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ABSTRACT.  Vietoris found an interesting generalization of the classical

inequality Z.   « (sin k6/k) > 0, 0 < 0 < 77. A simplified proof is given for his

inequality and his similar inequality for cosine series. Various new results

which follow from these inequalities include improved estimates for the loca-

tion of the zeros of a class of trigonometric polynomials and new positive

sums of ultraspherical polynomials which extend an old inequality of Fejer.

Both of Vietoris' inequalities are special cases of a general problem for

Jacobi polynomials, and a summary is given of known results on this problem.

1. Vietoris' theorems. In a little known paper [18] Vietoris proved the follow-

ing theorems.

Theorem 1. // zzQ > «j >• • •> an> 0 and i2k)a2k < (24 - l)«2t_i' ^ - *« t^en

n

s  ix) = £ zzfe sin kx > 0,       0 < x < 77,

k=l

and
72

t (x) = £ ak cos kx > 0,       0 < x < 27.

fe=0

Theorem 2. //

(U> ^-2*+i = 2-2*(f),       k>_0,

then

n

(L2) onix)= £ cksinkx >0,       0 < x < n,

*=1

and
77

tf«3) '„M =   £  Ck COS  kx > 0, 0 < X < 77.

fcaO

These two theorems are equivalent. The second is obviously a special case

of the first. On the other hand, Theorem 1 follows from Theorem 2. For if
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296 RICHARD ASKEY AND JOHN STEINIG

^0 - ^1 -" '- d„ > 0, a summation by parts shows that

and

Z ckdk sin foe > 0,       0 < x < 77,
k=l

Z Ck^k C0S kx^O, 0 < X < 77.
k=0

Letting a, = c,d,, 0 < k < re, gives Theorem 1.

For completeness we will give a proof of Theorem 2. Some of Vietoris' ideas

will be used, but many of the difficulties of his proof have been replaced by easier

arguments. However the reader should be aware that greater elegance often means

diminished power, and Vietoris' original arguments may turn out to be useful for

the more complicated problems which are mentioned at the end of this paper. The

applications include estimates for the zeros of certain trigonometric polynomials

and an improvement of a forty-year old result of Fejer on sums of ultraspherical

polynomials.

For the proof we need three lemmas.

Lemma 1. For m>\ we have (2m) < 22mlnm)-'[/2.

Proof. Let ym = ml/22-2m(2™). Then ym < ym+1 for 772 > 1; and by Stirling's

formula, y   —> 77~        as m —► <».
' ' m

Lemma 2. // the sequence \c,}°¡°_0 is defined by (1.1), then for 0 < x <ir,

(1.4) V c, sin kx = J2 c, cos kx = [ — cot — ]

M fe=0   * V2        2)

Proof. For |z| < 1, z 4 1, we have (l - z)~  '    = 2, _Q c2,z . Since c2, -

c,,   ., it follows that

(i+2)d-22r1/2= -£ckzk

k=0

for |z| <l,z/+ 1. On setting z = eZJC, 0 < x < 77, and separating real and imagi-

nary parts, we get (1.4).

Lemma 3. Let Pf(x)'= 2¡=0 bkelkx, where bQ > èj > • • •> &r > 0. Then for

re > 772 > 0 we èave

(L5> |P„W-FmW|<^m+i/sin(x/2),       0<N<277.

Proof. Sum by parts and use the standard estimate \27]_0 el *| < l/sin(x/2).

We are now ready to prove Theorem 2.
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SOME POSITIVE TRIGONOMETRIC SUMS 297

Proof. Consider a   first. We may assume n > 2. Different arguments are

needed for each of the intervals 0 < x < 77/72, n/n < x < tr — n/n and 77 - 77/72 < x < 77.

For 0 < x < 27/72, all terms in the sum are nonnegative, and the first is strictly

positive.

For 77 - 27/72 < x < 27, set x = 27 - y, so that 0 < y < n/n. It n is even, say

» = 2t72, we have

2j72 772

o~nix) = 2 (~ l)*_1^sin ky = £ [c2fe_j sin(2/e- l)y - c2k sin 2ky]
k=l kml

¿i       "-'L 2k-1      2k J

This last sum has positive terms, since /"sin t is decreasing in t on (O, 77]

and 2ky < 2my = ny < tt. And if 72 is odd there is an extra term, c sin ny, which

is positive for 0 < y < n/n.

