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(1) Introduction.-This note lists some psychological, physiologic:.).l, and bio-
chemical predictions that h::1.ve been derived from simple psychological postu]ates.

These psychological postul:'1.tes have been used to derive a ne\v learning theory, 1-3

which is called the theory of embedding fields. The mathematical variables of

the theory have natural psychological labels-such as "presentation of a letter or

spatial pattern at time 4," "guess of a letter at time ~," "stimulus trace,"

"associational strength," ;etc.-due to the fact that the theory is derived on a

psychological basis. Given the psychologically derived theory, one then observes

that its mathematical val.iables are already in a form th:'1.t suggests a neuro-

ph)!siological, anatomical, and in some cases biochemical labeling for tl"lese
variables. For example, the theory contains geometrical objects \vhich are

readily identified \\!ith cell bodies, axons, s)!naptic knobs, and s}"napses. It

also contains, associated \,'ith the geometrical objects, dynamical variables that

readily call to mind membr:'1.ne potentials, spilcing frequencies, tr:1nsmitter sub-

stances, v:'1.rious ions, and the like. Once the mathem:1tical variables are labeled

,,'ith these suggestive ph~'siological and anatomic:1l labels, the psycholo(jically

derived l:.1.\"s of the theof)' thereupon imply functional relationships bet\,-een

tl"lcse empiric:11 v:1riables, as \\'ell as a psychologiC:11 r:1tion:ile for the existence of

these relationships in terms of ho\," the brain might learn, remember, and recall

",hat it has learned.

N aturall~' tl"le leap from mathen"latical to neur::1.1 \"ariables cannot be justified

in a deductive 'va)'. It is governed, as is inevitable, merely b)'" rules of prudence

and the dictates of intuition. Fortunatel~-, the simplest neural labeling seems

often to }'"ield functional relationships \vhich represent, at least qualitatiy~el}.,

kno\vn and nontrivial neurn.! dat:.1.. In other cases, the functional relationships

seem never to have been measured, and therefore stand as ne\v predictions. The

strel"lgth of such predictio~ls is, of course, no greater than the COl"l.ectness of the

neurall:'1.beling, and an assessment of this requires a close scrutin~- of the theor}"'s
development. 1-3

vVe have also begun a rigorous mathematical anal~'sis of the learning, memor~',

and recall capacities of the theoretical equations in various experimental situ-

ations.4-1o

(2) Some Qualitative Results.-(a) The equations reduce in a special case to

the Hartline-Ratliff equation for lateral inhibition in the Lilnulus retina.Il

Theoretical formulas for the empirical coefficients in the H-R equation are found,

and various transients can be readily studied. A ne~' phenomenon of "enhance-

ment of associations" or "spontaneous improvement of memory," closel~r related

to "contour enhancement~' due to lateral inhibition, is found.2 It shares mt1n~'

properties \vith the vVartl-Hovland phenomenon, or "renllniscence."12 The
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"accumulation of inhibition" postulated by HU1l12 to explain bowing in serial
verbal learning is identified \vith lateral inhibition.2. 13

(b) A unified formal explanation is given of various serial learning phe-

nomena,13 such as bacl ward learrling, bowing, anchoring, chunking, response

oscillation, All-or-None versus Gradualist learning, and Gestalt versus Pe-

ripheralist learrling.
(c) A unified form:.\! explanation of the decreaHc of reaction time ,vith in-

creased learning and of spatiotemporal masking is ft>und.

(d) The level of excitatory transmitter production is controlled jointly by

presynaptic and postsynaptic levels of membrane excitation.

(e) Learning needs suggest the interaction of no fe,ver than t,vo pairs of

antagonistic ions, say (Na +, K+) and (Ca ++, l\tlg++).
(1) Na + and Ca ++ are bound as synergistic cofactors on the intracellular

sites, or enzymes, \vhich activate the production of excitatory transmitter, say

acetylcholine.
(g) There exists a spiking threshold, greater than the cell body equilibrium

potential, above ,vhich average spiking frequency is proportional to cell body

membrane potential (after excitatory tr3.nsients subside and before saturation

sets in).

