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1. Introduction and main results. Suppose that X1, X2

and Y are independent standard Brownian motions starting

from 0 and let

X(t) =

{
X1(t) if t ≥ 0,

X2(−t) if t < 0.

We will consider the process {Z(t) df= X(Y (t)), t ≥ 0} which

we will call “iterated Brownian motion” or simply IBM. Fu-

naki (1979) proved that a similar process is related to “squared

Laplacian.” Krylov (1960) and Hochberg (1978) considered

finitely additive signed measures on the path space correspond-

ing to squared Laplacian (there exists a genuine probabilistic

approach, see, e.g., Ma̧drecki and Rybaczuk (1992)). A pa-

per of Vervaat (1985) contains a section on the composition of

self-similar processes.
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The present paper is devoted to studying path properties

of IBM. We want to examine how the lack of independence of

increments influences the results and estimates which are well

understood in the Brownian case. This may be viewed as a

prelude to a deeper study of the process.

First, however, we will address the following problem.

Problem 1. Given {Z(t), t ≥ 0}, can one determine

{X(t), t ≥ 0} and {Y (t), t ≥ 0}?

We start with a remark that there are many examples of

functions f, g, f̃ and g̃ such that

(1) f(g(t)) = f̃(g̃(t))

for all t ≥ 0 although f and f̃ are not identically equal to

each other and neither are g and g̃. Indeed, given any f

and g, identity (1) will be satisfied if we take f̃(t) df= f(t/2)

and g̃(t) df= 2g(t). This simple observation does not imply the

negative answer to Problem 1 because if {X(t), t ≥ 0} and

{Y (t), t ≥ 0} are “typical” Brownian paths then {X(t/2), t ≥
0} and {2Y (t), t ≥ 0} are not typical — they have the “wrong”

quadratic variation.

Suppose that processes X and Y are defined on a proba-

bility space Ω. We will write Xω(t) and Y ω(t) to indicate the

dependence on ω ∈ Ω.



Theorem 1. There is a set N ⊂ Ω of probability 0 such that

if ω, ω′ ∈ Ω \N and

Xω(Y ω(t)) = Xω′(Y ω′(t))

for all t ≥ 0 then either

Xω(t) = Xω′(t), t ∈ R, and Y ω(t) = Y ω′(t), t ≥ 0,

or

Xω(t) = Xω′(−t), t ∈ R, and Y ω(t) = −Y ω′(t), t ≥ 0.

Problem 2. Given {X(X(t)), t ≥ 0}, can one determine

{X(t), t ≥ 0}?

Theorem 2. There is a set N ⊂ Ω of probability 0 such that

if ω, ω′ ∈ Ω \N and

Xω(Xω(t)) = Xω′(Xω′(t))

for all t ≥ 0 then Xω(t) = Xω′(t) for all t ∈ R.

The following problem is analogous to (1). Do there exist

continuous functions f : R → R and f̃ : R → R such that

f(0) = f̃(0) = 0 and

(2) f(f(t)) = f̃(f̃(t))

for all t ≥ 0?



Example 1. We will construct functions f and f̃ which satisfy

(2) and “look like” Brownian paths. Choose any continuous

function f which satisfies the following conditions.

(i) f(t) = f(−t) for all t ≥ 0,

(ii) f(t) ∈ [0, 1] for all t ∈ R,

(iii) f(t) = f(1− t) for all t ∈ [0, 1],

(iv) f(0) = 0 and f(2) = 1/2,

(v) f(t) 6= 1/2 for some t > 2,

(vi) f is nowhere differentiable and the quadratic variation of

f over [s, t] is equal to t− s for all 0 < s < t < ∞.

Then let f̃(t) = f(t) for t ∈ [−2, 2] and f̃(t) = 1 − f(t)

for |t| ≥ 2. It is easy to see that there exist functions f and f̃

satisfying all of the above conditions. It is elementary to check

that functions f and f̃ satisfy (2).

The above example is not totally satisfactory because it

hinges on the fact that the functions f and f̃ are bounded and,

therefore, they lack one of the simplest properties of Brownian

paths. We give a proof of Theorem 2 which uses the same

rather deep properties of Brownian paths which are utilized in

the proof of Theorem 1. One may ask whether Theorem 2 may

be proved using only simple facts about Brownian trajectories.

