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1 Introduction

This paper examines a few relations between solution characteristics of an LP
and the amount by which the LP must be perturbed to obtain either a primal
infeasible LP or a dual infeasible LP. We consider such solution characteristics
as the size of the optimal solution and the sensitivity of the optimal value to
data perturbations. We show, for example, that an LP has a large optimal
solution, or has a sensitive optimal value, only if the instance is nearly primal
infeasible or dual infeasible. The results are not particularly surprising but
they do formalize an interesting viewpoint which apparently has not been made
explicit in the linear programming literature.

The results are rather general. Several of the results are valid for linear
programs defined in arbitrary real normed spaces. A Hahn-Banach Theorem is
the main tool employed in the analysis; given a closed convex set in a normed
vector space and a point in the space but not in the set, there exists a continuous
linear functional strictly separating the set from the point.

We introduce notation, then the results.

Let X,Y denote real vector spaces, each with a norm. We use the same
notation (i.e. || [|) for all norms, it being clear from context which norm is
referred to.

Let X* denote the dual space for X; this is the space of all continuous linear
functionals ¢* : X — R (continuous with respect to the norm topology). Endow
X* with the operator norm; if ¢* € X* then

llc*|| == sup{c"z : [|=]| = 1}

Define Y* and its norm analogously.

Let X** denote the dual space of X*. Note that X can be viewed as a
subset of X**; z € X induces the continuous linear functional on X~ given by
¢ c*z. If X = X** then X is said to be reflexive.

To make this introductory section expositionally clean we assume through-
out it that X is reflexive; no such restriction is placed on Y; in later sections
the requirement that X be reflexive is sometimes removed. Many important
normed spaces are reflexive, e.g., finite dimensional spaces regardless of the
norm, Hilbert spaces.

Let £(X,Y) denote the space of bounded (i.e. continuous) linear operators
from X to Y. Endow this space with the usual operator norm; if A € £(X,Y)
then

Al = sup{||A=[l; ||=|l = 1}.

Let Cx,Cy be convex cones in X,Y, each with vertex at the origin, i.e.,
each is closed under multiplication by non-negative scalars and under addition.
The cone Cx induces an “ordering” on X by



mllel ez —z"€eCx.

(It is easily verified that we obtain a partial ordering iff the cone Cx is pointed;
we do not assume pointedness.) Similarly, Cy induces an “ordering” on Y.

In this introductory section we assume Cx and Cy are closed.

Given A € L(X,Y),b€Y,c* € X* we define the LP instance d:=(A,b,c*)
by

sup c'z
zeX
st. Ar <
z > 0

Many researchers have studied linear programming in this generality (cf. [1],
[2], [3], [5]). Although linear programming from this vantage point is gener-
ally referred to by names such as “infinite linear programming’ we prefer the
phrase “analytic linear programming” because of close connections to functional
analysis.

Although we use the symbol “<” the reader should note that all common
forms of LP are covered by the general setting. For example, what one typically
writes as “Az = b” is obtained by letting Cy = {0}. Similarly, what one
typically expresses as “no non-negativity constraints” is obtained by letting
Cx = X.

The LP instance d has a natural dual which we now define.

First, the cone Cx has a dual cone in X* defined by

Cy ={ €X52eCx =&z2>0}

Define C} analogously.

The closed cones C% and C} induce orderings on X* and Y™ just as Cx
and Cy induced orderings on X and Y. Relying on these orderings, the dual
d* of d := (A,b,c*) is defined as the following LP:

inf y*b
ey
st yrA

>
yoo2

(Here, y* A is the linear functional z — y* Az. The linear transformation y* +—
y* A is an element of L(Y™, X™); it is the dual operator of A.)

Let val(d), val(d*) denote the optimal value for d,d*; if d is infeasible define
val(d) = —oo; if d* is infeasible define val(d*) = oco.



It is a simple exercise to verify the weak duality relation val(d) < val(d*).
However, unlike finite dimensional polyhedral linear programming, strong dual-
ity may be absent in analytic linear programming; it can happen that
val(d) < val(d*) even when d and/or d* is feasible. Conditions guaranteeing
that no such “duality gap “occurs are of interest.

Consider the space D consisting of all instances d = (4,b,c"); we view the
cones Cx,Cy (and hence the orderings) to be fixed independently of d.

For d = (A, b,¢*) € D define the norm of d as the value

lldl] := maz {||All, lléll; ll<™|I}-

Let Pri denote the set of all d € D which are (primal) infeasible. Let
Dual® denote the set of all d € D for which the dual d* is infeasible.
Given d € D define

dist(d, Prid) := inf{||d — d|};d € Prid},
the distance from d to the set of primal infeasible LP’s. Similarly, define
dist(d, Dual@) := inf{{|d — d||;d € Dual0}.

