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Some Poisson mixtures distributions
with a hyperscale parameter

Stéphane Laurent
Université catholique de Louvain

Abstract. We mainly investigate certain mixtures of Poisson distributions
with a scale parameter in the mixing distribution. They help us to derive
the bivariate Poisson mixtures arising from the prior and posterior predictive
distributions in the semi-conjugate family defined by Laurent and Legrand
(ESAIM Probab. Stat. (2011) DOI:10.1051/ps/2010018) for the “two Poisson
samples” model, which contains in particular the reference prior when the
parameter of interest is the ratio of the two Poisson rates.

1 Introduction

We firstly define certain families of univariate mixtures of Poisson distributions
whose probability mass functions and probability generating functions involve the
Gauss hypergeometric function or the Appell hypergeometric function in the more
general case. Two interesting families are obtained by extending a family of Pois-
son mixtures by adding a scale parameter in the family of mixing distributions.
We get in particular the “hyperscaled” Beta-negative binomial distributions. The
“hyperscaling” on a Poisson mixture acts on its probability generating function by
a linear change of variables; consequently the factorial moments of the Poisson
mixtures we define have a simple expression. Actually all univariate Poisson mix-
tures we define are obtained by mixing some negative binomial distributions on
their proportion parameter with a distribution defined from a Beta distribution or,
in the more general case, with the distribution we name Beta distribution of the
third kind. Except for this case, these Poisson mixtures can be straightforwardly
simulated with any standard statistical software. These investigations are the object
of Section 2.

In Section 3, the univariate Poisson mixtures help us to derive the predictive dis-
tributions corresponding to the semi-conjugate family of priors defined by Laurent
and Legrand (2011) for the “two Poisson samples” model, and also the prior (but
not the posterior) predictive distributions for a larger family we define (by adding
a scale parameter for the prior on the ratio of the two Poisson rates). In partic-
ular, we get the posterior predictive distributions corresponding to the Berger &
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Bernardo reference prior for the ratio of the Poisson rates. Of course, the proba-
bilistic results we give on these bivariate Poisson mixtures could be directly de-
rived by naive calculations, but they are more easily and intuitively derived and
more clearly expressed with the help of the univariate Poisson mixtures introduced
in Section 2. As a by-product, we get a family of priors for the “one Poisson sam-
ple” model whose prior predictive distributions form the Beta-negative binomial
family, thereby allowing more dispersion in the prior distributions as compared to
the conjugate Gamma family.

We display below the main no(ta)tions and conventions of the paper.
Pochhammer symbol and hypergeometric functions. We use the Pochhammer

symbol (a)n := a(a + 1) · · · (a + n − 1) for ascending factorials, with (a)0 = 1 by
the empty product convention. Denoting by B the Beta function, the equality

B(c, d)(c)m(d)n = B(c + m,d + n)(c + d)m+n (1.1)

holds for all integers m,n ≥ 0 and all real numbers c, d > 0. The Gauss hyper-
geometric function (see Slater, 1966) is, as usual, denoted by 2F1. For complex
parameters α, β , γ /∈ −N and complex variable x with |x| < 1, it is defined as the
sum of the absolute convergent series

2F1(α,β, γ ;x) =
∞∑

n=0

(α)n(β)n

(γ )n

xn

n! ,

and whenever �(α) > 0 and �(γ − α) > 0, its analytical continuation in the com-
plex plane with the cut along (1,+∞) is given by the Euler integral representa-
tion:

B(α,γ − α)2F1(α;β,γ ;x) =
∫ 1

0
uα−1(1 − u)γ−α−1(1 − ux)−β du

(1.2)

=
∫ +∞

0

zα−1(1 + z)β−γ

(1 + (1 − x)z)β
dz,

and it satisfies the relations

2F1(α,β, γ ;1 − y) = y−β
2F1

(
γ − α,β, γ ;1 − 1

y

)

(1.3)

= y−α
2F1

(
α,γ − β,γ ;1 − 1

y

)
.