Problem 3. Suppose that X is a Brownian sheet and Y is

a two-dimensional Brownian motion starting from (2, 2) and



stopped at the hitting time T of the circle {z ∈ R2 : |z −
(2, 2)| = 1}. Let Z(t) = X(Y (t)). Given {Z(t), t ≥ 0} and

Y (T ), can one determine {Y (t), t ≥ 0}?

It is quite obvious that Z cannot determine X as Y visits

only a compact subset of the plane. We do not know the answer

to Problem 3.

Now we turn to the Law of Iterated Logarithm. A stan-

dard proof of LIL for Brownian motion (Karatzas and Shreve

(1988) 2.9.23) uses the independence of Brownian increments.

Since the increments of IBM are not independent, one may

wonder whether a version of the LIL holds for IBM and how

difficult it is to prove. Let us start with some simple obser-

vations. By the usual LIL, a.s. for every ε > 0 there exists

t0 = t0(ε) > 0 such that

|X(t)| ≤ (1 + ε)
√

2t log log(1/t)

and

|Y (t)| ≤ (1 + ε)
√

2t log log(1/t)

provided |t| < t0. Hence for small t > 0,

|Z(t)| = |X(Y (t))|

≤ (1 + ε)
√

2(1 + ε)
√

2t log log(1/t)×

×
√

log log(1/(1 + ε)
√

2t log log(1/t))

≤ (1 + ε)223/4t1/4(log log(1/t))3/4.



Since ε > 0 is arbitrary, we obtain

lim sup
t→0

|Z(t)|
t1/4(log log(1/t))3/4

≤ 23/4 a.s.

Theorem 3 below shows that this result is not sharp. The

reason is that in its derivation we have assumed the “worst

case” scenario in which some unusually large increments of X

match those of Y . Thus it is no surprise that the constant 23/4

on the right hand side of the last formula is replaced with a

smaller constant 25/4/33/4 in Theorem 3.

The lower bound in the proof of LIL for Brownian motion

uses the part of the Borel-Cantelli Lemma which requires in-

dependent events. It is perhaps worth noting that despite the

lack of independence of increments of Z, the proof of LIL for

IBM is not much harder than that for Brownian motion. This

may serve as an encouragement to further study of IBM.

Theorem 3. With probability 1,

lim sup
t→0

Z(t)
t1/4(log log(1/t))3/4

=
25/4

33/4
.

Theorem 3 and standard arguments easily imply that

lim sup
h↓0

Z(t + h)− Z(t)
h1/4(log log(1/h))3/4

=
25/4

33/4
a.s.

for every t > 0.
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2. Proofs.

Proof of Theorem 1. The set N ⊂ Ω will contain several fami-

lies of “exceptional” paths. First of all, we will choose N so that

for all ω ∈ Ω \N the functions t → Xω(t) and t → Y ω(t) are

continuous, non-constant and non-monotone on every interval

and satisfy Xω(0) = Y ω(0) = 0. Hence, the local maxima of

Xω are dense on the real line. We may also suppose that if

Xω attains local maxima at t1 and t2 then X(t1) 6= X(t2) (in

other words, all local maxima are distinct). Moreover, we can

assume that for ω ∈ Ω \N

lim sup
t→∞

Y ω(t) = − lim inf
t→∞

Y ω(t) = ∞.

Suppose that −∞ < a < b < ∞ and let

M = maxt∈[a,b] Y (t). Then with probability 1, X(M) is not a

maximum of X over any interval [M − ε,M ] or [M, M + ε] for

any ε > 0. The same is true if we let M = mint∈[a,b] Y (t). By

taking the union over all rational pairs (a, b) we may choose



N so that for ω ∈ Ω \N and every local extremum M of Y ω,

Xω(M) is not a maximum of Xω over any interval [M − ε,M ]

or [M, M + ε] for any ε > 0. Let us call this property (P ).

This completes our description of N for now. We will throw in

some more sets into N later.

