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1. INTRODUCTION AND STATEMENT OF RESULTS

Let G,,, n = 2r, denote the Grassmann manifold of all linear r-subspaces in the
real Euclidean n-space R". After Hsiang and Szczarba’s paper [3] (cf. Theorem 1.1
ibid.) had appeared it became reasonable to ask how to explicitly express the Stiefel-
Whitney class wy(G,,) € HYG,,; Z,) in terms of wyy,,), i = L,...,r, the Stiefel-
Whitney classes of the canonical r-plane bundle y, , over G, ,.

This question turned out to be difficult but, at least to some extent, manageable:
[7] gives an insight into the cases r = 2 and r = 3: in [8], the class of maximal
dimension, W,,—,(G,.), is expressed as a determinant; in [2], the classes w,(G,.,),
k £ 9, are computed as polynomials in wy(y,,), i = 1,...,r, and in [4], a more
effective method (as compared to that of [2]) of inductive computation of w,(G,,)’s
will be described and illustrated by some new complete formulae, e.g. for w,4(G, ,).

On the other hand, it seems to be impossible to get a complete formula for w,(G, ,)
with k, n, r arbitrary.

Nevertheless, we prove the following general result.

(1.1) Theorem. Let w; abbreviate w{y,,) € H (G, ,; Z,), and for any positive

integer p let p; be its i-th (i > 0) dyadic coefficient. Then we have, for j = 2:
(1) Waj-2(G,p) = noWaj—y + (ny + ro) Wy + (ny + ro) Wiw3, 5 + ...,
(ii) waj-1(Gny) = noWaj—1 + no(ny + ro) wews;_; +

+ no(ny + ro) Wiw3;_5 + ..ny
(iii) waf(G,y) = nows; + (ny + 1) W3, + (1 + ny + ro)wiwd; g + ...,
(iv) Waj+1(Gny) = noWajr1 + no(ny + ro) wyws; +

+ no(L + ng + ro) wiws,_; + ...

We hope that these formulae can be extended. But even in the present form they
find quite interesting applications. We content ourselves with mentioning just one,
namely that to the vector fields problem on G, ,.

As is well-known, the Euler-Poincaré characteristic of even-dimensional real
grassmannian does not vanish. Therefore the question, what is the maximal number
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of everywhere linearly independent tangent vector fields on G, ,, the so-called span
G, , (cf. [10], for example), is intriguing only when n is even and r is odd.
Writing such an odd r as 2s — 1, we put:
d(nr)=max{jeN; 2<j<s—1,4<n-r},
a'(n,r)=max{jeN; 2<j<s, 4 —-2<n-r},
a(n,r) = max {4d’,4a" — 2},
b(n,r) =max{jeN; 2<j<s 4<n-—r},
where we set max @ = 0.
Of course, these a(n, r) and b(n, r) are non-trivial provided s = 2 withn — r 2 7
and n — r = 9, respectively. This, however, covers almost all cases of interest.
Indeed, the case r = 1 is that of the well-understood projective spaces.

Now Theorem (1.1) yields

(1.2) Proposition. If n = 0 mod 4, then Wa(G,,,,) +0 and if n = 2 mod 4, then
W4b(Gn,r) * 0.

(1.3) Corollary. If n = 0mod4, then span G,,<r(n—r)— a(n,r) and if
n = 2mod 4, then span G,, < r(n —r) — 4b(n,r).

nyr =

A little thinking of (1.2) justifies

(1.4) Conjecture. For each m =0, meN, there exists k(m)eN such that

Wak-2(Ga-2m-2,2k-2m-1) + O for any k 2 k(m).
As one sees easily, in fact just the case of m even is still open.

2. PROOFS OF RESULTS

Let T(G,,) denote the tangent bundle of G, . Since by [3],

(2.1) T(G,r) @ Vuyr ® Vur = MYr s

we shall begin with establishing some facts about the Stiefel-Whitney classes of the
n-fold Whitney sum ny = n @ ... ®n and of the tensor square n ® 1, n being
an r-plane bundle over a paracompact space.