The Appell first hypergeometric function (see Slater, 1966), shortly termed as Ap-
pell hypergeometric function in the present paper, is denoted by F1. For complex
parameters α, β , β ′, γ and complex variables x and y, it is defined for |x| < 1 and
|y| < 1 as the sum of the absolute convergent double series

F1(α,β,β ′, γ ;x, y) =
∞∑

m=0

∞∑
n=0

(α)m+n(β)m(β ′)n
(γ )m+n

xmyn

m!n! .
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Thus,

F1(α,β,β ′, γ ;x, y) =
∞∑

m=0

(α)m(β)m

(γ )m
2F1(α + m,β ′, γ + m;y)

xm

m! . (1.4)

For �(α) > 0 and �(γ − α) > 0, the analytical continuation of the Appell hyper-
geometric function on {�(x),�(y) < 1} is given by the following so-called Picard
integral representation:

B(α,γ − α)F1(α,β,β ′, γ ;x, y)

=
∫ 1

0
uα−1(1 − u)γ−α−1(1 − ux)−β(1 − uy)−β ′

du (1.5)

=
∫ +∞

0

zα−1(1 + z)β+β ′−γ

(1 + (1 − x)z)β(1 + (1 − y)z)β
′ dz.

Beta distributions of second and third kinds. The Beta prime distribution
B′(c, d) with positive parameters c and d is defined as the distribution of the ran-
dom variable ψ := θ(1 − θ)−1 where the random variable θ has the usual Beta
distribution B(c, d). Its density function is

B′(ψ | c, d) = 1

B(c, d)

ψc−1

(1 + ψ)c+d
, ψ ≥ 0. (1.6)

Note that the distribution of ψ−1 is then B′(d, c), what we symbolically write as
B′(c, d)

−1 = B′(d, c). The Beta distribution of the second kind B2(c, d, τ ) with
positive parameters c, d and τ is symbolically defined by B2(c, d, τ ) = τ B′(c, d),
which rigorously means, with the notations above, that this is the distribution of
the random variable φ := τψ . Its density function is then

B2(φ | c, d, τ ) = τ−c

B(c, d)

φc−1

(1 + φ/τ)c+d
, φ ≥ 0. (1.7)

Owing to B′(c, d)
−1 = B′(d, c), we obviously have B2(c, d, τ )−1 = B2(d, c, τ−1).

Kleiber and Kotz (2003) provide many details on the Beta distributions of the
second kind. We finally define the Beta distribution of the third kind B3(c, d, κ, τ )

with parameters c > 0, d > 0, τ > 0 and κ ∈ R as the distribution whose density
function is

B3(φ | c, d, κ, τ ) = 1

Cc,d,κ,τB(c, d)

φc−1(1 + φ)−κ

(1 + φ/τ)c+d−κ
, φ ≥ 0, (1.8)

where, from (1.2) and (1.3),

Cc,d,κ,τ = 2F1

(
c, c + d − κ, c + d;1 − 1

τ

)

= τ c+d−κ
2F1(d, c + d − κ, c + d;1 − τ).
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It is easy to check that B3(c, d, κ, τ )−1 = B3(d, c, κ, τ−1). With the terminol-
ogy of Chen and Novick (1984), if φ ∼ B3(c, d, κ, τ ), then the distribution of
θ := φ(1 + φ)−1 is a four-parameter generalized Beta distribution. It appears as
the posterior distribution on the proportion parameter of the Bayesian binomial
model whose prior on the odds parameter is a Beta distribution of the second kind.