We will argue that if M is a local maximum of Z then it is

also a local maximum of X. Suppose that Z(t) = X(Y (t)) =

M is a local maximum of Z and let s = Y (t). Assume that

M = X(s) is not a local maximum for X. Then for every ε > 0

the process X takes a value greater than M in [s − ε, s] or in

[s, s+ε] and without loss of generality we may assume that for

every ε > 0 we have X(v) > M for some v ∈ [s, s+ε]. This and

the fact that M = Z(t) is a local maximum for Z imply that

there is some δ > 0 such that Y (u) ≤ s for all u ∈ [t− δ, t + δ].

In other words, s = Y (t) is a local maximum for Y . Moreover,

we must have X(v) ≤ M for all v ∈ [s− δ1, s] for some δ1 > 0.

Hence, M is the maximum of X over [s − δ1, s]. This and

the fact that s = Y (t) is a local maximum for Y contradict

property (P ). We conclude that if M is a local maximum of Z

then it must be also a local maximum of X.

Vice versa, if M is a local maximum of X then it is also a

local maximum of Z. Suppose that M = X(t) is the maximum

of X over (t− ε, t + ε) for some ε > 0. Find s and δ > 0 such

that Y (s) = t and Y (u) ∈ (t − ε, t + ε) for u ∈ (s − δ, s + δ).

Then clearly M is the maximum of Z over (s− δ, s + δ).



Let us list some elementary properties of IBM Z(t) which

hold for all ω ∈ Ω \ N . We have Z(0) = 0, the function

t → Z(t) is continuous, non-constant and non-monotone on

every interval. Hence, the set of times when Z attains a local

maximum is dense in [0,∞).

We remark parenthetically that if M = Z(t) is a local

maximum of Z then for each ε > 0 the interval [t − ε, t + ε]

contains uncountably many s such that Z(s) = M . We skip an

easy proof as we do not need this fact in the sequel. We have

to remember though that two local maxima of Z attained at

different points may have the same value.

Let {M1,M2, . . . } be the sequence of the values of all local

maxima of Z ordered in an arbitrary way. We do not place the

same value more than once in the sequence. In other words,

Mj 6= Mk if j 6= k. For j ≥ 1, let sj be such that X attains the

local maximum Mj at sj . Recall that sj is uniquely defined.

The local maxima M1,M2 and M3 come in a certain order, say,

s1 < s3 < s2. We may gain some knowledge about the order

in which they come by examining the path of Z as follows.

There exist t1 < t3 < t2 such that Y (tj) = sj for j = 1, 2, 3

and Y (t) ∈ (s1, s2) for all t ∈ (t1, t2). It follows easily that

Z attains the local maximum Mj at tj for j = 1, 2, 3, and,

moreover, if Z attains a local maximum at t ∈ (t1, t3) then

this maximum cannot be equal to M2. Likewise, any local

maximum of Z between t3 and t2 cannot be equal to M1. It



is easy to see that Z may have the last two properties only

if s3 is between s1 and s2 (although the precise order may be

s1 < s3 < s2 or s2 < s3 < s1). Our argument can be repeated

for any triplet (Mj1 , Mj2 , Mj3) of local maxima of X.

We will build a function {Ṽ (t), t ∈ (−∞,∞)} and later

“time-change” Ṽ to obtain {X(t), t ∈ (−∞,∞)}. First we will

inductively define a function V (u) for certain values of u. We

start with V (1) df= M1 and V (2) df= M2. Suppose that the func-

tion V is defined at points uj , 1 ≤ j ≤ k, and V (uj) = Mj for

j ≤ k. Now we use the argument from the previous paragraph

to determine for each triplet (Mj1 ,Mj2 ,Mj3), j1, j2, j3 ≤ k+1,

of local maxima which maximum comes between the other two

on the path of X. The set Ak
df= R \ ⋃

j≤k{uj} consists of

a finite number of intervals and we will choose uk+1 in one

of the intervals (say, I) so that for each triplet (uj1 , uj2 , uj3),

j1, j2, j3 ≤ k + 1, the point uj1 is between uj2 and uj3 if and

only if sj1 is between sj2 and sj3 on the path of X. It is easy

to see that such a choice of I is possible and unique. To be

more specific, if the endpoints of I are uj1 and uj2 then we let

uk+1 = (uj1 +uj2)/2. If the endpoints of I are uj1 and ∞ then

uk+1 = uj1 + 1 and finally, if the endpoints are −∞ and uj1

then uk+1 = uj1 − 1. Then we let V (uk+1) = Mk+1.