The k-th Stiefel-Whitney class wy(ny) is easily expressible in terms of w . wi®),
where i(1) + 2i(2) + ... + ki(k) = k and w; abbreviates w,(n). Namely, it is rather
obvious that the coefficient of such a monomial is

(22) <i('z))) (" 17(1")(0)) (" —10) P —ilk — 1)> mod 2,

k
with i(0) = n — Y i(j).
i=1
To decide whether a binomial coefficient is 0 or 1 mod 2, it is very convenient to

i(1)
1 ..
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use the following classical result

(2.3) (i) =11 (Z) mod 2,

where, as always in the paper, p; means the same as in (1.1).

Equipped with this, one checks at once that the following holds:

(2.4) Lemma. Let w; abbreviate w(n) for an r-plane bundle n over a paracompact
space. Then

Wa(nn) = ngwa, + nywZ + 0. wiw?_ + ..., for k=1.

At this moment we shall pass to the study of the tensor square. For our purposes
here, it will be sufficient to prove

(2.5) Proposition. With the notation of (2.4), for j = 2 we have

W4j—2(’1 ® ’1) =0.wy;_, + ro“’%j—x + r0w§W§j—2 + ...
wei(n®n) = 0.wy; + rows; + (L4 ro) wiw3,_( + ...
Moreover, wi(n @ 1) = 0 for any odd k.

Proof. Let gy, ..., 0, denote the elementary symmetric functions in variables
X1, ...» X Then (cf. [9]) there is a unique element &, in the ring Z,[x,, ..., x,] of
polynomials over the integers modulo 2, having the property

r r

(26) ¢r(o'ly AR 0',.) = n (1 + X; + xj) ’

i=1 j=1
W(’? ® '1) = ¢,.(W1, (XRE] wr) D)

where w( ® 7) denotes the total Stiefel-Whitney class of n ® 7.

Therefore,
(2.7) D04, ... 0) =1+ G + ... + 35,
where &,, k =1,...,(}), is the k-th elementary symmetric function in variables
X + x5, 1 <J.

Observing that each G, is a homogeneous symmetric polynomial of degree k in
Xy, ..., X,, We conclude that each G, is uniquely expressible as a polynomial in

01, ..., 0. Thus, it is immediate that w,(y ® #) = 0 for k odd and that in w,(n ® #)
with k even no term of the form wi ... wi® with some i() odd can occur.

In order to make the proof complete, it remains to verify the following lemma.

(2.8) Lemma.
() 6, = 10 + 70010%—1 + ..., if k = 3 is odd,
(i) 6, = roo + (1 + 19) 64044 + ..., if k = 4 is even.
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Proof. We shall proceed by induction on k. By [2] we know that
63 = (14 1ro) (1 + ry) 0] + ro0,0;5 + 1403,
Fo=((1 +ro)(1 + 1) + 1)t + (1 + ro)oo3 + (L + ry)o; +
+ro(1 + 1ry) 010, + 1o0, .

Supposing (i) and (ii) hold for all j < k, k = 5, we distinguish three possibilities:
(a) k = 2s + 1 for some s = 2,
(b) k is even, but not a power of 2,
(c) k = 25 for some s = 3.

Before we shall go any further, let us recall that the well-known primary coho-
mology operation Sq’, the i-th Steenrod square, can be applied also to any elementary
symmetric function (cf. [6], if necessary).

In fact, in the ring Z,[o, ..., 6,] one has the classical formula of Wu,
; Lfj—i+k—1
(2.9) Sq'(o;) = ). (J k ) Oi-k0j+k -
k=0
This is of course still valid, when ¢;, j = 1,...,r, are replaced by the Stiefel-
Whitney classes w,(n), j = 1, ..., r, n being an arbitrary r-plane bundle.

Now we are able to show that the induction works indeed in all the cases (a)—(c).
(2.10) Ad (a). By (2.9), we have
Gas1 = G102 + 547(G2s) -
Since G; = (1 + ro) 0y, as is easily seen, the induction hypothesis implies
O2s+1 = 7901025 + To02541 + ooy
which verifies the assertion in the case (a).
(2.11) Ad(b). Now k = 2" + Y k;2/ in the dyadic expansion, where i > 0 and

jZi+1
k; = 1 for some j. Hence, elementary considerations including (2.3) give that

v
formula (2.9), we obtain

—v+1 ~3
(2.12) &, = 6,5, + (“ ; + )&,,_26,,+2 + o (Z - 2)626k_2 + 5¢%(5.) .