Hyperscaled Poisson mixtures. When Pγ denotes the mixture of the Poisson
distributions P(θ) with θ ∼ γ (dθ) for some probability distribution γ on (0,+∞),
then for a given T > 0, we denote by T 
 Pγ the mixture of Poisson distributions
P(θT ) with θ ∼ γ (dθ). For instance, consider the well-known Poisson–Gamma
distribution P G(a, b) with parameters a, b > 0 which is defined as the Poisson
mixture with a Gamma distribution G(a, b) with rate parameter b, hence the hy-
perscaling on the Poisson–Gamma distribution P G(a, b) acts by division on b: one
has T 
 P G(a, b) = P G(a, b/T ). The probability mass function of T 
 P G(a, b)

is given by

T 
 P G(x | a, b) = (a)x

x!
baT x

(b + T )a+z
, x ∈ N, (1.9)

where N = {0,1, . . .}.
We generically use the letter “G” for denoting probability generating functions

(p.g.f.). Knowing that GP(θ)(s) = eθ(s−1), we have the following equality

GPγ (s) =
∫

eθ(s−1)γ (dθ), (1.10)

thereby giving an analytical continuation of GPγ for �(s) < 1. Throughout this
paper, it will be understood that we always consider this analytical continuation
of the p.g.f. for any Poisson mixture distribution. The p.g.f. of the hyperscaled
Poisson mixture T 
 Pγ is then given by the following elementary linear change
of variables on the p.g.f. of Pγ :

GT 
Pγ (s) = GPγ

(
1 − T (1 − s)

)
. (1.11)

Consequently the nth factorial moment of T 
 Pγ equals T n multiplied by the nth
factorial moment of Pγ . Note also that (1.10) provides a link between GPγ and
the Laplace transform of γ , from what we can deduce that Pγ uniquely deter-
mines γ . We will use the following expression of the p.g.f. of the Poisson–Gamma
distribution P G(a, b):

GP G(a,b)(s) = ba

(1 − s + b)a
. (1.12)

2 Some univariate Poisson mixtures

We shall define some families of Poisson mixtures (in fact, Poisson–Gamma mix-
tures). For each of them we provide the probability mass functions and the prob-
ability generating functions. The first family P G B3 of Poisson–Gamma–Beta dis-
tributions of the third kind contains the subfamily P G B2 of Poisson–Gamma–Beta
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distributions of the second kind which are nothing but the “hyperscaled” Beta-
negative binomial distributions. We next define the family P G I B of Poisson–
Gamma-inverse Beta distributions and its extension with a hyperscale parameter.

Poisson–Gamma–Beta distributions of the third kind. In view of the expres-
sion (1.9) of the probability masses of the Poisson–Gamma distribution, and the
expression (1.8) of the density of the Beta distribution of the third kind, lemma
below straightforwardly follows from Bayes’ formula.

Lemma 2.1. Let a, c, d, τ be positive numbers and κ a real number. Let ψ and x

be random variables such that

ψ ∼ B3(c, d, κ, τ ) and (x | ψ) ∼ P G(a,ψ).

Then (ψ | x) ∼ B3(c + a, d + x, κ + a + x, τ ).

We then define the Poisson–Gamma–Beta distribution of the third kind
P G B3(a, c, d, κ, τ ) with parameters a, c, d, τ > 0 and κ ∈ R as the absolute dis-
tribution of x in lemma above. The probability mass it assigns at x ∈ N is then

P G B3(x | a, c, d, κ, τ )

= (a)x

x!
B(c + a, d + x)

B(c, d)
(2.1)

× 2F1(c + a, c + d − κ, c + d + a + x;1 − 1/τ)

2F1(c, c + d − κ, c + d;1 − 1/τ)
.

In the particular case when κ = 0, we call this distribution the Poisson–Gamma–
Beta distribution of the second kind and denote it by P G B2(a, c, d, τ ). Its proba-
bility masses are then given by

P G B2(x | a, c, d, τ )

= (a)x

x!
B(c + a, d + x)

B(c, d)
(2.2)

× τ−c
2F1

(
c + a, c + d, c + d + a + x;1 − 1

τ

)
, x ∈ N.

In case when τ = 1, the Poisson–Gamma–Beta distribution of the second kind
P G B2(a, c, d, τ ) reduces to the well-known Beta-negative binomial distribution
which we also call Poisson–Gamma–Beta prime distribution and we denote it by
P G B′(a, c, d). Its probability masses are given by

P G B′(x | a, c, d) = (a)x

x!
B(c + a, d + x)

B(c, d)
, x ∈ N.