We will show that the function V (u) is defined for a set

of u’s which is dense in R. If there is ũ < ∞ such that our

procedure does not define V (u) for u > ũ then there must exist



the greatest or the smallest time when the Brownian motion

X attains a local maximum — this is impossible. For the same

reason there is no finite lower bound for the set of u’s for which

V is defined. Suppose that there exists an open interval (v1, v2)

such that V (u) is not defined for any u ∈ (v1, v2). We may

suppose that (v1, v2) is a maximal interval with this property

and we see that because of the way we choose uj ’s, we must

have v1 = uj1 and v2 = uj2 for some j1 and j2. This implies

that there is no maximum on the path of X between sj1 and

sj2 . This cannot happen and our assertion is proved.

Next we will show that V can be continuously extended to

R. Recall that X(sj) = V (uj) = Mj . Let us define a function

λ on
⋃

j{sj} by λ(sj)
df= uj . It follows from our construction

of V that the function λ is strictly monotone. Moreover it

cannot have jumps because then
⋃

j{uj} could not be dense

in R. Hence, λ and λ−1 are well-defined, strictly monotone

and continuous. Let Ṽ (u) df= X(λ−1(u)) for all real u. This

function is a.s. continuous since it is a composition of two

continuous functions. The functions V and Ṽ agree on a dense

subset of the real line, namely on
⋃

j{uj}. We conclude that

Ṽ is a (necessarily unique) continuous extension of V to the

whole real line.

We have proved that Zω uniquely determines a continu-

ous function Ṽ ω which is a (random) time-change of Xω by a

strictly monotone and continuous function λ−1
ω . Suppose that



there exist ω and ω′ such that

Ṽ ω(u) = Xω(λ−1
ω (u)) = Xω′(λ−1

ω′ (u))

for all u. Then there exists a strictly monotone and contin-

uous function γ = γω,ω′ such that Xω(t) = Xω′(γ(t)) for all

t. Theorem 1.5.8 of Karatzas and Shreve (1988) easily implies

the following two facts. First, with probability 1, for all ratio-

nal s and t, the quadratic variation of X over [s, t] is equal to

t− s (we add the trajectories which do not have this property

to the set N). Second, for all rational s and t, the quadratic

variation of Xω over [s, t] is equal to the quadratic variation

of Xω′ over [γ(s), γ(t)] assuming that ω, ω′ /∈ N (note that γ

maps a sequence of partitions of [s, t] with the mesh going to

0 onto a sequence of partitions of [γ(s), γ(t)] with the mesh

going to 0). The last two facts imply that γ is a linear func-

tion with the slope equal to 1 or −1. It follows that λ−1 is

unique up to an additive constant and up to the multiplication

by −1. We can find a sequence of local maxima {Kj}j≥0 of

Z such that Z(tj) = Kj and tj → 0 as j → ∞. Let sj be

such that Ṽ (sj) = Kj and Ṽ attains a local maximum at sj .

The sj ’s are uniquely determined and they must converge to a

point which corresponds to the origin on the path of X. More

precisely, sj ’s converge to s such that λ−1(s) = 0. This de-

termines λ−1 up to the multiplication by −1. Hence we either

have Xω(t) = Xω′(t) for all t ∈ R or Xω(t) = Xω′(−t) for all



t ∈ R. The part of Theorem 1 concerned with the path of X

is proved.

Suppose that the paths of Z and X are given. If Z attains

a local maximum M at t then there exists a unique s such that

X(s) = M and X attains a local maximum at s. We must

have Y (t) = s. Since the set of points where Z attains a local

maximum is dense on the real line, the path of Y is determined

on a dense set and, by continuity, on the whole real line. ¤

Proof of Theorem 2. First we prove that the paths of X have

a property analogous to property (P ) introduced in the proof

of Theorem 1. Suppose that −∞ < a < b < c < d < ∞
and let M = maxt∈[a,b] X(t). Given the values of X(b) and