(h) Presynaptic spiking both mobilizes and depletes transmitter. \vnerea.s

the steady-state mobilized transmitter th3.t is released per unit time incre3.ses as 3.

function of steady-state spiking frequency and satur3.tes at a finite value, the

total ste3.dy-state mobilized tr3.nsmitter decreases as a function of spiking fre-'

,quency.
(i) A slo,vly varJYing form of post-tetanic potenti3.tion occurs in the syn3.ptic

knobs.

(j) An excitatory transient in transmitter release occurs when presynaptic

spiking is resumed after a rest interval.

(k) The amount of intracellular acetylcholine is r~gul3.ted in p3.rt bJ. a feed-

back inhibition ,vithin the synaptic ~nob of transmitter onto a previous stage of

transmitter production. This inhibition affects an intermediate or terminal

stage of transmitter production, rather than an initial stage.
(l) K + is more likely to be found in unbound form ,vithin the synaptic knob

than are Na + and Ca ++.

(m) The ionic movements suggested by learning needs are compatible ",.ith

some data concerning the pattern of ion tr3.nslocation in the mitochondriOll, and

with the assumption that these movements make adenosine 5'-triphosphate

available for production of acetyl-Co A, and thereupon acetylcholine, under the

guidance of choline acetylase in the synaptic vesicles (see, e.g., ref. 14).

(n) A mechanism is found ,vhich makes plausible the distribution of synaptic

vesicles and mitochondria near the synapse of the synaptic knob, rt1.ther th3.11

(say) uniformly distributed throughout the knob.

(0) In response to excitatory transmitter, there exists an ill,vard flo" of 1\'"3.+

through the cell membrane ,vhich is coupled at suprathreshold values to all out-
,vard flow of K + .

(p) In response to inhibitory tr3.nsmitter, there exists 3.11 out,vard flo" of K+

through the cell membrane.



760 APPLIED MATHEMATIC$: S. GROSS/3ERG Paoc. N. A. S.

(q) Acetylcholine release from synaptic knobs is coupled to the intracellular
K+ concentration.

(r) The sensitivity of RNA activation to Mg++ concentration is compatible

with the need to guarantee control by membrane excitation of intracellular

production levels, say of proteins, and thus
(s) membrane excitation due to learning experiments causes systematic

variations in nuclear RNA, although individual RNA strands do not encode

entire behavioral memories, which are spread over many cells.

(t) J..Jearning needs suggest a cell nucleus which is localized in the cell body,
rather than being spread throughout the cell. More generally, various functions

performed by nerves as learning mechanisms seem to determine their shape, at
least qualitatively.

(u) A system of intracellular tubules, such as in endoplasmic reticulum, is

compatible with the need to carry chemicals used in learning bet\veen cell body

membrane and nucleus and from the nucleus along the axon and to the synaptic

knobs.

(v) In an idealized nerve cell (say without dendrites), cell body membrane

area is proportional to nuclear volume and to the membrane area of axon and end-

bulbs. This is a special case of the general property of spatiotemporal self-

similarity, which is apparent in many biological shapes and interactions (e.g.,

shape of leaves, proportionality of axon diameter, and velocity of spike along the

axon) .

(1V) The size of a cell in a given idealized cell type can, in principle, be con-

trolled by a single gene whose activity is sensitive to the average total membrane

excitation.

The theory can also be used to illustrate in various cases how particular

anatomical cell distributions and multiple somatotopic representiJ.tions might be

used to perform particular tasks of learning and performance, such as in the

sensory-motor cortex, cerebellum, and retina.
(3) Postulates and Equations.-The psychological postulates that lead to the

equations which describe our learning machines M are quite simple. The

follo,ving discussion heuristically describes the~e postulates in the case of learaing
a list of Iisimple" letters or events, such as the alphabet ABC. ..Z.

(a) The letter A is never decomposed into t,vo or more parts in daily speech

and listening. It is a Iisimple" behavioral unit. Thus we assign to every simpl.~

behavioral unit 7't a single abst~act point Vt in M, i = 1,2, ..., n. (As the theory

becomes more microscopic, even simple events create a space-time tr~jectory of

excitation and inhibition that includes many points, ,vhich are ultimately

Ilblo,vn up" and identified ~s caricatures of nerves.)

(b) M must react to presentation of behavioral units at specified times.