Let Feas(d) denote the set of feasible points for d, and let Opt(d) denote the
optimal solution set. It can happen that Opt(d) = # even when val(d) is finite
and the cones Cx and Cy are closed; in general, “sup” cannot be replaced by
“max” in specifying the objective of d.

Theorem 1.1 Assume X is reflezive, Cx and Cy are closed. Assume d =
(A,b,c*) € D. If d satisfies dist(d, Pri@) > 0 then statements (1) and (2) are

irue:

(1) There exists z € Feas(d) satisfying

161l
=]l < dist(d, Prid)

(2) Ifz' € Feas(d+Ad) where Ad := (—6, Ab, 6) (i.e. perturbation of b alone),
then there exists x € Feas(d) satisfying

maz{l, [|z']|}

llo = =l < N8I G55 Pra)

If d satisfies both dist(d, Prib) > 0 and dist(d, Dual@) > 0 then statements (3),
(4) and (5) are true:



(3)

— 18]} llell
dist(d, Pri0)

< val(d) = val(d")

llefl e~
= dist(d, Dual()

(4) Opt(d) # 0; moreover, if x € Opt(d) then

ll=ll < [dz’st(difbgual@)] [dist(‘lz(,zgﬁri@)]

(5) If Ad := (AA, Ab, Ac*) satisfies both ||Ad]| < dist(d, Pri0) and ||Ad|| <
dist(d, Dual(), then

lval(d + Ad) —val(d)] < [|AA] [dist(d‘}bg;%b—“uzsdn] [distt(!ccitili;:ilq:)Af*]l}lAdH]
| dist(d, Pj}:(li)“u Dual@)]
+ lAg] [ dist‘(‘f,fﬂ;;gf _C*IPMH} [dist(ci‘,i!ual(b)}
+flae] :dist(dlflill)"c;l“@??*llzld“] [dist(%w@)]

The propositions in Section 3 provide bounds which are more detailed; sev-
eral of the bounds allow both X and Y to be arbitrary normed vector spaces.

Note that the first order terms of the quantity on the right of the inequality
in assertion (5) of the theorem are bounded above by

1AAl | |Ab] |, A
1.
didyds | didy | dida (1.1)
where
dist(d, Prid) dist(d, Dual() .
= A Ty im 2 dg = min{dy, d2}.
: T : I ai= minidy, dz}

This bound depends cubically on the inverses of the relative distances d; and
d». In Section 5 we show by way of examples that this bound cannot be im-
proved in general; similarly for the other bounds in the theorem. However, the
results of Section 3 can be used to obtain better bounds for many special cases,
e.g., if |val(d)| < ||d|| then one obtains a bound analogous to (1.1) depending
quadratically on the inverses of di and d rather than cubically.



The theorem focuses on solution characteristics of d rather than d*; analo-
gous results pertaining to d* are discussed in Section 3.

Assertions (1) and (2) in the theorem are similar to results one finds in the
literature on linear equations, i.e., when the cones Cx and Cy are subspaces.
(See [11]). In this restricted context the term “maz{l,||z'||}” occurring in
assertion (2) can be replaced simply with “17; in fact, this replacement is valid
for arbitrary closed cones Cx and Cy if d = (A, b,¢”) has the property that

dist((A, b, c*), Prid) (1.2)

is independent of ¢ satisfying 0 < ¢ <1 (as it is if Cx and Cy are closed
subspaces).}
Assertion (2) of the theorem can be easily extended to allow perturbations

in A as well as b. If 2’ € Feas(d + Ad) where Ad = (AA,Ab,a) then z’' €
Feas(d+A'd) where A'd := (0, Ab—(AA)z’, 0) and hence assertion (2) implies
there exists z € Feas(d) satisfying

maz{1, ||z}

llz = 2ll < (IAbll+ 1AAN 1) 0 Prin)

The bounds asserted by the theorem will be useful in developing a complexity
theory for linear programming where problem instance “size” is defined using
quantities similar to condition numbers; see Renegar [3] and Vera [5] for work
in this direction.

Others have studied perturbations of linear programs but not in terms of
the quantities dist(d, Prif) and dist(d, Dual); cf. Hoffman [4], Mangasarian
[6], [7] and Robinson [9].

In the sections that follow we do not assume X or Y is reflexive unless
stated. However, we do assume X and Y are indeed normed as is natural for
perturbation theory.

Whenever we write “cone” we mean “convex cone with vertex at the origin”.

We do not assume the cones Cx and Cy are closed unless stated.