X(c), the processes {X(t), t ∈ [a, b]} and {X(t), t ∈ [c, d]}
are independent. Hence, by conditioning on X(b) and X(c),

one can easily prove that with probability 1, X(M) is not a

maximum of X over any interval [M−ε,M ]∩ [c, d] or [M, M +

ε] ∩ [c, d] for any ε > 0. The same is true if we let M =

mint∈[a,b] X(t). By taking the union over all rational numbers

a < b < c < d and c < d < a < b we see that with probability

1, if M is a local extremum of X and X(M) 6= M then X(M) is

not a maximum of X over any interval [M − ε,M ] or [M, M +

ε] for any ε > 0. For any fixed interval [a, b] with rational

endpoints, the maximum of X over [a, b] is not attained at a

time M such that X(M) = M , with probability 1. By taking



the union over all such intervals, we see that with probability

1, X(M) 6= M for every local maximum of X. We conclude

that almost all trajectories of X have the property analogous

to (P ).

Now we can follow the proof of Theorem 1 and arrive at

the conclusion that for ω, ω′ ∈ Ω \N the condition

Xω(Xω(t)) = Xω′(Xω′(t)) for t ≥ 0,

implies that either

Xω(t) = Xω′(t), t ∈ R,

or

Xω(t) = Xω′(−t), t ∈ R, and Xω(t) = −Xω′(t), t ≥ 0.

In the latter case we would have Xω(t) = −Xω(−t) for t ≥ 0.

Such paths form an event of probability 0. ¤

Lemma 1. There exists c1 < ∞ such that for all t, a > 0

P ( sup
0≤s≤t

|Z(s)| > a) ≤ c1 exp(−3 · 2−5/3a4/3t−1/3).

Proof. Recall that for a > 0 (cf. Karatzas and Shreve (1988)

2.9.22)

(3)
∫ ∞

y

1√
2πt

exp(−x2/2t)dx ≤ 1
y

√
t

2π
exp(−y2/2t).



We derive two related estimates.
∫ ∞

b

√
x

t
exp(−x2/2t)dx ≤

∫ ∞

b

√
x

t

√
t

b

√
x

t
exp(−x2/2t)dx

= −
√

t

b
exp(−x2/2t)

∣∣∣∣∣

x=∞

x=b

=

√
t

b
exp(−b2/2t).(4)

∫ b

0

√
y exp(−a2/2y)dy ≤

∫ b

0

√
b

2
a2

a2

2
b2

y2
exp(−a2/2y)dy

=
√

b
2
a2

b2 exp(−a2/2y)
∣∣∣∣
y=b

y=0

= 2b5/2a−2 exp(−a2/2b).(5)

It is known (see Karatzas and Shreve (1988) 2.8.2) that the

density of the random variable sup0≤s≤t Y (s) is equal to

√
2/πt exp(−y2/2t)

for y > 0. It follows that the density of sup0≤s≤t |Y (s)| is

bounded by

(6) 2
√

2/πt exp(−y2/2t)

for y > 0. A similar formula holds for the density of the supre-

mum of X. We may combine it with (3) to obtain

P ( sup
0≤s≤y

X(s) > a) =
∫ ∞

a

√
2/πy exp(−z2/2y)dz

≤ (1/a)
√

2y/π exp(−a2/2y).



Hence, by symmetry,

(7) P ( sup
−y≤s≤y

|X(s)| > a) ≤ (4/a)
√

2y/π exp(−a2/2y).

If sup0≤s≤t |Y (s)| = y and sup0≤s≤t |Z(s)| > a then

sup−y≤s≤y |X(s)| > a. Thus, by conditioning on the value

of sup0≤s≤t |Y (s)| and using (6) and (7) we obtain

P ( sup
0≤s≤t

|Z(s)| > a)

≤
∫ ∞

0

(4/a)
√

2y/π exp(−a2/2y)2
√

2/πt exp(−y2/2t)dy

=
16

πa
√

t

∫ ∞

0

√
y exp(−a2/2y − y2/2t)dy.