This distribution is also known as a type IV general hypergeometric distribution
and also named generalized Waring distribution (see Johnson, Kemp and Kotz,
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2005). We notice that, with the notations given in the Introduction, the hyperscal-
ing acts by division on the fourth parameter τ of P G B2(a, c, d, τ ), that is:

T 
 P G B2(a, c, d, τ ) = P G B2(a, c, d, τ/T ).

In particular P G B2(a, c, d, τ ) = τ−1 
 P G B′(a, c, d), thus the P G B2 family is
nothing but the family of hyperscaled Beta-negative binomial distributions.

Result 2.1. The p.g.f.s in the P G B3 family are given by the following expressions.

GP G B′(a,c,d)(s)

= B(c + a, d)

B(c, d)
(1 − s)c2F1(c + a, c + d, c + d + a; s),

GP G B2(a,c,d,τ )(s)

= B(c + a, d)

B(c, d)

(
1 − s

τ

)c

× 2F1

(
c + a, c + d, c + d + a;1 − 1 − s

τ

)
,

GP G B3(a,c,d,κ,τ )(s)

= B(c + a, d)

B(c, d)

1

(1 − s)a

× F1(c + a, a, c + d − κ, c + d + a;1 − 1/(1 − s),1 − 1/τ)

2F1(c, c + d − κ, c + d;1 − 1/τ)
.

Proof. Using the expression (1.12) of GP G(a,ψ)(s) and the expression (1.6) of
B′(ψ | c, d), the integral representation (1.2) of 2F1 straightforwardly yields

GP G B′(a,c,d)(s) = (1 − s)−a B(c + a, d)

B(c, d)
2F1

(
c + a, a, c + d + a;1 − 1

1 − s

)
,

which equals the announced expression due to identity (1.3). In the same way,
the announced expression of GP G B3(a,c,d,κ,τ )(s) is derived from the expression of
B3(ψ | c, d, κ, τ ) given by (1.8), and the integral representation (1.5) of the Appell
hypergeometric function. The p.g.f. of P G B2(a, c, d, τ ) is obtained from the p.g.f.
of P G B′(a, c, d) with the help of the linear change of variables (1.11). �

Poisson–Gamma-inverse Beta distributions. Another straightforward applica-
tion of Bayes’ formula yields the following lemma.

Lemma 2.2. Let a, c, d, τ be positive numbers. Let ψ and x be random variables
such that

ψ ∼ B′(c, d) and (x | ψ) ∼ τ 
 P G(a,1 + ψ).

Then (ψ | x) ∼ B3(c, d + x, c + d − a, τ + 1).
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In the lemma above, it is easy to see that (1 + ψ)−1 is distributed according to
B(d, c). We then call Poisson–Gamma-inverse Beta distribution with parameters
a, c, d > 0 the absolute distribution of x in lemma above when τ = 1 and we
denote it by P G I B(a, c, d). For an arbitrary τ > 0, the absolute distribution of x

is then τ 
 P G I B(a, c, d) which we do not name. Using formula (1.1), we obtain
that the probability mass of τ 
 P G I B(a, c, d) at x ∈ N is

τ 
 P G I B(x | a, c, d) = τx

x!
(a)x(d)x

(c + d)x
2F1(d + x, a + x, c + d + x;−τ). (2.3)

In particular, one has τ 
 P G I B(c + d, c, d) = τ 
 P G(d,1).

Result 2.2. The probability generating function of τ 
 P G I B(a, c, d) is given by

Gτ
P G I B(a,c,d)(s) = 2F1
(
d, a, c + d;−τ(1 − s)

)
.

Consequently the nth factorial moment of τ 
 P G I B(a, c, d) is τn (d)n(a)n
(c+d)n

.

Proof. We know from (1.12) that the probability generating function of P G(a,1+
ψ) is given by

GP G(a,1+ψ)(s) = (1−s)−a (1 + ψ)a

(1 + (1 + ψ)/(1 − s))a
= (2−s)−a (1 + ψ)a

(1 + ψ/(2 − s))a
.