If 72 > 3, we must still consider the interval 77/72 < x < n — n/n. There we have

sin x > sin (77/72) > (27/72X1 - 77/672 ). Now by Lemmas 2 and 3,

an(x) > (Vi cot(x/2))l/2 - cn+1/sin(x/2);

hence, for 27/72 < x < 77 - 27/72, we have

(1-6) 2 sin ix/2)anix) > [in/n)il-n2/6n2)]l/2 - 2cn+1.

Here, the term in square brackets is decreasing in n for n> 3, and c2m = c2m .

for 222 > 0. Hence, the right hand side of (1.6) is positive for n = 2tt2 — 1, if it is

positive for 72 = 2t7z. And for 77 = 2772 it follows from Lemma 1 that the right hand

side of (1.6) is at least equal to

(277772)- 1/2Í77(1- 272/24t722)1/2 - 2V2];

this is positive for 772 > 2. Therefore 0"n(x) > 0 for 77/72 < x < 77 - 77/72. The theorem

is now proven for a .

For t    the proof is similar to that for a , but the details are slightly more

involved. The result is obvious for 72 = 0 and 72 = 1, and an elementary computa-

tion shows that r^x) = cos2 x + cos x + Vi > 0. We may therefore assume « > 3.

Firstly, we observe that r (x) > 0 for 0 < x < 27/72, since
J 72 —

ÍZY 72

—— = - J} ^Cfc si" kx < 0,      0 < x < 27/72,
dx fe=l

and

/   v      L72/2J ?

H«)=?n(<r*-c"-fc)cosT>0-
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298 RICHARD ASKEY AND JOHN STEINIG

Secondly, we show that r (x) > 0 for n - 77/(72 + l) < x < 77. We set y = 77 — x,

and write

[(7.-D/2]

Tn<x^ =    Z     c2fA\cos 2/fey - cos(2* + l)y] + en,

where e   = 0 if n = 2m — 1 and e   = c-   cos 277zy if re = 2ttz. When e   = 0, the
n n        ¿m J n

monotonicity of cos x, 0 < x < 77, shows that r (x) > 0 for 0 < y < 77/72. When

re = 2ttz, we have

T„(x) > c2m(l - cos y + cos 2y - cos 3y + • * • + cos 2r7zy)

= c,   (1 + cos x + cos 2x + • • • + cos 2t7zx).
¿m

Summing this series gives

Sin (tTZ + M)x COS 77ZX COS (t7Z + Vj)y  COS 772y

r"(X  -Clm shÄxTT) = **■ cos(y/2) •

It follows that r lx) > 0 for 0 < lm + l/2)y < tt/2, that is, for 0 < y < 7r/(w + l).

Lastly, we consider the interval 77/(72 + l) < x < 77 — 7r/(re + l) for re > 3. The

same argument as for a lx) on 77/re < x < 77 - 77/re shows that it is enough if

[77/(72 + 1)(1- 772/6(re + 1)2)]1/2 - 2cn+1 > 0.

Here again, it suffices to consider even values of re, say re = 2ttz. Computation

shows that this inequality holds for re = 4 and 6. For m > 4, the stronger inequality

.2

l"—1.
2772 +  1  \ 6(2t7Z + l)2

1/2 2
>0

\fñm

holds, since it holds for 772 = 4 and since its left hand side, when multiplied by

yfm, is an increasing function of m.

This concludes the proof for r .

2. Applications to other trigonometric sums. A trigonometric polynomial with

real coefficients, of degree re, has exactly 2re zeros (modulo 27r) [12, §VI, Problem

14]. Pólya [ll] proved that a sine polynomial, or a cosine polynomial, with posi-

tive and monotonically increasing coefficients, has all its zeros real and simple.

Then Szegö [15] showed how one could obtain estimates for the location of the

zeros of such polynomials; this is the problem which we now consider.

We require the following corollary of Theorem 1.

Corollary 1.  If (2/fe - l)Ak_ j > 2Mfe > 0 for k>l, and if 0 < x < 2rr, then

n n

£ Aksinlk + lA)x>0    and    £ Ak cos Ik + lÁ)x > 0.
*=o *=o
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SOME POSITIVE TRIGONOMETRIC SUMS 299

Proof. Set ak- 2~2 ( k). It suffices to establish the particular case A, = a ,

k = 0, • • •, 72; the general case then follows by partial summation.

Now by Theorem 2, we have

77

£ ak[sin 2kx + sin (2¿ + l)x] > 0,       0 < x < 77,

k=0

72

£ a¿[cos 2kx + cos (2£ + l)x] > 0,       0 < x < 77.