(8)

We will split the interval of integration in the last formula

into three subintervals and estimate the integral for each one

of them. It is elementary to check that the maximum of the

function

y → exp(−a2/2y − y2/2t)

on the interval [0,∞) is attained at u
df= (ta2/2)1/3 and so

exp(−a2/2y − y2/2t) ≤ exp(−a2/2u− u2/2t)

= exp(−3 · 2−5/3a4/3t−1/3)



for all y > 0. This implies that

16
πa
√

t

∫ √
3u

2u/3

√
y exp(−a2/2y − y2/2t)dy

≤ 16
πa
√

t

√√
3u exp(−a2/2u− u2/2t)u(

√
3− 2/3)

= c2
u3/2

a
√

t
exp(−3 · 2−5/3a4/3t−1/3)

= c2
(ta2/2)1/2

a
√

t
exp(−3 · 2−5/3a4/3t−1/3)

= c3 exp(−3 · 2−5/3a4/3t−1/3).(9)

Now we use (4) to obtain

16
πa
√

t

∫ ∞
√

3u

√
y exp(−a2/2y − y2/2t)dy

≤ 16
πa

∫ ∞
√

3u

√
y

t
exp(−y2/2t)dy

≤ c4

a

√
t√
3u

exp(−(
√

3u)2/2t)

= c5t
1/3a−4/3 exp(−3 · 2−5/3a4/3t−1/3).(10)

The inequality (5) gives

16
πa
√

t

∫ 2u/3

0

√
y exp(−a2/2y − y2/2t)dy

≤ 16
πa
√

t

∫ 2u/3

0

√
y exp(−a2/2y)dy

≤ c6

a
√

t
2a−2(2u/3)5/2 exp(−a2/(2(2u/3)))

= c7t
1/3a−4/3 exp(−3 · 2−5/3a4/3t−1/3).



This, (8), (9) and (10) imply that

P ( sup
0≤s≤t

|Z(s)| > a)

≤ (c3 + c8t
1/3a−4/3) exp(−3 · 2−5/3a4/3t−1/3).

Choose c1 < ∞ so large that c3 + c8x
−1 ≤ c1 for x > 1 and

c1 exp(−3 · 2−5/3x) ≥ 1 for x ≤ 1. Then

P ( sup
0≤s≤t

|Z(s)| > a) ≤ c1 exp(−3 · 2−5/3a4/3t−1/3). ¤

Lemma 2. Fix some γ, β ∈ (0, 1). Then for sufficiently small

u > 0 we have

P ( inf
s∈[u,3u]

X(s)−X(γu) ≥ (1− 2β)(2/31/2)(u log log(1/u))1/2)

≥ log(1/u)−(2/3)(1−β)/(1−γ).

Proof. If y >
√

t then (cf. Karatzas and Shreve (1988) 2.9.22)

(11)
∫ ∞

y

1√
2πt

exp(−x2/2t)dx ≥ 1
2y

√
t

2π
exp(−y2/2t).

Thus

P (X(u)−X(γu) ≥ (1− β)(2/31/2)(u log log(1/u))1/2)

≥ ((1− γ)u)1/2 exp(−(1− β)2(4/3)u log log(1/u)/2u(1− γ))
2
√

2π(1− β)(2/31/2)(u log log(1/u))1/2

=
(1− γ)1/2 exp(−(1− β)2(1− γ)−1(2/3) log log(1/u))

4 · 3−1/2
√

2π(1− β)(log log(1/u))1/2

=
(1− γ)1/2 log(1/u)−(2/3)(1−β)2/(1−γ)

4 · 3−1/2
√

2π(1− β)(log log(1/u))1/2
.



For small u > 0

P ( inf
s∈[u,3u]

X(s)−X(u) ≥ −β(2/31/2)(u log log(1/u))1/2)

≥ P ( inf
s∈[u,3u]

X(s)−X(u) ≥ −3
√

2u) ≥ 1/2.

The Markov property applied at u yields for small u > 0

P ( inf
s∈[u,3u]

X(s)−X(γu) ≥ (1− 2β)(2/31/2)(u log log(1/u))1/2)

≥ 1
2
· (1− γ)1/2 log(1/u)−(2/3)(1−β)2/(1−γ)

4 · 3−1/2
√

2π(1− β)(log log(1/u))1/2

≥ log(1/u)−(2/3)(1−β)/(1−γ). ¤

Proof of Theorem 3. First we will derive the upper bound. Let

f(t) df= (25/4/33/4)t1/4(log log(1/t))3/4.