2 Duality Gaps

In this section we prove that if X is reflexive, Cx and Cy are closed, dist(d, Pril)
> 0 and dist(d, Dual®) > 0 then val(d) = val(d*), i.e. no duality gap. We begin
with well-known propositions from which the proof follows easily. For complete-
ness we include short proofs of the well-known propositions.

1To see this fact note we may assume that |jz/|| > 1. Let ¢ := 1/||2'|| and observe that
@/||«'}| is feasible for (A,tb, c*) and z' [||'] is feasible for (4, t(b+Ab),c*). Applying assertion
(2) to these “scaled” LP’s and using the assumption that {1.2) is independent of 0 < 2 < 1
gives the desired conclusion.



The exposition throughout the paper allows the reader to skip all proofs yet
still follow the main thread of the development.
Fix A € £(X,Y) and define

C(A):={beY;3 &> 0such that Az < b}.

It is easily verified that C(A) is a cone. Let C(A) denote the closure of C(A);

the closure is also a cone. If X and Y are finite dimensional and if the cones Cx

and Cy which define the orderings are polyhedral, then C(A) is polyhedral and

hence C(A) = C(A). In other cases the closure may contain additional points.
A system of inequalities

Az

x

b
0

IV IA

is said to be asymptotically consistent if b € E}'TA—), i.e. if it can be made
consistent by an arbitrarily slight perturbation of b.

The following proposition relies only on the local convexity of the normed
space Y. In the case of finite-dimensional polyhedral linear programming the
proposition is Farkas’ lemma.

Proposition 2.1 (Duffin [2]) Assume A € L(X,Y),b €Y. Consider the fol-
lowing two systems:

Az < b yvA > 0
z > 0 y* > 0
b < 0

The first system is asymptotically consistent if and only if the second is incon-
sistent.

Proof. Let C(A)* denote the set of all functionals y* € Y* satisfying
y*b > 0 for all b € C(A). Since in a normed space any closed convex set
can be strictly separated from a point not in the set by a continuous linear
functional (separation version of the Hahn-Banach Theorem; cf. [10], Theorem
3.4b), and since C(A) is a convex set (because C(A) is), it easily follows that

CTA) = {beY;y € C(A) = y"b >0} (2.1)

Noting that

c(A) = {b;3 2 >0,b> 0such that b = Az + b},



and recalling that {z;z > 0} and {b; b > 0} are cones, we have

CAy ={y €Y*;(z> 0=y Az >0) and (b2 0= y*b > 0)},

that 1s,

CA) ={y" €Y (y"A2 0) and (y" 2 0)}- (22)

The proposition follows immediately from (2.1) and (2.2). O

Shortly, we state a dual analog of the proposition. Before doing so we digress
to present a simple technical lemma important for establishing the analog.
Assuming A € L(X,Y), the system

Az < b < b—AzeCy
z > 0 & z € Cx

(2.3)

is naturally associated with a system which we will call its “double-dual
-extension”:

h— A p** ¢ C{/*
™ € C;{*

where z** € X**, CY¥ is the dual cone for C, Cy* is the dual cone for Cy,
and A** is the dual operator of the dual operator of A. Viewing X as a subset
of X** Y as a subset of Y**, it is trivial to see that Cx CC%, Cy ¢
Cy*; also, if € X then A**z = Az. Hence, any solution of the original
system is also a solution of the double-dual-extension. However, the double-
dual-extension can have solutions which are not solutions of the original system;
it can have solutions in X**\X. This possibility is a well-known obstruction to
the development of a symmetric duality theory for analytic linear programming.

To gain symmetry we occasionally impose additional assumptions; ironically,
these are not symmetric, being restrictive for X but not for Y. The following
lemma becomes important.

(2.4)

Lemma 2.2 Assume X is reflezive, Cx and Cy are closed. Assume A €
L(X,Y), b €Y. Then the solutions for the system (2.3) are identical with those
for the double-dual-extension (2.4).

Proof. It is a simple exercise using the separation version of the Hahn-Banach
Theorem to prove that Cy = Cy* NY since Cy is closed. Similarly, Cx =
Cy¥ NX = C¥ using X = X**. Since Az = A™z for all € X, the lemma
follows. O



Corollary 2.3 Assume X is reflexive, Cx and Cy are closed. Assume A €
L(X,Y), ¢* € X*. Consider the following two systems:

Az < 0 yvA > ¢
z > 0 Y > 0
'z > 0

The first system is inconsistent if and only if the second is asymptotically consis-
tent (meaning that it can be made consistent by an arbitrarily slight perturbation

of ¢*).