Hence, using the expression (1.6) of B′(ψ | c, d), the integral representation (1.2)
and the identity (1.3) for 2F1, we obtain

GP G I B(a,c,d)(s) = (2 − s)−a
2F1

(
c, a, c + d; 1 − s

2 − s

)
= 2F1(d, a, c + d; s − 1).

The expression for Gτ
P G I B(a,c,d)(s) follows from the linear change of variables
(1.11). The factorial moments derive from the equality

d

dz
2F1(α,β, γ ; z) = αβ

γ
2F1(α + 1, β + 1, γ + 1; z),

which easily follows from the power series representation of 2F1. �

Using the factorial moments, we get that the mean of τ 
 P G I B(a, c, d) is
τad(c + d)−1 and its variance is

τad

[
1

c + d
+ τ

c(a + d + 1) + d(d + 1)

(c + d)2(c + d + 1)

]
.
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3 Some bivariate Poisson mixtures

Laurent and Legrand (2011) defined a natural semi-conjugate family of priors for
the “two Poisson samples” model, which contains the Berger & Bernardo reference
prior for the ratio of the two Poisson rates. The results we give in this section
provide the prior and posterior predictive distributions for this family of priors,
and also the prior predictive distributions for the larger family of priors defined in
Lemma 3.1.

Throughout this section, we consider the statistical model given by two indepen-
dent observations x ∼ P(λS) and y ∼ P(μT ) with unknown incidence rates λ, μ,
and fixed “observation-opportunity sizes,” or “sample sizes,” S and T , and we de-
note by φ := λ/μ the so-called relative risk. When μ and φ have independent prior
distributions with μ ∼ G(a, b), then, as shown by Laurent and Legrand (2011),
the conditional joint prior predictive distribution of (x, y) given φ is the bivariate
Poisson–Gamma distribution having the marginal-conditional factorization

(y | φ) ∼ T 
 P G(a, b) and (x | y,φ) ∼ φS 
 P G(a + y, b + T ).

Since the distribution of y does not depend on φ, Lemma 2.1 straightforwardly
yields the following lemma.

Lemma 3.1. For any positive numbers a, b, c, d , if the joint prior of (μ,φ) is
defined by

(μ | φ) ∼ G(a, b) and φ ∼ B2(c, d, ρ),

then the joint posterior on (μ,φ) is given by

(μ | φ,x, y) ∼ G(a + x + y, b + φS + T )

and

(φ | x, y) ∼ T + b

S
× B3

(
c + x, d + a + y, a + x + y,ρ

S

b + T

)
.

The semi-conjugate family defined by Laurent and Legrand (2011) is the case
when ρ = (T +b)/S, that is, when φ has the B2(c+x, d +a +y,ρ) posterior dis-
tribution. Hereafter, we will simply call it the semi-conjugate family. More partic-
ularly, the case when ρ = (T + b)/S and a = c = 1/2 and b = d = 0 corresponds
to the Berger & Bernardo reference prior when φ is considered to be the parameter
of interest (hereafter called the φ-reference prior). We refer to Bernardo (2005) for
a review on reference priors.

Bailey distribution. The posterior predictive distributions will involve the bivari-
ate discrete distribution we define now and we call it the Bailey distribution for the
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following reason. Bailey (1935) gave the following reduction formula:

F1(α,β,β ′, β + β ′;1 − x,1 − y) = x−α
2F1

(
α,β ′, β + β ′;1 − y

x

)

(3.1)

= y−α
2F1

(
α,β,β + β ′;1 − x

y

)
,

as well as a reduction formula for F1(α,β,β ′, γ ; z, z). Note that (3.1) is a conse-
quence of Result 2.1 by taking κ = 0. The following elementary equality is then
nothing but a particular case of one or the other of these two reductions:

∞∑
x=0

∞∑
y=0

(α)x+y(β)x(β
′)y

x!y!(β + β ′)x+y

zx+y = (1 − z)−α, |z| < 1.

