a parameter. Notice that the coefficient
function oscillates near o,

div (| Du|™ % Du) +

Im—Zu:(),

(i Let v <m. Then, this equation is oscillatory. This follows from (i) of Corol-
lary 5.

(ii) Let v > m. Then, as in [2,4] we can construct a positive (radial) solution of
this equation defined near o.

Acknowledgement. The author would like to express his sincere thanks to the referee
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