Hence a real-valued function of time Xt(t) is assigned to each point Vt. The

value of Xt(t) at any time describes how recently r i has been presented to M.

(c) Consider M's response to presentation of A, then B, t1.nd then C at a speed

"'. If ~ is small (say '" ~ 2 sec), then the influence of A and Bon 11l's response

to C is substantial. As '" increases, the influence of A and B on M's response

gradually changes and ulltimately becomes negligible. Since the effects of prior
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presentations of events wear off gradually, each Xf(t) is continuous. Since our

theory describes the macroscopic behavior of NI, we can also readily assume that

each Xf(t) is differentiable.

(d) If r f is never presented to !vI, then Xf(t) remains at a fixed eq uilibrium value,

which is (initially) set equal to zero. If ri is presented to 1\1 at time t = ti, then

Xi(t) must at least temporarily assume nonequilibrium values once t > ti. We
assume that Xi(t) becomes positive after t = ti, by convention. Since the effect

of an event ultimately wears off, Xi(t) eventually decays towards zero. (The

choice of a zero equilibrium value tacitly a..,sumes that all Xf(t)'S values are

observable to a psychological experimenter. This assumption must ultimately be

abandoned, for reasons th[1.t soon become cle[1.r.)

(e) After M has learned the list AB, [t presentation of A to M at time tA gives

rise to the guess B by M a little while Inter, S[ty at time t,\ + TAn, \vhere TAn is

positive. Thus [1. Sigll[tl tr[1.vels fr()m V..l t,() VB at finite velc)city ttlc)ng a p[1.thwa:\'

eAB.
(j) Before !Ii htts learned the list AB, other respollses than B to A must exist,

or else B \vould already be the only response to A. Thus a function ZAB(t)

exists ,vhich can distinguish the presentation or nonpresentation of .4.B and lets

only B occur in response to A after AB has been le[trned. Since z.-ln(t) gro\vs

only if A and then B are presented to .ill, ZAB(t) coli'elates (prescribed) past values

of XA \vith xn(t). ZAB(t) therefore occurs at the only position at \vhich p[1.st X"l

and present XB v[1.lues e.xist, namel)', at the end of the p[1.th\vt:J.y le[1.ding from
VA to VB. .

(g) The list AB is not the S[1.me as the list BA. Thus e.lB ~ en.l' [1.nd ZAB(t) ~

ZBA(t). eAB is dra\vn [1.S :1n arrotv from VA, to VB \vith alTO\\'he[1.d NAB. By <1),

ZAB(t) occurs in NAB.

(h) If C is not s:1id, then AB C[1.n be le[1.rnecl in first ttpproximation inde-

pendently of CB. Thus the sign[1.1s received b)' B combine independently.

When the postul:1tes (a)-(h) [1.re tr!1.nslt1.ted into mt1.them[1.tic[1.1 terms, the

follo\\'ing equl:1.tions [1.re found as, perhaps, their simplest realization.

Xi(t) = -aXi(t) + fJL'n=ln.l:lI~(t -T,ni)PmiZll~t(l) + Ii(t), (1)

Zjk(t) = -UZjk(t) + fJpj~Xj(t -Tik).tk\t), , '(2)

where i, j, k = 1, 2, ..., 11,. a, (3, and u are positive; all TJk are positive; all Pik

are nonnegative; and all inititu data are nonnegative ::Llld contillUouS. The non-

negative and continuous inputs I i(t) often have the form

I i(t) = Lk=l-'iJ i(t -ti(k»), (3)

\vhere tf(k) is the kth onset time of rt, and J t(t) is a given nonnegative and con-

tinuous function that is positive in a finite interval of the form (O,At).

Equations (1) and (2) can be given a qu:'1.litative neur:.1.1 interpretation that

includes cell bodies, axons, synaptic knobs, s).napses, membrane potenti:1ls,

spiking frequencies, t1.11d tr:'1.nsmitter production t1.nd rele:1.se.1 1"'hese equt1.tions

are not totally satisf:1ctory bec:.1.use of the hypothesis (d) of observ:'1.bilit)". By

including the follo\ving :'1.dditiont1.1 Pl).-;t;ulttte, they C:.tll be impro\.ed \vithout
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violating: (d) in the special case that all reaction times TiJ have the same value T.