(u - 1> = 1mod 2 for u = tk + 2"! and v = 1k — 2°~1. Therefore, by Wu’s

Obviously, neither o, nor o,0;,—; can arise in any term other than Sq*(g,). Thus,
by induction hypothesis (note that k = 6 ensures u = 4), we need to investigate
Sq*(roo, + (1 + 1o) 046,— + ...) and, in fact, just Sq"(s,) and Sq*(¢,0,—,).

However, it is clear that

Sq*(o,) =0, + 0. 06,044 + ...
and
5¢°(616,-1) = 6103_1 + 0.0 + ....
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Indeed, since u—1 = (" -2 + u=2 and even = Omod 2, we have
v v v —1 odd

also (u L— 2) 1 mod 2.

Altogether, o, = roo, + (1 + ro) 6,64—; + ..., as desired.

(2.13) Ad(c). Now we cannot proceed as we did in the previous situation. As a matter
of fact, there is no difficulty in proving that the existence of even numbers u > v > 0

-1
such that u + v = z and (u 0 ) = 1 mod 2 implies that z is not a power of 2.
Nevertheless, we can employ Steenrod squares again. Namely, using (2.9) we get
(2.14) Sq*(G,) = G402 + Sq*(Gi->) -

Further, let us denote the coefficients of o, and o0, _, in &, by p and g, respectively.
We will show that p =1, g =1 + r,.

It is easily seen that the left-hand side in (2.14) takes the form po,.., + 90,0, +
+ .... On the right-hand side, 0, , and ¢,0;,; may occur only via Sq*(&,-5). This
is, by the induction hypothesis, Sq*(roo;—2 + (1 + ro) 61043 + ...), where three
dots are put instead of the monomials that can produce neither 6y, nor ,0; ;.

Since Sq*(04—5) = 0442 + 0. 0104y + ... and Sq*(o,04-3) = 0. 044, +
+ 6,06341 + ..., We necessarily have p = ro and ¢ = 1 + ry, as was needed. This
concludes the proof of both (2.8) and (2.5).

(2.15) Proof of Theorem (1.1). Clearly, w,(G,,) = now,. Since wy(G,,) =
= wy(G,,) We—1(G,,) + Sq'(we-1(G,,)) for any odd k, just the cases (i) and (iii)
need a proof.

We know by [2] that

we(G,) = nows + (ny + ro) wi + (ny + ro) wiws + ...,
wg(G,,) = nows + (ny + ro) wi + (1 + ny + ro) wiwi + ...,

indeed hold. Hence, we can continue the induction supposing (i) and (iii) to be
true for all even numbers less than k. Let us take the case k = 4s — 2 for some
s = 3.

One easily computes (or cf. [2])

(2.16) wy(G,,) = (1 + ny + ro) wi + nows,
and
(.17 el ®9) = (1 + ro) wi.

From (2.1), by elementary properties of Stiefel-Whitney classes and by (2.5),
we obtain

wi(G,,) = Was—a(Gop) Wa(y ® 7) + ... + wy(G,,) was—a(y ® 7) +
+ W4s—-2(y ® '))) + W4s—2(n))) ’
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where we have left out all the terms that cannot produce any one of Was_5, W,_1,
wiw3,_,. Now, by the induction hypothesis, (2.16), (2.17), (2.4) and (2.5), one obtains
the desired result for wy(G, ).

Case k = 4s for some s = 3 is completely analogous, and therefore omitted.

(2.18) Proof of Proposition (1.2). As is well-known, the cohomology ring
H*(G,,; Z,) can be identified with

ZZ[WI(’Yn,r)9 B Wr())n,r)]/']n,r >

where J,, is an ideal with its k-th homogeneous component J&) = 0 fork < n — r
(cf. [1,2,5], for example).
This, when applied to Theorem (1.1), proves Proposition (1.2).
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