Then we define the bivariate Bailey distribution Bailey(a, c, d, ρ) with parameters
a, c, d, ρ > 0 as the probability distribution on N

2 whose probability masses are
given by

Bailey(x, y | a, c, d, ρ) =
(

ρ

1 + ρ

)a (a)x+y(c)x(d)y

x!y!(c + d)x+y
(3.2)

×
(

1

1 + ρ

)x+y

, x, y ∈ N.

By the double power series representation of F1, we easily see that the p.g.f. of
Bailey(a, c, d, ρ) is given by

GBailey(a,c,d,ρ)(u, v) = (1 − θ)aF1(a, c, d, c + d; θu, θv) with θ = (1 +ρ)−1,

which, from equality (3.1), reduces to

GBailey(a,c,d,ρ)(u, v) =
(

ρ

1 − v + ρ

)a

2F1

(
a, c, c + d,1 − 1 − u + ρ

1 − v + ρ

)
. (3.3)

As a by-product of our derivation of the posterior predictive distributions for
the semi-conjugate family, we will see (in Result 3.2) that the Bailey distribution
Bailey(a, c, d, ρ) is a bivariate Poisson mixture whose first and second margins
are ρ−1 
 P G I B(a, d, c) and ρ−1 
 P G I B(a, c, d), respectively, and we will see
that the scalar hyperscaling acts on the fourth parameter ρ by division, that is:

(τM, τN) 
 Bailey(a, c, d, ρ) = (M,N) 
 Bailey(a, c, d, ρ/τ), (3.4)

where we have extended in a obvious way our hyperscaling notation “
” for bi-
variate Poisson mixtures. We note the following analogous of the linear change of
variables (1.11) for bivariate Poisson mixtures:

G(T,T ′)
(Pγ⊗Pγ ′)(u, v) = GPγ⊗Pγ ′
(
1 − T (1 − u),1 − T ′(1 − v)

)
. (3.5)

Predictive distributions for the semi-conjugate family. Our next Results 3.1
and 3.2 will straightforwardly yield that the predictive distributions correspond-
ing to the semi-conjugate family are the following ones.
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• The marginal prior predictive distributions are

x ∼ (T + b) 
 P G B2(a, d, c, b) and y ∼ T 
 P G(a, b),

and the conditional prior predictive distribution of x given y is

(x | y) ∼ P G B′(a + y, d, c).

• Denoting by x∗ and y∗ the “future observations” and by S∗ and T ∗ the “future
sample sizes,” the marginal posterior predictive distributions are

(x∗ | x, y) ∼ S∗

S

 P G I B(a + x + y, d + a + y, c + x)

and

(y∗ | x, y) ∼ T ∗

T + b

 P G I B(a + x + y, c + x, d + a + y),

and the joint posterior predictive distribution is

(x∗, y∗ | x, y) ∼
(

S∗

S
,

T ∗

T + b

)

 Bailey(a + x + y, c + x, d + a + y,1),

which simplifies to Bailey(a + x + y, c + x, d + a + y,R−1) in the case when
S∗
S

= T ∗
T +b

=: R.

The following result provides the prior predictive distributions for the larger
family of priors defined in Lemma 3.1 by substituting t for T and τ for ρS.

Result 3.1. Let a, b, c, d, τ, t > 0 be given numbers and consider a four-tuple of
random variables (μ,ψ,x, y) whose distribution is defined by:

• μ ∼ G(a, b) is independent of ψ ∼ B′(c, d);
• x and y are conditionally independent given (μ,ψ) and their conditional dis-

tributions are (x | μ,ψ) ∼ P(μψτ) and (y | μ,ψ) ∼ P(μt).