Hence,

* = 0

n 72

Y. ak sin (2k + V2)x > 0    and     £ &k cos (2¿ + l/2)x > 0

k=0 k=0

for 0 < x < 77, and the proof is complete.

Corollary 2. Let A.,- • •, A    satisfy the conditions of Corollary 1. If 0 < v

< Va and 0 < x < 2t7, or - Va < v < Va and 0 < x < 27, /ie72 2" 0 Afecos (/e + v)x > 0.

Proof. Use Corollary 1, and the identity

cos ik + v)x = cos (k + !4)x cos (v - Va)x - sin U + Ya)x sin (v - %)x.

Similarly, one proves

Corollary 3.  Let A.,. • •, A    satisfy the conditions of Corollary 1.  If %<v

< Vi and 0<x<2n, or Va <v<Íi and 0 < x < 77, then 2£=0 A^sin (k + v)x > 0.

We shall combine Corollary 1 with an argument due to Szego, and obtain bounds

for the zeros of a wide class of ttigonometric polynomials. Szego [15] applied the

classical inequality of Fejér

72

(2.1) £ sin ik + l/2)x > 0,       0 < x < 2?7,

fe=0

to prove, among other things, the following two theorems.

Theorem A. // X. > A, > A- > • • •> X   > 0, and if s., t.  denote the zeros of

pit) = Aq cos 72Z + Aj cos (72 - l)t + ■ • • + Xn_ j cos t + X

and of

qit) = AQsin 72i + Aj sin(72 - l)r + • • • + \_i sin t,

respectively, on 0 < í < 77, then

[2.2) (* - V2)n/in + V2) < S)

(2.3) ¿77/(72 + V2) < t, < ik + 1)77/(72 + VA,      k = 1, ...,7i- 1.

(2.2) ik-y2)n/in + y2)<sk<ik + V2)n/in + y2),       k=l,-..,n,
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300 RICHARD ASKEY AND JOHN STEINIG

Theorem B. //, z« addition to the conditions in Theorem A, we have

(2.4) 2A0 - Aj > Aj - A2 > A2 - A3 > ... > An_ t - A„ > \n > 0,

then the right hand sides of (2.2) and (2.3) can be replaced by krr/n and (k + V-iAn/n,

respectively.

It is interesting to remark at this juncture that one may not replace sin (A + I4)x

by cos (A + lA)x in (2.1), since

" sin (re + l)x
£  COS (k + /i)x =   - , 0 < X < 277.

fe=0 2 sin(x/2)

In contrast, we have at our disposal in Corollary 1 a sine polynomial and the corre-

sponding cosine polynomial, both positive on (0, 27r). This allows us to strengthen

both sides of the inequalities in Theorem A under a supplementary condition on

the A's different from the one in Theorem B. We shall prove

Theorem 3. Ler pit), qit), s,  and t,   be defined as in Theorem A. //

(2.5) (2k - 1)AA_ j > 2k\k > 0,      k>l,

then

(2.6) (k-V2)n/(n + Vi)<sk<krr/(n + yi),       ft.l,...,*

<2-7>               kn/(n + 1A)<tk<(k + y2W(n+1/4),      k - 1, • • • , re - 1.

Proof. Since p(t) + iqit) = 27¡=Q \kei(n-k)t, we have

n «

c-«(»+l/4)z[p(i) + ^(j)] = £ Afe cos Ik + Vi)t - i Z \ sin (* + ^'
fe=0 fc=0

whence
n

p(f) cos (re + xA)t + £/(i) sin (re + %)t = £ Afe cos (A + %)'»

k=0

n

pit) sin (re + lA )t - qit)cos in + V4)t = Z A/k sin ^ + ^'*

ife=0
By Corollary 1, therefore,

(2.8) pit) cos (re + ^)r + qit) sin (re + lA)t > 0,      0<t< 2n,

(2.9) pit) sin (re + lÂ)t - 9(r) cos (re + V4)t > 0,      0 < / < 2tt.

Letting t = ¿77/(72 + lA) in (2.8) and t = Ik + V2)n/in + %) in (2.9) leads to

(- l)*p(W(72 + lA)) > 0,       A = 0, 1, ... , re,

(- l)kplik + V2)n/in +lA))>0,       k = 0, 1, .... re - 1;

and these inequalities imply (2.6). Similarly, we see that (2.7) holds, and the

theorem is proved.
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The other zeros of p(t) are at / = 277227 + s,  and those of q(t), at / = 2ítí7T + /,

and at t = 77227 (722 = 0, + 1, + 2, • • •).

