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Some practical extensions to the Cell Transmission Model

Gunnar Flötteröd* and Kai Nagel**

Abstract— This article describes some practical extensions
to Daganzo’s Cell Transmission Model. Flow calculations for
straight, merge, and diverge cells are subsumed in a single
computation scheme which allows for arbitrary cell connec-
tivity. Since it is planned to apply the resulting model in a
mathematical programming based traffic monitoring system,
approximate sensitivities are also provided.

I. INTRODUCTION

Any intelligent transportation system’s performance sig-
nificantly depends on its capability to reproduce and predict
the state of the traffic system under consideration. From a
control engineering point of view, this can be achieved by
representing the system in state space form and then applying
an observation algorithm such as Kalman filtering [1], [10].

Pursuing this idea, we currently are in the process of
setting up a traffic model with certain properties we found
most appropriate in a state estimation context. Specifically,
this article describes a network loading model, which is (like
all other components of the overall system representation) a
deterministic macroscopic discrete time model that can at
least approximately be differentiated.

Although we sacrifice many benefits of microscopic ap-
proaches by choosing an aggregated model [2], [8], we still
expect meaningful estimation results due to the straight-
forward applicability of a large number of mathematical
programming algorithms to our problem formulation (as
compared to the far more difficult handling of microscopic
traffic simulator outputs) [3], [9]. Since we also work on
agent based models, this work can be understood to comple-
ment such approaches.

To build on a strong foundation, we chose the Cell
Transmission Model (CTM) as a starting point. It fulfills
the aforementioned requirements and has proven to be a
proper numerical approximation of the well-established LWR
representation of traffic flow [4], [7]. Although it was
originally proposed for highway traffic, we intend to apply
it also to urban systems, where traffic intrinsic dynamics
become secondary compared to the effect of light signals.
In this case, even simpler models appear to be sufficient to
capture relevant effects [6]. Still, the possibility for seamless
transition from freeway to urban traffic using a single model
makes the CTM even more attractive. In addition, it is a first
order model with an accordingly low number of states and
parameters to be estimated.
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We found that some extensions to the CTM would be of
use for practical application: While the original CTM poses
several restrictions on cell linkage [5], this paper discusses a
generalized connection structure which includes the original
straight, merge and diverge cells as special cases.1 This
allows to directly map road networks of arbitrary topology
onto the Extended Cell Transmission Model (ECTM).

In order to unify these extensions and to improve our
implementation’s robustness, we cast them into a formal
framework representing all possible flow calculations in
terms of a general dynamic process. Since sensitivity anal-
ysis for this process is provided, the entire ECTM also is
(approximately) differentiable.

The remainder of this article is organized as follows: Sec-
tion II describes a general process of resource consumption,
from which all flow calculation equations of the ECTM
can be derived. Section III shows how the original CTM is
represented by this process and describes extended modeling
capabilities. Section IV provides approximate sensitivity
analysis and section V gives an outlook on further works.

II. A GENERAL PROCESS OF RESOURCE CONSUMPTION

This section is not necessarily traffic-specific. It discusses
a general process of resource consumption. Considering
traffic flow modeling, these resources correspond to available
vehicles on an upstream road segment and the available
space on an according downstream segment. For readability,
approximate sensitivity analysis is postponed until section
IV.

We consider an n-dimensional process with time index
k = 0, 1, . . . , K . Every state x

(k)
i (element of state vector

x
(k) ∈ R

n, i = 1 . . . n) can be considered as some resource
which is used up during the process. Its rate of consumption
equals a nonnegative and finite flow rate f

(k)
i ≥ 0, which

remains constant within every time step. Denote a time step
k’s duration by t(k). The process’ evolvement is then given
by x

(k+1)
i = x

(k)
i − f

(k)
i t(k).