Proof. Replacing the first system of Proposition 2.1 with the second system of
the corollary, note that the appropriate second system for the proposition will
then have the same solutions as the first system of the corollary by Lemma2.2. O

Letting d = (A, b,c*) denote an LP instance, the asymptotic optimal value
Twval(d) is defined to be the supremum of the optimal objective values of LP’s
obtained from d by perturbing b by an arbitrarily small amount, that is,

Tval{d) := lim sup val(d).
sl0
lle—bll<s

where d := (4, b, c*). Of course tval(d) > val(d).

Recall that d* is the dual LP for d.

The following proposition is well-known. The condition Tval(d) # —oo sim-
ply means that if d is not itself feasible, then it can be made feasible by an
arbitrarily slight perturbation of b.

Proposition 2.4 If Tval(d) # —oo then Tval(d) = val(d*).

Proof. Let k € R and consider the following two systems:

I) Az < b Iy y*A-tc > 0
—c*z < -k y o > 0, t > 0
z > 0 y*b—tk < 0

where t € R. Note the following three facts:

i) I is asymptotically consistent iff I7 is inconsistent (by Proposition 2.1,
replacing Y there with Y x R, the operator z ~ Az with z — (Az, —c*z),
ete.);

ii) If y* is feasible for d* then (y", 1) is feasible for all constraints in 11
except perhaps y*b —tk < 0;



iii) If (y*,0) is feasible for II then fval(d) = —oo (because if (y*,0) is
feasible for II, then y* is feasible for the second system of Proposition
2.1 and hence that proposition implies the system Az < b,z > 0 is not
asymptotically consistent.)

If k < fval(d) then I is asymptotically consistent and hence, by (i), I1 is
inconsistent. Thus, by (ii), if y* is feasible for d” then y*b > k. Tt follows that
Tval(d) < val(d*).

If —co < Tval(d) < k then [ is not asymptotically consistent and hence, by
(i), IT is consistent. Assume (y*,t) is feasible for I1. By (iii), t # 0. Hence y* /¢
is feasible for d* and satisfies (y*/t)b < k. It follows that {val(d) > val(d”). O

Continuing to let d = (4, b, ¢*) denote an LP instance, and d* its dual, define
lval(d") =lim  inf val(d*)
I e li<s
where d* is the dual of d := (4,b,&").

Proposition 2.5 Assume X is reflezive, Cx and Cy are closed. If |val(d*) #
oo then |val(d*) = val(d).

Proof. The proof is analogous to that of Proposition 2.4, using Corollary 2.3
rather than Proposition 2.1, noting that X x R is reflexive if X 1s. O

Proposition 2.6 Assume X 15 reflezive, Cx and Cy are closed. If
dist(d, Prif) > 0 and dist(d, Dual() > 0 then val(d) = val(d*).

Proof. We know val(d) < val(d*) by weak duality. It thus suffices to prove that
if d is any LP instance satisfying

— o0 < val(d) < val(d") < o (2.5)

then either dist(d, Pri) = 0 or dist(d, Dual®) = 0. So assume d = (Ab,c*)
satisfies (2.5).
Proposition 2.4 implies there exists a sequence of pairs {(:, b;)} such that

A.’Ei

€L

b;
0,

IV IA

||b; — b]| — 0 and ¢*&; — val(d*). Similarly, Proposition 2.5 implies there exists
a sequence of pairs {(y},c})} such that



yi A
vi

AV Y

llex = ¢*|| — 0 and y}b — val(d).
We claim that either ||z;]| — oo or ||y} || — co. For assume otherwise. Then,
restricting to a subsequence if necessary,

limefz; = limc*z; = val(d*), (2.6)
limyfb; =limyb = val(d). (2.7)

Consider the LP instances d; := (4, b;, c}). Noting that z; is feasible for d; and
y! is feasible for dj, we have by weak duality

¢tz < val(d;) < wval(dy) < yib; (2.8)

From (2.6), (2.7) and (2.8) we find that val(d”) < val(d) contradicting (2.5).

Assuming ||z;|]| — oo, z; #0, we now prove that dist(d, Dual@) = 0. In
doing so we re-use notation.

By the extension version of the Hahn-Banach Theorem there exists ¢; € X~
such that ||cf|| = 1 and ¢} z; = ||2;]|.

Let € > 0 and consider the LP instances

1 - € — c*u;
d; = (A~— (———-) bicr, 0,¢" + (_____,) cf) .
|l (ES

Note that z; is feasible for d;; in fact, tz; is feasible for d; for all t > 0. Since
the objective value for d; at z; is positive, it follows that val(d;) = co. Hence
d; € Duall) by weak duality.