The left hand inequalities in (2.6) and (2.7) are only slight improvements over

the corresponding inequalities in Theorem A, but the right hand inequalities are

slight improvements even on Theorem B. The condition (2.4) implies A, > ein — k)

for some c > 0, while the condition (2.5) in Theorem 3 implies only A, > c'(n — k) '2.

This gives some indication of the depth of Vietoris' theorem.

3. Applications to ultraspherical polynomials. Both the Fejér-Jackson-Gron-

wall inequality,

,, ,x "   sin foe
(3.1) £- >0, 0<X<77,

fc=l   k

and W. H. Young's inequality,

"   cos kx
1 + 2L —7— > °.       0 < x < 77,

t=l      *

are contained in Theorem 1.

Since (3.1) implies or is related to many other inequalities (see for example

[2], [8] and the references given there), the existence of an extension of (3.1) sug-

gests that some of these other inequalities can also be extended. This is true to

some extent, as we proceed to show.

Certain power series occur so frequently that their coefficients have acquired

names and have been studied in detail. One such series is

(l-2xr + r2)-v= £c*(x)rn,

72 = 0

where Cv(x) is a polynomial of degree 72 in x. These are the ultraspherical poly-

nomials; many of their properties are discussed in Chapter 4 of [l6] and Chapter 10

of [6].

Fejér [7] proved that, for n ■ 1 > 2, • • • ,

n

(3.2) ZCfeW>0.      -1<*<1, 0<A<3f;
*=o

in other words, the power series coefficients of (1 —r)    (1 — 2xr + r )      are posi-

tive if 0 < A < Vi. One extension of this result was proved in [4]:

Theorem 4.  The function (l — r)~  v(l — 2xr + r )~v has positive power series

coefficients for -1 <x<l»i>>0.

This theorem is equivalent to

Er77Í<W>0,      -1<*<1, v>0.
k=o (" ~ k'-
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302 RICHARD ASKEY AND JOHN STEINIG

Here, (a)k is defined by ia)k = Fla + k)/Vla) = ala + l) • • • ia + k - l); observe that

ak = 2-2ki2kk) = lV2)k/kl.

A different extension of FejéVs inequality (3-2) is

Theorem 5.  For 0 < v < A, ££_0 iY2)fcC£(x)/(2v)fc > 0, - 1 < x < 1.

Proof. Combine Corollary 2 with the following Mehler-type integral representa-

tion for Cvnlx) [5, 3.15.2(23)]:

(sin 6)2V-X Cv(cos Ô) = ^Sf  —T f ! k°s <¿ - c°s öl"" 'cos (re + v)<f>dcß,

V > 0,  0 < 0 < 77.

A summation by parts shows that Theorem 5 is stronger than (3.2) for 0 < v < A.

A consequence of the case A = V2 of (3-2) is

<3-3> T—->0,       -Kx<l, v>V2.
fe=o C£(l)

This follows from Feldheim's integral [8],

C»(C0S 6) 2r(v + V2) 7-77/2    .   2X , 2V-2A-UZ,        -   2fl UW!
"^ir = r(A + M)r(,-A)io   sin^cos        Vd-stn^cos^)^

CA(cosÖ(l-sin2Öcos2ci)-1/2)
-¿öS,

C*(l)

1/ > A > - '4, 0 < 0 < 77,

which shows that if (3-3) holds for some value of v,v>-l/2, then it holds for all

larger values of v. For v > 1, (3.3) follows from Feldheim's integral and (3.1),

since

(3.4) Ci(cos 0)/C*(D = (sin (re + l)0)/(re + 1) sin 6.

Using Feldheim's integral, (1.2) and (3.4) give

(3.5) £ Ik + l)cfc+1 ——> 0,      -1<*<1,v>1,
fc=0 Cfe^1J

where c2fe = c2/fe+1 = (%)fe/fc!. Since kck < Ik + l)cfc+1 for A > 1, (3-5) implies

(3-3) for v > 1, by partial summation.

An inequality in the same vein as (3-3) is

Theorem 6.  For v > 0 and — 1 < x < 1, ii>e izjfe

Zc*-^- >0>
¿To    cj^(i)

where c2k = c2k + l = il/2)k/k\
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The proof follows immediately from Feldheim's integral and Theorem 2, since

lim.   „ (C*(cost9)/CMl)) = cos nd. This result was pointed out to us by George

Gasper. It is weaker than (3.3) for v>Vi.