Choose some η > 1. Let γ = η4/3 and a = ηf(t). With this

choice of a, Lemma 1 gives

P ( sup
0≤s≤t

|Z(s)| > ηf(t)) = P ( sup
0≤s≤t

|Z(s)| > a)

≤ c1 exp(−3 · 2−5/3a4/3t−1/3)

= c1 exp(−η4/3 log log(1/t))

= c1(log(1/t))−γ .



Choose an arbitrary α < 1 and note that η2α−1/4f(s) >

ηf(αk) for s ∈ [αk+1, αk] provided k is large. We apply the

last formula with t = αk to obtain for large k

P ( sup
αk+1≤s≤αk

|Z(s)|/f(s) > η2α−1/4)

≤ P ( sup
αk+1≤s≤αk

|Z(s)| > ηf(αk))

≤ P ( sup
0≤s≤αk

|Z(s)| > ηf(αk))

≤ c1(k log(1/α))−γ .

We have
∑

k c1(k log(1/α))−γ < ∞ since γ > 1. The Borel-

Cantelli lemma implies that only a finite number of events

{ sup
αk+1≤s≤αk

|Z(s)|/f(s) > η2α−1/4}

occur. It follows that a.s.

lim sup
t→0

Z(t)
(25/4/33/4)t1/4(log log(1/t))3/4

= lim sup
t→0

Z(t)/f(t)

≤ η2α−1/4.

Since η and α may be chosen arbitrarily close to 1,

(12) lim sup
t→0

Z(t)
(25/4/33/4)t1/4(log log(1/t))3/4

≤ 1 a.s.

Next we will prove the lower bound.



Fix an arbitrarily small ε0 > 0 and find ε, α, β ∈ (0, ε0)

which satisfy the following conditions.

(i) γ
df= 4α1/2/(1− 2ε) < 1− 2ε,

(ii) δ
df= (1− β)/(1− γ) < 1,

(iii) (4α)1/2 ≤ ε((2/3)(1− α))1/2/2,

(iv) (4 · 4α1/2)1/2 ≤ (ε/2)(1− 2β)(2/31/2)(1− 2ε)1/2,

(v) ε < 1/2.

Let tk = αk and

uk = ((2/3)(tk − tk−1) log log(1/(tk − tk−1)))1/2

= ((2/3)(1− α)tk log log(1/((1− α)tk)))1/2.

Note that for large k we have 3(1− 2ε)uk+1 < 4α1/2uk.



For large k we obtain using (3) and (11)

P (Y (tk)− Y (tk+1) ∈ [(1− ε)uk, 2(1− ε)uk])

=
∫ 2(1−ε)uk

(1−ε)uk

1√
2π(1− α)tk

exp(−x2/2(1− α)tk)dx

≥ 1
2(1− ε)uk

√
(1− α)tk

2π
exp(−((1− ε)uk)2/2(1− α)tk)

− 1
2(1− ε)uk

√
(1− α)tk

2π
exp(−(2(1− ε)uk)2/2(1− α)tk)

≥ 1
4(1− ε)uk

√
(1− α)tk

2π
exp(−((1− ε)uk)2/2(1− α)tk)

=
exp(−(1− ε)2(1/3) log log(1/((1− α)tk)))

4
√

2π(1− ε)((2/3) log log(1/((1− α)tk)))1/2

=
(log(1/((1− α)tk)))−(1−ε)2/3

8(1− ε)((π/3) log log(1/((1− α)tk)))1/2

≥ c4(log(1/((1− α)tk)))−(1−ε)/3

= c4(log(1/((1− α)αk)))−(1−ε)/3

≥ c5k
−(1−ε)/3.

(13)

Let

g(u) df= (1− 2β)(2/31/2)((1− 2ε)u log log(1/(1− 2ε)u))1/2.

Since γ
df= 4α1/2/(1 − 2ε) < 1 − 2ε, Lemma 2 implies for



large k

P ( inf
s∈[(1−2ε)uk,3(1−2ε)uk]

X(s)−X(4α1/2uk) ≥ g(uk))

≥ log(1/((1− 2ε)uk))−(2/3)(1−β)/(1−γ)

= log(1/((1− 2ε)(
2
3
(1− α)tk log log(1/((1− α)tk)))

1
2 ))

−2δ
3

≥ log(1/((1− ε)((2/3)(1− α)tk)1/2))−(2/3)δ

= log(1/((1− ε)((2/3)(1− α)αk)1/2))−(2/3)δ

≥ c6k
−(2/3)δ.