Let d; be obtained from d; by replacing the RHS vector 0 with 6. Then
d; € Dualf since d; € Dualf. Noting that |ld; — d|| — 0 since |Jz;]] — co and
¢*z; — val(d*) < oo, we finally have dist(d, Duall) = 0.

In similar fashion one proves that if ||yf|| — oo then dist(d, Pri§) = 0. O

3 Bounds

We prove various bounds depending on the quantities dist(d, Pri) and
dist(d, Dual®). For most propositions presented in this section, a dual analog
is also presented; of the two, we first present the one with fewest assumptions.

10



We always assume X and Y are normed spaces, Cx C X and Cy CY are
cones, A € L(X,Y),beY, ¢ € X*. No other assumptions are made unless
stated.

Given an LP d = (4,b,¢*), we continue to let Feas(d) refer to the set of
feasible points for d and Opt(d) refer to the set of optimal points; similarly we
have Feas(d*) and Opt(d*) with respect to the dual d”

In general one can have Opt(d) = § and —o0 < val(d) < 00, i.e., the supre-
mum, although finite, is not attained. Similarly, one can have Opt(d*) = 0 and
—o00 < val(d*) < oo.

Lemma 3.1 Assumed = (A, b,c*) satisfies dist(d, Pri®) > 0. Ify" € Feas(d*)
then

oy maz{|lc|l, y"o}
g™l < “dist(d Prib)

Proof. Let p € R be such that 0 < p < 1 and there exists b € Y satisfying
y*b = (1 — p)|ly*|l, ||bl] = 1; note that p can be chosen arbitrarily near zero if
not zero itself.

Let ¢/ € R satisfy p/ > 0. Consider the LP

d+ Ad:= (A+AA, b+ Ab, c¥)

where

aa == (=) ™

maa:{O,y*b+p’}> ~
Ab = — ( b
(1= p)lly*l

Note that since y* € Feas(d"),

y(A+AA) > 0
y > 0
v (b+Ab) < 0.

Proposition 2.1 thus implies d + Ad € Prif). Since

maz{||c*|l, ¥*b+ o'}
(1=p)llyll

and since p can be chosen arbitrarily near zero, the proposition follows by letting
Flo. o

llAd]l <

11



Lemma 3.2 Assume X is reflezive, Cx and Cy are closed. Assume d =
(A,b, c*) satisfies dist(d, Dual®) > 0. If z € Feas(d) then

maz {[bl], ="z}

llzlt < dist(d, Dual@)

Proof. Analogous to the proof of Lemma 3.1, using Proposition 2.3; begin by
noting the extension form of the Hahn-Banach theorem implies there exists
&* € X* satisfying ¢*z = 1 and ||¢*|| = 1. O

Proposition 3.3 Assume d = (A,b,c*) satisfies dist(d, Pri) > 0. If {y;} C
Feas(d*) satisfies yfb — val(d*) then

maz {||c*||, val(d)}
dist(d, Prid) (D

limsup [|y7{| <

Proof. Immediate from Lemma 3.1. O

Proposition 3.4 Assume Y is reflezive. Assume d = (A,b,c*) satisfies
dist(d, Pril) > 0 and Feas(d*) # 0. Then Opt(d*) # 0; moreover, if y* €
Opt(d*) then

maz{||e*||, val(d*)}
dist(d, Prid)

Iyl <

Proof. Proposition 3.3 shows that an additional constraint of the form ly'l <R
can be added to d* without changing the optimal value. The resulting feasible
region is bounded, closed and convex. Since Y™ is reflexive (equivalent to Y
being reflexive), the Banach-Alaoglu Theorem (c.f. [10], Theorem 3.15) implies
the optimal value is attained; thus Opt(d*) # 0.

The final bound is immediate from Proposition 3.3. O

Proposition 3.5 Assume X is reflezive, Cx and Cy are closed. Assume d =
(A,b,c*) satisfies dist(d, Duald) > 0 and Feas(d) # 0. Then Opt(d) # 0;
moreover, if z € Opt(d) then

maz{||b]|, —val(d)}

0
dist(d, Dual®)

llzll <

Proof. Analogous to those of Propositions 3.3 and 3.4, using Lemma 3.2. 0

Proposition 3.6 Assume d = (A, b, c*) satisfies dist(d, Pri) > 0. Then

—llell fe”] "
m < val(d™).