(i) M can learn AB perfectly by practicing AB sufficiently often. This

postulate is achieved by implementing the following property. Increasing the

strength of the choice B, given an isolated presentation of A, decreases the

strength of the choices C, D, E, ..., etc. In other words, a "set of response

alternatives" to isolated presentations of A exists, and these alternatives compete

with one another. This property has the effect of reducing behaviorally irrele-

vant background noise.

Then (1) and (2) are replaced by I

Xt(t) = -aXt(t) + .BLm=lnXm(t -T)Ymt(t) + It(t), (4)

YJk(t) = PJkZjk(t) [Lm=lnpjmZjm(t) ]-\ (5)

ZJk(t) = -UZjk(t) + .BPjkXJ(t -T)X}c(t). (6)

Both equations (4)-(6) and (1) and (2) can be described as cross-correlated flo,vs

on networks in a manner that has been previously described in this journal.4. 5

Bounded.ver~ions of both (4)-(6) and (1) and (2) can readily be givell.

(4) Lateral Inhibition and Thresholds.-Equations (4)-(6) improve the learn-

ing of (1) and (2) formally, but introduce a conceptual difficulty; namely, by

(5), the value Zjm(t) at the arrowhead N jm of ejm instantaneously jumps to the

arrowhead N jk ,vhere Yj,,(t) is computed. This "virtual" interaction must be

replaced by a finite-rate and local interaction with the same qualitative proper-

ties. Since Yjm(t) ;::: 0 and Lm=lnYjm(t) = 0 or 1, the mapping from PJkZJk(t) to

YJk(t) by \vhich (4) replaces (1) describes an inhibition between the associations
Yjm(t) , m = 1, 2, ..., n. The finite-rate analogue of this "virtual" inhibition

requires the introduction of lateral inhibitory interactions and thresholds.2

The finite-rate analogue, in the unbounded case, is given by

Xt(t) = at + [P t -Xi(t) I+
at-[Xt(l) Pt]+

+ Jt+(t) J t-(t) + It +(t) It-(t) (7)

and

Zjk(t) Ujk + [Qjk
Zjk(t)]+ -Ujk-lZjk(t)

+ {Jj+")'jk +Pjk +[X,(t -

-Qj~]+

Tjk +) - r jk +]+[Xk(t) Ak +] +, (8)

where

I l",] + = max (",,0),

whereby various thresholds are described. P t !s the equilibrium value (or

"potential") of Xt(t), and QJk is the equilibrium value of ZJk(t). The "spiking

threshold" I'tJ and the equilibrium value Pt satisfy I'tJ > Pi. Similarly, OIJ+ ~
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Qtj and Aj+ ;;::: P j. Equations (7)-(10) can be given a neural interpretation

which is substantially more quantitative than that of (1) and (2).2 For ex-

ample, consider (7)-(10) under steady-state excitatory inputs and let all inter-

actions be inhibitory. Then (7) reduces in the steady state to the Hartline-

Ratliff equation

r! = e! -Li-lnK!i[ri -r!j°]+

for lateral inhibition in the Limulu8 retina if

I.£t+{:Jj-

I.£j+at

-Pii-

Kij =

and

0r ij }Lj+(rji- -rj+),

when J.Li + [Xi(t) -r i~] + is the output from the retilill to higher neural centers.

(5) Symmetry-Bredlcing by Na+ and K+1-The bounded analogu~ of (7) is

Xi(t) = ai+(Mi -,-,Xi(t))('Yi+ + Ji+(t) + ~i+(t))

I -ai-(Xi(t) -mJ('Yi- + Ji-(t) + Ii-(t», (12)

where mi ~ Xi(t) ~ M i for all t ~ o. There exists an obvious symmetry be-

tween the excitatory and inhibitory terms in (12). This s).mmetry can be made

explicit by replacing (12) with equations for a pair of vai'iables Xi +(t) and Xi-~t)

,vhich are positively and negatively "polarized," respectively. This s)rm-

metrization procedure must not, however, destroy the "excitatory bias" ,vithin

(7)-(10) that makes learning possible. The -result is, in first approximation,

Xi+(t) = at++(Mi+ TXt+(t)('Yt++ + .li+!+(t) + Ii++(t» -~ ,'-

-ai + -")' i + -(Xi +(t) -mi +), (13)