Then the marginal distributions of x and y are

y ∼ t 
 P G(a, b) and x ∼ τ 
 P G B2(a, d, c, b),

the conditional distribution of x given y is

(x | y) ∼ τ 
 P G B2(a + y, d, c, b + t),

and the joint probability generating function of x and y is given by

G(u,v) = B(d + a, c)

B(d, c)

(
b

τ(1 − u)

)a

2F1

(
d + a, a, c + d + a;1 − b + t (1 − v)

τ(1 − u)

)
.
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Proof. Obviously, y ∼ t 
 P G(a, b). As the conditional distribution of λ =
μψ given ψ is 1

b
× G(a,ψ−1), one has (x | ψ) ∼ τ

b

 P G(a,ψ−1) and hence

x ∼ τ 
 P G B2(a, d, c;b). Using Bayes’ formula, we easily see that the condi-
tional distribution of μ given (y,ψ) depends only on y and is G(a + y, b + t).
Hence, the conditional distribution of x given (y,ψ) is τψ 
 P G(a + y, b + t) =

τ
b+t


 P G(a + y,ψ−1). Since y and ψ are independent, because μ and ψ are inde-
pendent and the conditional distribution (y | μ,ψ) does not depend on ψ , we then
have (x | y) ∼ τ 
 P G B2(a + y, d, c, b + t). Therefore, we know from Result 2.1
that the p.g.f. of the conditional law of x given y is given by

G(u | y) = B(d + a + y, c)

B(d, c)

(
τ(1 − u)

b + t

)d

× 2F1

(
d + a + y, c + d, c + d + a + y;1 − τ(1 − u)

b + t

)
,

therefrom, using formula (1.1), the expression of t 
 P G(y | a, b) given by (1.9),
and the series expansion (1.4) of the Appell hypergeometric function,

G(u,v) = B(d + a, c)

B(d, c)

(
b

b + t

)a(
τ(1 − u)

b + t

)d

× F1

(
d + a, a, c + d, c + d + a; vt

b + t
,1 − τ(1 − u)

b + t

)
,

thereby yielding the announced expression owing to the Bailey reduction (3.1).
Obviously, we also could have firstly derived the p.g.f. in the particular case t =
τ = 1, and then we would have derived the general case by applying the linear
change of variables (3.5). �

The following result provides the posterior predictive distributions for the semi-
conjugate family by substituting x for x∗, y for y∗, a for a + x + y, c for c + x,
d for d + a + y, t for T ∗/(T + b), and τ for S∗/S. Unfortunately, the conditional
distribution of x given y in the result below is not of the kind of distributions
defined in this paper.

Result 3.2. Let a, c, d, t, τ > 0 be given and consider a four-tuple of random vari-
ables (μ,ψ,x, y) whose distribution is defined by:

• (μ | ψ) ∼ G(a,1 + ψ) and ψ ∼ B′(c, d);
• x and y are conditionally independent given (μ,ψ) and their conditional dis-

tributions are (x | μ,ψ) ∼ P(μψτ) and (y | μ,ψ) ∼ P(μt).

Then the marginal distributions of x and y are

x ∼ τ 
 P G I B(a, d, c) and y ∼ t 
 P G I B(a, c, d),
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the joint distribution of x and y is

(x, y) ∼ (τ, t) 
 Bailey(a, c, d,1),

and the probability mass assigned by this distribution at x, y ∈ N is

p(x, y) = (a)x+y(c)x(d)y

x!y!(c + d)x+y

τ xty

(t + 1)a+x+y

× 2F1

(
c + x, a + x + y, c + d + x + y;1 − τ + 1

t + 1

)
.

One also has

(x, y) ∼ (τ/ρ, t/ρ) 
 Bailey(a, c, d, ρ−1)

whatever the value of ρ > 0 (thereby showing (3.4)). The joint probability gener-
ating function of x and y is given by

G(τ,t)
Bailey(a,c,d,1)(u, v) = [1 + t (1 − v)]−a
2F1

(
c, a, c + d,1 − 1 + τ(1 − u)

1 + t (1 − v)

)
.

Proof. One has (y | ψ) ∼ t 
 P G(a,1 + ψ) and (x | ψ) ∼ ψτ 
 P G(a,1 + ψ) =
τ 
 P G(a,1 + ψ−1), hence y ∼ t 
 P G I B(a, c, d) and x ∼ τ 
 P G I B(a, d, c).
One obtains (μ | y,ψ) ∼ G(a + y, t + 1 + ψ) by applying Bayes’ formula, hence
(x | y,ψ) ∼ ψτ 
 P G(a + y, t + 1 + ψ). This yields

p(x, y | ψ)B′(ψ | c, d) = 1

B(c, d)

(a)x+y

x!y!
τxty

(t + 1)a+x+y

× ψc+x−1(1 + ψ)−(c+d−a)

(1 + ψ(τ + 1)/(t + 1))a+x+y
.