12



Proof. We may assume val(d*) < 0. Letting {yj} C Feas(d*) satisfy yjb —
val(d*), Proposition 3.3 implies

e ) )
Jiat(d_prigy = ~NPlHimsuplly; | < val(d"). O

Proposition 3.7 Assume X is reflexive, Cx and Cy are closed. Assume d =
(A, b, c*) satisfies dist(d, Dual®) > 0. Then

el fle~ll

Proof. Analogous to the proof of Proposition 3.6 using Proposition 3.5. O
Proposition 3.8 Assume X is reflexive, Cx and Cy are closed. Assume d =

(A, b, ¢*) satisfies dist(d, Pri) > 0 and dist(d, Dual®) > 0. Then

— el fleli — valld* el {lell
dist(d, Prif) < val(d) = val(d") < dist(d, Dual()

Proof. Combine Propositions 2.6, 3.6 and 3.7. O

Lemma 3.9 Assume d = (A, b, c*) satisfies dist(d, Pri) > 0 and Feas(d") #
0. Assume Ad := (0,Ab,0). Then

maz{||c*||, val(d*)}
dist(d, Prid)

Proof. Assume {y;} C Feas(d*) satisfies y7b — val(d*). Note that {y} C
Feas([d+ Ad]"). Hence,

val([d + Ad]*) — val(d™) < [JAb]|

val([d + Ad]*) < liminfy; (b+ Ab) val(d*) + lim inf y} (Ab)

val(d") + || Ab| lim sup [|y; |-

!

IN

Substituting the bound of Proposition 3.3 completes the proof. O

A dual analog of Lemma 3.9 is obtained by an analogous proof using
Proposition 3.5. We leave this to the reader.

Proposition 3.10 Assume X is reflezive, Cx and Cy are closed. Assume
d = (A,b,c*) satisfies dist(d, Pril) > 0 and dist(d, Dual®) > 0. Assume Ad =
(AA, Ab, Ac*) satisfies dist(d + Ad, Prif) > 0 and dist(d + Ad, Dual®) > 0.
Then

salld+ A~ valld) < [AA] Bl ] [meciiieotcostazan |

dist(d,Prid) disi(d+Ad,Duald)

b [zl |

. o{||b+ A, —val(dtAd
+ JlAc| [ma fi‘Lz(dJ&d,DZEﬂ@) )}]

BN

13



An analogous lower bound on val(d + Ad) —val(d) is obtained by interchanging
the roles of d and d + Ad.

Remarks. The value —val(d+ Ad) occurring on the right side of the inequality
can be replaced with —val(d); this follows immediately from the inequality by
considering the two cases val(d + Ad) < wal(d) and val(d) < val(d + Ad).
Similarly, the value val(d + Ad) appearing in the analogous lower bound can be
replaced with val(d).

Proof. Proposition 3.5 implies d + Ad has an optimal solution z. Let A'd :=
(0,A’,0) where

A'b = Ab— (AA)z.
Note that z is feasible for d + A’d and hence c¢*z < val(d + A’d). Thus,
val(d + Ad) — val(d + A'd) < (Ac™)z < ||Ac™]] 1E]|
and hence
val(d + Ad) — val(d) < ||Ac*|| ||z|| + [val(d + A'd) — val(d)].

Noting that [|A’8]| < ||Ab|| + |AA]} ||z]|, the proof is now easily completed by
substituting the bounds of Proposition 3.5 and Lemma 3.9, using the facts that
val(d) = val(d*) by Proposition 2.6 and val(d+ A'd) < val([d+ A'd]") by weak
duality. O

The following two propositions regard perturbations of the feasible region;
the objective functional ¢* plays no role. For consistency we retain the same
notation although c* is irrelevant to the results.

Proposition 3.11 Assume X is reflezive, Cx and Cy are closed. Assume d =
(A, b,c*) satisfies dist(d, Pri@) > 0. Then there exists ¢ € Feas(d) satisfying

L1l
=1l < Tistta, Prig)

Proposition 3.12 Assume X 1is reflezive, Cx and Cy are closed. Assume
d = (A,b,c*) satisfies dist(d, Prif) > 0. Assume z' € Feas(d + Ad) where
Ad := (0,Ab,0). Then there ezists x € Feas(d) satisfying

maz{1, ||='||}

llz = 2l < A8l 2 i)

The two propositions are proven via the following lemma.
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Lemma 3.13 Assume X is reflezive, Cx and Cy are closed, z' € X. Assume
d = (A,b,c*) satisfies Tval(d) # —co and

Feas(d) N{z;||jz—2'||<r} =0 (3.2)
Then there exists & € X* such that the dual d* of d := (A, b,&) satisfies
val(d*) < &z’ — ||&*||r (3.3)