Xt-(t) = ai- +"(t- +(M t- -Xi-(t» I

--(Xi-(t) -mi-) (')'i

--+ 

Ji- -(t) + Ii- -(t)),ai

and

x( [Xm +(t)
r mt+ -]t) (em + -[Xm +(t)

rmt+ -]+

!3m- -[r mi- + Xm-(t) ]+) = 0,

'\vhere

J t+ +(t) Lm=ln{3,I1+ + [Xm+(t Tmt + +) rmt+ +]+Pmt+ + [Zmt+ +(t.)

-Qmi+ 

+

--(t)

+

J t- -(i) Lm=lnfJm + -[Xm +(t r +- ]+ --
lmt Pmi ZmtTmt+-)

n .-- ] +
~~mt ,

and

\1,

10,

",>0
x(~)

(J) ~ o.
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Equations (13)-(17) can be interpreted to yield the "symmetry-breaking"

properties (0) and (p) of section (2). The condition (15) is merely of qualitative

interest, and will be made more quantitive in 1;1. later paper, along a pathway that

is suggested in reference 2.

(6) Transmitter Production and Release.-In first approximation, the bounded
equation for excitatory transmitter production Ztj + +(t) in the collection of syn-

aptic knobs N tj+ + is

Ztj++(t) = (Mtj++ -Ztj++(t))(Utj+++ + 'Ytj++Ftj++(t)RJCt))

-Utj++- (Ztj++(t) -mtj++), (18)

where

(19)Ftj+ +(t) = .Bi+ +(Xi+(t -Tij+ +) -rti+ +)+Pii+ +

Rj(t) = [Xj(t) -Aj+]+' (20)

The inequalities

mij++ ~ Zij+ +(t) ~ Mij++

hold for all t ? O. All learning "\vithin (18) is due to the term

"Yij+ +(111 ij+ + -Zij+ +(t))F ij+ +(t)Rj(t). (21)

The spiking frequency term F ij + +(t) is interpreted as an antagonistic coupling

between N a + and K + at suprathreshold values, whereas Rj(t) is interpreted as

an antagonistic coupling between Ca + + and lig + +. N-a + and Ca + + act

synergistically in (21) to activate Zij+ +(t).
It is readily seen that the coupling bet,veen F ij + +(t) and

Gij* +(t) = lZij+ +(t) -nij+ +]+

in (16) describes a transmitter release process in "\vhich the depleted transmitter

is instantaneously replenished. The finite-rate analogue of this coupling is

given by the pair of equations

.2ij+ +(t) = Aij+(OijZij+ +(t) -Zij+ +(t)) -Aij-F ij+ +(t) [2ij+ +(t) -U Ij+ +]+

~

(22)

and

itj+ +(t) = ~tj+(Ztj+ +(t) -Ztj+ +(t)) -Atj-F tj+ +(t) [Ztj+ +(t) -U tj+ +]+

-~tj-lZij+ +(t) -V tj+ +]+, (23)

~

with
U 1.1 + + = c51jQ1.1 + + > V 1.1 + +

and

0 ~ Zij+ +(t) ~ Ztj+ +(t).

+(t) = the total amount of excitatory transmitter in the synaptic knobs
N 1j+ + at time,t,
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21j+ +(t) = the total amount of mobilized transmitter at time t,
Z1j+ +(t) = the total number of active transmitter-producing sites at time t.

A simple physical int~rpretation of (22) and (23) yields properties (h), (i), (j),

(lc), and (q) of section (2). Equations (22) and (2:3) can be solved explicitly for

the transient response~ of Zij+ +(t) and Ztj+ +(t) when (say) F tj+ +(t) is a steady-

state spiking frequency Ffor t ~ 0, Atj+ = CJJij-, and Utj++ = Vij++ = o.

Then, ignoring slo,\' variations of Ztj++(t),

OijZij + +(0)(I)1j +
211+ +(t) = (Atj+ + Atj-F)t)exp (CAJij- + ~ij +

(24)exp

and the amount of mobilized transmitter ,vhich is released from N ij + + at time t

is Aij-PZij++(t), as (22) and (23) show.
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