4. Open problems. To fit Vietoris' theorem into a general context it is neces-

sary to introduce Jacobi polynomials, P^a'p (x), which may be defined by

(4.1) (l-^U^pl^'W^^td-,)»»»)!^)»^],      a,ß>-l.
2nn\   dxn

They satisfy the orthogonality relations

(4.2) J^1P^/3)(x)P^'^)(x)(l-x)a(l + x)/3[ix = 0, 772 ¿72,

fl^pwa-xm+x^dx

(4'3) 2a^+1 rin + a+ DFin + ß + 1) = [¿(a ß)]. i

(2t2 + a + ß + I) Tin + lWin + a + /3 + 1)

The standard references are [l6, Chapter 4] and [6, Chapter 10].

Vietoris' theorem and many other results are special cases of the following

problem.

Problem 1. Expand fix) = (l - x)_7'(l - x)-    in an orthogonal series of

Jacobi polynomials,
oo

(4.4) f(x)^   Y a ¿<a./Va'%)
' t-^        n    77 72

72=0

where

an = flt(l - x)"*l + x)~ 5P^ ¿>(x)(l - xfXl + x)ßdx.

For which values of a, ß, y, 8 are all the partial sums of (4.4) nonnegative, i.e.

T,"kb^ß)P^ß)(X)>0, -1<X<1,   72 = 0,  1,  ...?
k=0

Since

(4.5) P(-1/2- - 1/2\cos f3)/P<- 1/2> - 1/2)(1) = cos nö
77 72

and

(4.6) pa/2, i/2)(cos ö)/pa/2,i/2)(1) = (sin(fJ + 1)d)/{n + ¡)sin fl>

Lemma 2 and Theorem 2 give a positive solution to Problem 1 for

(4.7) a = /3=-l/2,      y =1/4,      S = -1/4,

(4-8)                           a = ß = 1/2,      y = 3/4,      8 = 1/4.

The case  a = y, ß = 8 has been studied in some detail.  Ptoblem 1 has a

positive solution for a = ß, - 1 < a < 3/2, [16, Theorem 15.5] and [3], a negative

solution for a> 3/2; and the general case (a, ß) has a positive solution for
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304 RICHARD ASKEY AND JOHN STEINIG

a, ß > 0, a + ß < 1; a = ß + 1, - 1/2 < ß < 0; ß = a + 1, - 1/2 < a < 0 [l]; and

a negative solution for a > ß + 1 or  j8 > a + 1 [l], and also for a > 3/2 or ß > 3/2

[l6, Theorem 15.2.2 and Theorem 15.4].

Other known cases of Problem 1 are

(4-9) a =1/2,      /3 = -l/2,      y= 1,      8=0,

which reduces to Fejer's sum

n

(4.10) Z sin (* + H)0 > 0,
fc-0

and

(4.11) a = ß,      -l<a<0,      y=a+ 1/2,      8 = 0,

which was proven by Fejér [7] for — A < a < 0 and Szego [17] for — 1 < a < — x/2.

Most of the methods which have been used to obtain positive results for Prob-

lem 1 are special and do not extend to other cases. The one exception is the use

of the positive sum [2],

n    Pf,ß\x)
(4.12) Z    ,r „,      > °-      -K*<l,-l<a</3+l, a + /3>0.

A=o P[ß' 0)(1 )

This inequality is probably true for ß > - Y2, a + ß > 0, and if so it would give a

new powerful weapon to attack special cases of Problem 1. In particular (4.12)

for ct = 3/2, ß =— A is equivalent to

p(3/2,3/2)(x) „    p<3/2.3/2)(x)

(4.13) y;u + i)2-2i->-T.—--i<x<i,
M Pg'2' 3/2)(D " 4 to P23/2' 3/2)(D -     -

and Problem 1 for a = j8 = y = 8 = 3/2 is

„ p(3/2,3/2V x

(4.14) y(i+D2-i-;-->0,      -Kx<l.
to P2\/2'"2Ki)- -  -

Since

„   p(3i/2.3/2)W

V _->0,      -Kx<l,
^0P«/2.3/2)(l) -     -

(this is the even part of (3-3) for v = 2), it is clear that (4.13) is a deeper result

than (4.14). However (4.12) is not true for all id, ß). For instance, it fails for

a < A, ß =- A, when re = 2.

Rather than leave the impression that all of these problems would be solved

if only (4.12) held, we, should remark that Problem 1 can contain deeper results

than (4.12). For example, when a = ß = A, (4.12) is just the Fejér-Jackson-Gron-

wall inequality, and Vietoris' inequality (1.2) is a deeper result. Inequality (4.12)
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is deeper the closer ß is to — Vi but unfortunately it is also harder to prove then.