The expression of p(x, y) is obtained by using formula (1.1) and the density func-
tion of B3(c + x, d + y, c + d − a, τ+1

t+1 ) given by (1.8), and we see in view of (3.2)
that p(x, y) = Bailey(x, y | a, c, d, ρ−1) when t = τ =: ρ. Hence, one obviously
has (x, y) ∼ (τ/ρ, t/ρ) 
 Bailey(a, c, d, ρ−1) in the general case, thereby showing
(3.4), and the expression of the p.g.f. is obtained by applying the linear change of
variables (3.5) to the p.g.f. of Bailey(a, c, d,1) given by (3.3). �

The covariance between x and y in lemma above is easy to derive with the help
of the probability generating function; we find that

Cov(x, y) = τ tacd(c + d − a)

(c + d)2(c + d + 1)
.

In particular, in the context of the semi-conjugate family, we see that the posterior
predictive covariance Cov(x∗, y∗ | x, y) is always positive.
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Comparison with the conjugate family. The natural conjugate family of priors
for the “two Poisson samples” model is formed by the independent products of
Gamma distributions on μ and λ. This family contains the Jeffreys prior which
is the case when μ ∼ G(1

2 ,0) and λ ∼ G(1
2 ,0), and, as noticed by Laurent and

Legrand (2011), the Jeffreys prior and the φ-reference prior yield the same pos-
terior on φ, but do not yield the same posterior predictive distributions. We note
however that these posterior predictive distributions are close, because of

(τ, t) 
 Bailey(a, c, d,1) ≈ (
τ 
 P G(c,1)

) ⊗ (
t 
 P G(d,1)

)
when a ≈ c + d,

with equality when a = c + d . This approximation follows from the two approxi-
mations (a)x+y/(c + d)x+y ≈ 1 and

2F1

(
c + x, a + x + y, c + d + x + y;1 − τ + 1

t + 1

)

≈ 2F1

(
c + x, a + x + y, a + x + y;1 − τ + 1

t + 1

)
=

(
τ + 1

t + 1

)−c−x

.

Thus, in the context of the semi-conjugate family, one obtains

(x∗, y∗ | x, y) ≈ (
S∗ 
 P G(c + x,S)

) ⊗ (
T ∗ 
 P G(d + a + y,T + b)

)
when c + d is small, as in the case of the φ-reference prior for which c + d = 0.5,
and moreover, in that case, the right member is exactly the posterior predictive
distribution corresponding to the Jeffreys prior.

By-product: A family of priors for the Poisson model. The semi-conjugate fam-
ily in the case when T = 0 in the “two Poisson samples” model yields a family of
priors for the “one Poisson sample” model for which the prior predictive distribu-
tions form the Beta-negative binomial family. Precisely, we obtain the following
result.

Consider the “one Poisson sample” model x ∼ P(λS) with known “sample
size” S and unknown rate parameter λ. If the prior on λ has the distribution of the
product μφ of two independent random variables μ ∼ G(a, S) and φ ∼ B′(c, d),
then

• the prior predictive is x ∼ P G B′(a, d, c);
• the posterior predictive is (x∗ | x) ∼ S∗

S

 P G I B(a + x, d + a, c + x);

• the posterior distribution (λ | x) is the distribution of μθ where μ ∼ G(a +x,S)

and θ ∼ B′(c + x, a + d) are independent random variables.

The prior and the posterior distributions of λ can be straightforwardly simulated
but they are not analytically easy to handle. It can be shown that both the prior
and the posterior densities of λ involve the Tricomi function. Certain distributions
whose densities involve this function are studied by Fitzgerald (2000), but they do
not cover the case above.
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