Any state that has run dry (i.e. reached zero) is excluded
from further calculations. The set D(k) = {i; x

(k)
i > 0}

contains all states still relevant in time step k. Because of
the states’ non-negativity constraints, t(k) ≤ x

(k)
i /f

(k)
i must

hold for all i ∈ D(k). The maximum duration of time step
k constrained exclusively by state i ∈ D(k) (also called the
availability of resource i within time step k) is given by

1It may be argued that arbitrary connectivity can also be achieved by
proper combination of the three basic cell types described in [5]. Still,
this inevitably imposes possibly unwanted dependencies between flows
through such settings, and requires somewhat involved construction of more
complicated intersections.



Algorithm 1 General Process of Resource Consumption

x
(0) is given

D(0) = {i; x
(0)
i > 0}

k = 0
while (∃i ∈ D(k) : fi(D(k)) > 0) do {

∀i ∈ D(k) : ti(x
(k)
i ,D(k)) = x

(k)
i /fi(D(k))

t(x(k),D(k)) = mini∈D(k) ti(x
(k)
i ,D(k))

B(k) = argmini∈D(k) ti(x
(k)
i ,D(k))

x
(k+1) = x

(k) − f(D(k))t(x(k),D(k))
D(k+1) = D(k)\B(k)

k + +
}
K = k

t
(k)
i = x

(k)
i /f

(k)
i ∈ (0,∞). It is assumed that every time step

k lasts until at least one state in D(k) has reached its minimal
(zero) value. (Zero flow rates may imply infinite availabilities
for certain states, which is feasible.) Time step k’s duration
can now be given by t(k) = mini∈D(k) t

(k)
i . Because t

(k)
i is

well defined and strictly positive for all i ∈ D(k), this implies
a likewise strictly positive duration t(k) of all time steps.

For convenience, a set B(k) = arg mini∈D(k) t
(k)
i is

defined.2 It contains those state indices having run dry at
the end of time step k. Therefore, we can give D(k+1) =
D(k)\B(k) as an update equation. Flow rates f

(k)
i depend

only on the set D(k) of currently available states and do
not vary with respect to the time index otherwise: f

(k)
i =

fi(D(k)). From this it also results that t
(k)
i = ti(x

(k)
i ,D(k)).

Since all consumption rates of a given time step k are
defined by D(k), we phrase that “time step k is under regime
D(k)”. The process configuration given so far implies that
fi(D(k)) = 0 for all states i /∈ D(k). Availabilities of these
states are neither defined nor needed. The process terminates
when all flows have ceased, i.e. fi(D(K)) = 0 ∀i ∈ D(K).
Algorithm 1 gives an overview.

It has to be pointed out that the temporal aspect of this
process is not to be interpreted physically: One entire process
run corresponds to a single vehicular flow rate calculation
for a set of adjacent cells within one simulation time step.
Therefore, only the final state reached by the process is of
relevance to the physical simulation.3

III. AN EXTENDED CELL TRANSMISSION MODEL

In this section, the flow calculation equations of the
original CTM cell types are expressed in terms of the general
process given in Section II. Several extensions to the model
are discussed.

A. Preliminaries

The ECTM is to be applied in a real time state es-
timation context. Therefore, simplicity for fast numerical

2The argmin function returns the set of all minimizing indices.
3This terminology will be maintained throughout the article: One simula-

tion time step for calculation of vehicular flow rates consists of a complete
run of the dynamic (sub-)process, which itself contains of a number of
further sub-time steps in which (resource) consumption rates are evaluated.

treatment and sufficiently detailed modeling capabilities have
to be balanced: Although the ECTM operates in destination-
oriented mode, all flow calculations on cell level are based
only on local information such as turning proportions. This
is achieved by appropriate aggregation and disaggregation
procedures at the beginning and end of every simulation
time step. These simplifications have some influence on the
ECTM’s precision: All destination oriented properties are
equally distributed within a cell. Therefore, the precision of
FIFO compliance is not in the order of a simulation time
step (as in the original model), but rather in the order of a
congested cell’s traversal time.

In the original model, the road network is represented by a
graph comprised of vertices corresponding to cells and edges
describing the linkage between them. Different cell types
for different connection types exist. In our implementation
of the ECTM, the vertex set is augmented by so-called
connectors, being responsible for flow calculations. The cells
themselves are reduced to occupancy containers with little
internal functionality. The only connectivity constraint is
given by the need for alternating sequences of cells and
connectors.