The common source of these two problems seems to be the following problem about

Bessel functions:

Problem 2. For which values of (a, ß) is

<4-15) ¡xorßja(t)dt>o,    x>o?

The condition ß < a + 1 is necessary for the convergence of (4.15) at zero, and

will not always be mentioned below.

The connection between (4.12) and Problem 2 comes from

P(a'^(cos(0/«))
= 2ar(a+l)0-a/a(0).lim

72->00 p(«»/9)(i)

If (4.12) holds for a pair (a, ß) then Problem 2 has a positive solution for the

same (a, ß). The connection between Problems 1 and 2 comes from

f~rßJaixt)dt
(4.16) î-l

^rßjait)dt

Problem 2 is much more tractable than either of the problems involving Jacobi

polynomials. When a>V2, (4.15) holds for ß =- Vi (and hence for ß >- V2, by the

second mean value theorem) by a theorem of Makai ([10], [13]); and the left hand

side of (4.15) changes sign infinitely often on 0 < x < ~ if ß <_ Vi [14]. For - 1

< a <V2, there is a unique solution ß(a) (- Vi < /3(a) < 0) to the equation

(4.17) f'*'2rßWjait)dt = o,

where ja 2 is the second positive zero of }ait). Then (4.15) holds for /3(a) < /3 <

a + 1 and the only cases of equality are x = 0 or ß = jß(a), x = /   ,. This has

been proved by E. Makai when - Vi < a< V2, it is classical when a =- Vi, and the

proof for - 1 < a <- Vi follows. Makai's proof will appear in the near future.

Let ja n denote the Tzth positive zero of Ja(x). Then Makai's comparison

theorem [10] applied to the differential equation

y"+[(4x2-4a2+l)/4x2]y = 0, v = x1/2/a(x),

A/2*1/2Jaix)dx
['a,72 + 1    1/2, /   x  ,

J . x      ]¿x)dx
a, n

implies

ïr
a, 7j-

The second mean value theorem then gives

f'*-    x~ß]aix)dx>   fa'n+1x-ßJaix)dx
J >a, 7,-1 J 'a,n

2, 3, ...,|a|>l/2.

(4.18)

2,3, Ka<-l/2, - l/2</3<0.
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The proof of (4.15) for - 1 < a < - A will be complete if we show that /3(a)

defined by (4.17) exists, -A< /3(a) < 0, and is unique. Let

giß) = f0a,2rßjait)dt.

By Cooke's theorem (see [13]), g(0) > 0, and we will show that g(- 1 - a) < 0. This

gives the existence of /3(a) and the inequalities - A <- 1 - a < /3(a) < 0, - 1 < a <

-A.

Recall the classical differentiation formula [6, 7.2.8 (50)]

^-Ua+1ja+llt)\=ta+1JaU).
at

Integrating this gives

J,;'2ía+1/awíví = (/ai2)a+1/a+1(/a>2),    a>-l.

Now   Ja+l^aJ < °  since for a >- !   we have /a+lW < °' /'a+1,1 <x< Ta+1,2   and

'a+1,1 < U,2 < Ia.+i,i- Thus there is at least one ß(a)> and Î* fßWjalt)dt > 0,

x 4 ja 2, follows from the above argument. Then an integration by parts shows that

/Ô t~ßlckt)dt > 0, x > 0, /3 > /3(a), so /3(a) is unique.

It is likely that /3(a) is a decreasing function of a for - 1 < a <- A. The

following values of /8(a) were computed by J. Al-Abdulla using an integration

package supplied by C. de Boor.

a /3(a)

-.5      -.1915562

- .4      - .2259427

- .3      - .2593436

- .2      _ .2918541

-.1      -.3235531

0 - .3545096

.1 - .3847832

.2 - .4144258

.3 _ .4434834

.4 - .4719960

.5 - .5000000

Makai's result gives a new proof of a theorem of Szegö [8]. Szegö proved that

fX0t~aJait)dt>0,       a>a,x>0,
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where a   is the solution of

l[a'2r«]ait)dt = o.

Let R be the set of (a, ß) for which (4.15) holds. When  - 1 < a < Vi the

boundary of R is the set of points where (4.17) holds, and from Sonine's first

integral R contains (a + p, ß + p), p> 0, when it contains (a, ß). See the argu-

ment in [8]. Anothet proof of Szegô" s theorem is given in [9].
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