Proof. There exists # > r such that (3.2) remains valid if #' is substituted
for r. For otherwise there would exist a sequence {z;} C Feas(d) such that
|lz; — z'|} | r; the sequence would have a weakly convergent subsequence by the
Eberlein-Shmulyan Theorem (cf. [14]); because the weak-closure of a convex
set in a normed space is identical to the strong closure (by the Hahn-Banach
Theorem) it is easily argued that the weak limit z of the subsequence would
satisfy ||z — /|| < r, z € Cx and b— Az € Cy contradicting (3.2).
There exists §' > 0 such that

|b" = b]] < &' = Feas(d') n{z; ||z — | <r'}=10

where d' := (A,V,c*). For otherwise there would exist a sequence of pairs
{(xi,b;)} such that ||b; — b]| | 0, [lzs — &'l < 7 and z; € Feas(d;) where
d; = (A, b;,c*); the sequence {z;} would have a weakly convergent subsequence
by the Eberlein-Shmulyan Theorem; the weak limit z of the subsequence would
be easily argued to satisfy both z € Feas(d) and |lz — 2'|| < v’ contradicting
the definition of 7'

Let K denote the closed, convex set consisting of all points of distance at
most r from the convex set

U Feas(d').
bl
l|v'—bli<é’

By definition of ¢, ' ¢ K; thus, by the Hahn-Banach Theorem there exists
&* € X* such that

sup{é*e;e € K} < &'
and hence
|6 — b]| < 6" = sup{é*z;x € Feas(d)} < &z’ —||e*l|r.

Letting d := (A,b,&), it follows that the asymptotic optimal value Tval(cz)
satisfies

tval(d) < &z’ — ||&||r

15



Hence, by Proposition 2.4 and the fact that Tval(d) # oo (because {val(d) #
—00), (3.3) is valid. O

Proof of Proposition 3.11. Assume the conclusion is not true, l.e., assume

Feas(d) N {z;|le —2'|| <7} =0

where

161l

ro_ —
@' =0 and r:= dist(d, Pril)’

Then d,z’ and r satisfy the assumptions of Lemma 3.13. Let d be as in the
conclusion of that lemma,; thus

el el

val(d”) < &' — ||]r =  dist(d, Pri)’

However, this contradicts Proposition 3.6 applied to d since dist(J, Pri}) =
dist(d, Prif). O

Proof of Proposition 3.12. Assume the conclusion is not true, i.e., assume

Feas(d) N {z;||lz —2'|| <r} =0

where
maz{l,|]z'|[}

r = 1AV Gria pri)

Then d,z’ and r satisfy the assumptions of Lemma 3.13. Let d be as in the
conclusion of that lemma; thus

maz{1, ||z}

Jx PP P — r_ ~% 4
wal(d) < &2 [l = &'~ |8 E 1 G gy G
Note that 2’ € F eas(J + Ad) implying, by weak duality,
&z < val([d+ Ad]"). (3.5)
Combining (3.4) and (3.5),
- ~ 7
val([d + Ad]*) — val(d®) > ||Ab]| e el =1 (3.6)

dist(d, Prif)
Since dist(d, Pri)) = dist(d, PriB) > 0, (3.6) and Lemma 3.9 yield

& lmaz{1,||2'||} < maz{[|&"]], val(d")}

This gives a contradiction since val(d*) < ||&*| ||2'|] by (3.4). O
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4 Proof of Theorem 1.1

We now collect our results to prove the theorem. As mentioned in the introduc-
tion, the results of Section 3 provide for many special cases better bounds than
those asserted by the theorem.

Proposition 3.11 establishes (1) of the theorem, Proposition 3.12 establishes
(2), and Proposition 3.8 establishes (3).

Proposition 3.5 together with the lower bound provided by (3) of the theorem
show that in the setting of (4) we have Opt(d) # 0 and

ll6]] lle™ll
z € Opt(d) = [|z]| < [m] maz {1’ dist(d, Pri@)} '

Since ||c*|| < ||d|l, to establish (4) it thus suffices to show that under the as-
sumptions of (4) at least one of the following two relations is true:

lld]]
dist(d, Prif) 21 (1)

Opt(d) = {0}. (4.2)

Assume (4.1) is not true. Then dist(a, Prid) (i.e., the distance from Prif

to the identically zero LP) satisfies dist(0, Prif) > 0 and hence, since Pril) is
closed under multiplication by positive scalars, Pri) = 0. Note that Pri) = ]
implies {b € Y;b > 0} = Y; otherwise the RHS of the identically zero LP could
be perturbed to obtain an infeasible LP, a contradiction. Hence, Pri = 0
implies that the feasible region for all LP’s is precisely the closed cone {z;z > 0}.
Consequently, if (4.1) and (4.2) are not true then a slight perturbation of ¢* in
d = (A,b,c*) creates an LP with unbounded optimal solution, contradicting
dist(d, Dual) > 0 as is assumed in (4) of the Theorem.