B. Representation of physical traffic states in the general
process

Before different connector types can be discussed, the
relationships between state variables of a real traffic network
and those of the general process described above are given.

The state of a cell i is (as in the original CTM) given by
its occupancy ξi.4 We denote its maximal occupancy by ξ̂i

and its maximal vehicular flow rate by ϕ̂i. Cell geometry
constraints are the same as in the original CTM.

The duration of a simulation time step is θ. It starts with
a sweep over all connectors for flow calculations. Since this
implies a run of one sub-process for every connector C, an
initial state x

(0) for such a process has to be provided. This
is achieved by letting x

(0)
Pi

= min(ξPi
, ϕ̂Pi

θ); Pi ∈ P (C)
and x

(0)
Sj

= min(ξ̂Sj
− ξSj

, ϕ̂Sj
θ); Sj ∈ S(C) with P (C)

(S(C)) being the set of cells preceeding (succeeding) C (see
figs. 1 and 2). This initial reduction of the maximal available
resources incorporates (again, as in the original CTM) flow
rate constraints into the sub-process.

C. Straight Flows

The CTM’s basic flow calculation rule states that the
number of transmitted vehicles between two succeeding cells
equals the minimum of available vehicles upstream, available
space downstream, and an upper flow constraint. It holds in
general that the CTM always maximizes flows with respect
to given upstream (vehicle availability, turning proportions),
downstream (space availability, inflow priorities) and flow
rate constraints.

Straight connectors of the ECTM have exactly one pre-
decessor and one successor cell. Speaking in terms of the

4As pointed out, destination oriented properties are not relevant at cell
level. Sources and sinks are not modeled. In this article, we only consider
traffi c being already on the network.



general process, the state vector x = (xP xS)T is two-
dimensional: xP represents the number of available upstream
vehicles on predecessor cell P , whereas xS equals the
available space on successor cell S as defined in section
III-B.

Since flow conservation holds, vehicles leaving the pre-
decessor equally reduce the space left on the successor
cell. This is expressed in the resource consumption vector
f({P, S}) = (1 1)T , which corresponds to the only regime
{P, S} with a nonzero consumption rate. This regime’s
duration is min(xP , xS). Multiplying this duration with the
consumption rate of 1 for either involved cell yields the same
flow calculation rule as stated above for the original CTM.

D. Merge Flows

The original CTM allows for merge connections between
exactly two predecessor cells and one successor cell. The
flow calculation rules state that both predecessors are allowed
to send all their available vehicles as long as these can be
accepted by the successor cell. If this is not the case, the
successor’s available space is shared between the predeces-
sors in a ratio according to their priorities α1 ∈ [0, 1] and
α2 = 1 − α1. If this causes all available vehicles of one
predecessor to be removed but still leaves available capacity
on the successor, this space is filled up as far as possible
with vehicles from the complementary predecessor.

In terms of the general process, the initial state vec-
tor is given by x = (xP1 xP2 xS)T , where xP1 and
xP2 denote the available vehicles on the predecessors and
xS equals the available space on the successor cell. The
process’ evolution then is fully defined by the follow-
ing non-zero regime dependent consumption rate vectors:
f({P1, P2, S}) = (α1 α2 1)T , f({P1, S}) = (1 0 1)T

and f({P2, S}) = (0 1 1)T . Inspection of the only
possible regime sequences {P1, P2, S} → {P1, S} and
{P1, P2, S} → {P2, S} shows that this setup yields identical
behavior as the original CTM.

General merge connectors as shown in the upper part
of fig. 1 have an arbitrary number of I ≥ 2 predecessor
cells and exactly one successor cell. The first I resources
comprising the resulting state vector are the available vehi-
cles xPi

on predecessor cells i = 1, . . . , I . The available
space xS on the successor cell makes up one additional
resource: x = (xP1 . . . xPI

xS)T . A natural extension of the
aforementioned priority dependent flow calculation scheme
can now be defined by:5

f(D) =

(
fP1(D) . . . fPI

(D)
I∑

i=1

fPi
(D)

)T

fPi
(D) =

{
αi Pi ∈ D ∧ S ∈ D
0 otherwise.

