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SOME POWER SERIES WITH RANDOM GAPS

PHILIP HOLGATE,* Birkbeck College, London

Abstract

Power series E zXn are studied, where {Xn } is a strictly increasing
integer-valued stochastic process.

RANDOM POWER SERIES; NATURAL BOUNDARY

The function theoretic properties of random functions are discussed in the monograph of
Kahane (1985), and random power series in particular are surveyed by Lukacs (1975),
Chapter 5. Walk (1968) drew attention to the parallels between probability 1 properties of
random power series and those of certain deterministic lacunary series. Brief references to the
properties of fixed lacunary series can be found in, for example Titchmarsh (1939), §7.4.
Arnold (1966) studied series in which the sequence of powers for which the coefficient is
non-zero is specified deterministically, but the values of the coefficients are random. This note

is about lacunary series of the form 1(z) = E zXn in which the gap lengths are random

while the coefficients are all 1. 0

Corresponding to any random power series we define the mean function Il(z) = EI(z) and
the real variance function v (z) = E (I (z) - Il (z )), provided the relevant sums converge. The
indices occurring in a realisation of I(z) form a catalogue of the states visited by the sample
sequence {Xn} and Il(z) is a generating function for the expected numbers of visits of the
process to the states.

n

Case 1. Suppose that X o = 0, X; = E lj, and the {Yn } are independent, positive
i=O

integer-valued random variables, with common p.g.f. n(z). The corresponding mean series is
Il(z) = E~ nn(z) = 1/(1- n(z)), which is singular at z = 1.

Examples. For the uniform distribution on 1,···, k, Il(z) = k(1 - z)/ {k - (k + l)z +
Zk+l}. For the geometric distribution Pi = (1 - B)(Ji-t, j ~ 1, we have Il(z) = (1- Bz)/(I- z).
The real variance is
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With probability 1 the series diverges at z = 1, and by Pringsheim's theorem, I(z) has a
singularity there. For any integer k we can write

k-l k-l
I(z) = L zi~(j)(zk)(Xn-j)lk = L zit(z),

i=O i=O

where the summation ~ ( j ) extends over those n for which X; == j (mod k). Each t(z) has the
same probability distribution as I(Zk), and hence with probability 1 has singularities at each
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kth root of unity. The functions will only add up to cancel out the singularities if a fixed
relationship holds between the {fi(z)}. This is not so, since if k - 1 of them are fixed, the kth
has positive conditional .variance. Thus f(z) has a natural boundary produced by the
stochastic irregularity of the gap lengths. The examples show that a random series may have a
natural boundary with probability 1, but its mean series be analytically continuable. Let
cp(z) = f(z)/Jl(z) = (1- :rc(x»f(z). Then Ecp(z) = 1, lim, __ t var cp(z) = 1. Multiplying and
dividing by 1- z we find lim,__ t cp(z) = :rc'(1) lim,__ t (1- z)f(z). Now :rc'(1) = EXt. Since
(1 - z) can only cancel out a simple pole, cp(z) has with probability 1 an essential singularity
at z = 1.

Case 2. Suppose now that {Xn } is a stochastic branching process (Harris (1963» whose
offspring p.g.f. is :rc(z), with expectation m > 1. On taking expectations of both sides of the
series for the mean, we find Jl(z) = E:=o :rcn(z), where :rcn(z) the p.g.f. of X; is the nth
functional iterate of :rc(z). We can write this as a functional equation, Jl(z) = z + Jl(:rc(z».
Write Jl(z) = E b.z' for [z] ~ roo Suppose that :rc(0) = 0, then b., = o. Substitution into the
functional equation gives the relation b; = Dt n + E {n! bEklkt! .. ·kn!)}(pt1!)kt

• • • (Pnn!)kn

(summation over all positive integral solutions of k, + 2kz + ... + nk; = n), = Dt n +
An(b;pt' .. Pn), where Dt n is a Kronecker symbol and An is the nth Bell polynomial (Riordan
(1958), p. 34). The first few coefficients are found to be: b t = 1/(1 - Pt), bz = pz/«l - pt)(l 
pi», b, =p3/«1- Pt)(l- p ~ » + 2ptP~/«1- Pt)(l- pi)(l - p~». The mean series cannot be
finite at z = 1, for that would imply Jl(l) = 1 + Jl(l). An expression can be derived for v(z) in
this case, but it is less simple than in Case 1.

It follows from the strong law of large numbers that X n + t / X n ~ m with probability 1, and
therefore the sequence has Hadamard gaps and a natural boundary. However, it is still
possible for the mean series to be analytically continuable.

Examples. For the zero-modified geometric distribution it is possible to obtain an explicit
expression for :rcn(z) for all n, namely

:rcn(z) = 1- mn(l- q)(mn - q)-t{l - (1- q)z(mn - q - im" - l)z)-t}

where

q = :rc(0), m = :rc'(1).

It can be seen that in this case Jl(z) has poles at z = tm" - q)(mn - n' for n = 1, 2, ... , and
hence that z = 1 is a limit point of poles. However, Jl(z) is regular everywhere else on its
circle of convergence. For the Petersburg distribution, Pr (X = Z") = (~)n+t, n = 0, 1, ... , the
p.g.f. :rc(z) = E (~)n+tzzn has a natural boundary at [z] = 1. Then :rc(z) becomes unbounded as
z~zo for any z, on the unit circle. Thus Jl(z) is unbounded as z~zo, and has a natural
boundary.

The similarity in behaviour of random power series and deterministic lacunary series
investigated here reflects a wider parallelism between the latter and general sequences of
independent or nearly independent random variables. This is seen most strongly in the
probability theoretic and function theoretic formulations of the law of the iterated logarithm.
It is discussed in the references cited by Bingham «1986), Section 20.1), in particular in the
papers of Salem and Zygmund (1950), and Makarov (1985).
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