(14)

Let

Ak
df= { inf

s∈[(1−2ε)uk,3(1−2ε)uk]
X(s)−X(4α1/2uk) ≥ g(uk)}

∩{Y (tk)− Y (tk+1) ∈ [(1− ε)uk, 2(1− ε)uk]}.

By (13), (14) and the independence of X and Y ,

P (Ak) ≥ c5k
−(1−ε)/3c6k

−(2/3)δ.

Since −(1− ε)/3− (2/3)δ > −1,

∑

k

c5k
−(1−ε)/3c6k

−(2/3)δ = ∞.

Recall that 3(1 − 2ε)uk+1 < 4α1/2uk for large k. It follows

that for some large k0, the events {Ak}k≥k0 are independent.



Thus the Borel-Cantelli Lemma implies that with probability

1 infinitely many events Ak occur.

We have chosen α and ε so that

(4α)1/2 ≤ ε((2/3)(1− α))1/2/2.

The standard LIL implies that with probability 1 for all suffi-

ciently large k we have

|Y (tk+1)| ≤ (4tk+1 log log(1/tk+1))1/2

= (4αtk log log(1/αtk))1/2

≤ ε((2/3)(1− α)tk log log(1/((1− α)tk)))1/2

= εuk.(15)

We have assumed that

(4 · 4α1/2)1/2 ≤ (ε/2)(1− 2β)(2/31/2)(1− 2ε)1/2.

The LIL for the Brownian motion X shows that for large k

|X(4α1/2uk)|
≤ (4 · 4α1/2uk log log(1/(4α1/2uk)))1/2

≤ (ε/2)(1− 2β)(2/31/2)((1− 2ε)uk log log(1/(4α1/2uk)))1/2

≤ ε(1− 2β)(2/31/2)((1− 2ε)uk log log(1/(1− 2ε)uk))1/2

= εg(uk).

(16)



Recall that infinitely many events

Ak ={ inf
s∈[(1−2ε)uk,3(1−2ε)uk]

X(s)−X(4α1/2uk) ≥ g(uk)}
∩{Y (tk)− Y (tk+1) ∈ [(1− ε)uk, 2(1− ε)uk]}

occur a.s. By (15) and (16), the events {|Y (tk+1)| ≤ εuk} and

{|X(4α1/2uk)| ≤ εg(uk)} hold for all large k a.s. Hence

Y (tk) ∈ [(1− 2ε)uk, 3(1− 2ε)uk]

and

inf
s∈[(1−2ε)uk,3(1−2ε)uk]

X(s) ≥ (1− ε)g(uk)

for infinitely many k a.s. It follows that Z(tk) ≥ (1 − ε)g(uk)

occurs i.o. with probability 1. It is easy to check that

(1− 2β)(2/31/2)((1− 2ε)uk log log(1/(1− 2ε)uk))1/2

(1− 2β)(2/31/2)((1− 2ε)((2/3)(1− α)tk)1/4(log log(1/tk))3/4

goes to 1 as k →∞. Hence

lim sup
k→∞

Z(tk)

(25/4/33/4)t1/4
k (log log(1/tk))3/4

×

× 1
(1− 2β)(1− 2ε)1/4(1− α)1/4

= lim sup
k→∞

Z(tk)
2(1−2β)√

3
((1− 2ε)( 2

3 (1− α)tk)1/4(log log(1/tk))3/4

= lim sup
k→∞

Z(tk)
(1− 2β) 2√

3
((1− 2ε)uk log log(1/(1− 2ε)uk))1/2

= lim sup
k→∞

Z(tk)
g(uk)

≥ (1− ε) a.s.



Since ε, α and β may be chosen arbitrarily close to 0, we obtain

(17) lim sup
t→0

Z(t)
(25/4/33/4)t1/4(log log(1/t))3/4

≥ 1 a.s.

This and (12) prove Theorem 3. ¤
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