In all, either (4.1) or (4.2) is true, concluding the proof of (4).

Towards proving (5) first note we may assume that

lldll
dist(d, Pri U Dual0) 2L (43)

Otherwise, by arguments analogous to the preceding, we deduce that
{#* € X*;& >0} = X* (hence {z € X;2 >0} = {—6}) and {beY;b>0}=Y.
Consequently _6 is an optimal solution for all LP’s; then (5) follows trivially. So
we may assume (4.3).

Assertion (5) is established with (3), Proposition 3.10 and tedious consider-
ation of several cases. For example, consider the case

lval(d + Ad) — val(d)| = val(d + Ad) — val(d) (4.4)

17



val(d + Ad) < 0. (4.5)
Then the factor for ||AA|| in the bound of Proposition 3.10 is

[ lle*ll } [max{”b + Ab||, —val(d + Ad)}]
- - - (4.6)
dist(d, Prid) dist(d + Ad, Dual()

The crucial point is that at most one of the two quantities val (d) and val(d+Ad)
appear in this expression; the same is true for all cases.

As noted in the remark following the statement of Proposition 3.10, the value
—val(d + Ad) in (4.6) can be replaced with —val(d); in turn, —val(d) can be
replaced with the upper bound [|b]] ||c*||/dist(d, Prif)) (provided by statement
(3) of the theorem), which clearly does not exceed

(L1l + [1asDIl4ll
dist(d, Pri® U Dual®)

Substituting (4.7) for —val(d + Ad) in (4.6) and using (4.3), one arrives at a
quantity which is obviously bounded from above by the factor for ||AA]| in (5).
Similarly, one argues that the other factors are correct in the case that (4.4)
and (4.5) are valid.

The other cases are handled with equally tedious and obvious
arguments. O

(4.7)

5 Examples

In this section we display simple examples indicating that the bounds of
Theorem 1.1 cannot be improved in general without relying on additional pa-
rameters.

The examples form a family of two variable LP’s depending on parameters
s and t:

mazr Iy

st. (st)zy + z2 < s
tey + 1z < 1
Ty, T2 Z 0

We use the notation d(s, t) = (A(s, 1), b(s, t), ¢*(s, t)) when referring to the fam-
ily.
We assume

0<s<l, 0<t<l1

Endow the domain X = R? with the £;-norm and endow the range ¥ = R?
with the £oy-norm. So X* = R? is given the foo-norm and Y* = R? is given the
f1-norm.

18



Lemma 5.1
lAGs, Ol = llb(s, Ol = lle*(s, )l = 1
dist(d(s,t), Prih) = s
dist(d(s,t), Dual®) =1

Proof. A straightforward exercise left to the reader. O

Lemma 5.1 elucidates the roles of the parameters s and t; they allow us to
choose the values

ldll 14l
dist(d, Pri®)’  dist(d, Duald)

independently between 1 and co. In light of this the following lemma indiciates
the “optimality” of several of the bounds of Theorem 1.1 or their dual versions.

Lemma 5.2 (1) Ify* is feasible for the dual d(s,t*) then
1
* > _
B
(2) Let d(r,s,t) denote the LP obtained from d(s,t) by replacing the first coef-

ficient of b(s,t) with s —r. Letting 2’ = (%,0), which is feasible for d(s,t),
and assuming v > 0, all feasible points ¢ for d(r,s,t), satisfy

r

!
z—z|l >
” “_St

(3)
val(d(s, 1)) = %
(4)
3.y €Opt(d(s,1)) 3 Iyl = Eli

(namely, y* = (3;,0).)

(5a) Ifd(r,s,t) is the LP obtained from d(s,t) by replacing the (1,1) coefficient
of A(s,t) with st +r then

lim |val(c§£r, 5,1)) — val(d(s, 1))l _ 1
ri0 ”A(T‘, Sat) - A(5>t)n st?
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(5b) If d(r,s,t) is as defined in (2) then

lim |val(d(r, s,t)) — val(d(s,1))] _ _1_
) |1b(r, s,t) — b(s, )| st

Proof. A straightforward exercise left to the reader. O

The “optimality” of the bounds of Theorem 1.1 not addressed by Lemma
5.2, and the “optimality” of the remaining dual version bounds, are verified by
considering the dual of d(s,t) as the primal, multiplying the objective by —1 to

obtain a maximization problem.
The reader might be confused as to why Lemma 5.2(2) indicates the optimal-

ity of Theorem 1.1(2); in the notation of the theorem, let d = d(r,s,t),d+Ad=
d(s,t) and consider r | 0 so dist(d, Pri) — s.
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