5Obviously, priorities do not have to sum up to 1. Still, some care has
to be taken, if only zero priority predecessors remain in D. In this case,
any strictly positive and among elements of D equally distributed priorities
solve the problem.

Fig. 1. Merge and Diverge Connectors

Fig. 2. General Connector

For I = 2 this equals the original CTM’s merge transmis-
sion rules.

E. Diverge Flows

Diverges of the original CTM split one predecessor cell
into exactly two successor cells. In non-destination oriented
mode, splitting proportions are given by coefficients β1 ∈
[0, 1] and β2 = 1 − β1. In this case, state vector x =
(xP xS1 xS2)T is comprised of predecessor P ’s available
vehicles and the available space on successors S1 and S2.
Allowing for only one non-zero consumption rate vector
f({P, S1, S2}) = (1 β1 β2)T implies the assumption of
exactly one lane on the predecessor cell: If a vehicle at the
head of the queue on this lane is unable to enter its successor
cell, it completely blocks the diverge. The total outflow from
P is then given by min(xP , xS1/β1, xS2/β2), just as for the
original CTM.

A generalization of this to more than two successors (see
lower part of fig. 1) can be easily achieved by introduction
of an extended state vector x = (xP xS1 . . . xSJ

)T and an
according flow vector

f({P, S1, . . . , SJ}) = (1 β1 . . . βJ )T

for the only non-zero consumption regime.

F. General Intersection Flows

Merges and diverges are now to be combined in a general
intersection connector (see fig. 2). Although an appealing
solution would be to directly combine both calculation



schemes, the number of flow constraints (IJ turning propor-
tions and IJ priorities) is larger than the number of available
degrees of freedom (IJ predecessor-successor consumption
rates). Therefore, some simplifications are necessary.

As it has been pointed out before, turning proportions
fully subsume destination oriented flow behavior. There-
fore, they should be implemented without error: For ev-
ery predecessor Pi ∈ D a consumption rate fPi

(D) is
defined, from which successor oriented consumption rates
fPiSj

(D) = βPiSj
fPi

(D) are obtained for all Pi, Sj ∈ D.
This ensures fPiSj

(D)/fPiSl
(D) = βPiSj

/βPiSl
for all

Pi, Sj , Sl ∈ D. A weighted-average priority αPi
(D) =∑

Sj∈D
βPiSj

αPiSj
is now employed to state a simplified

priority rule fPi
(D)/fPl

(D) = αPi
(D)/αPl

(D) for all non-
blocked Pi, Pl ∈ D. This is ensured by letting fPi

(D) =
αPi

(D) for all Pi ∈ D that are not blocked by an unavail-
able successor Sj /∈ D towards which a positive turning
fraction βPiSj

exists. The full resource state vector x =
(xP1 . . . xPI

xS1 . . . xSJ
)T is then consumed by

f(D) = (fP1(D) . . . fPI
(D) fS1(D) . . . fSJ

(D))T

fPi
(D) =

⎧⎨
⎩

∑
Sj∈D

βPiSj
αPiSj

Pi ∈ D ∧ D ⊃
{Sj ; βPiSj

> 0}
0 otherwise

fSj
(D) =

∑
Pi∈D

βPiSj
fPi

(D).

The possibility to easily model quite general intersections
by this scheme is illustrated in fig. 3.

The general connector comprises all previously defined
connector types, as can be seen from choosing I = 1 and/or
J = 1. Therefore, all properties of this general connector
also hold for more specific connector types. In addition,
this connector’s behavior is identical to the original CTM
whenever the set of available resources (even in a general I
on J setting) reduces to constellations already defined in the
CTM.

IV. APPROXIMATE SENSITIVITY ANALYSIS

In this section, an approximate Jacobian ∂x
(K)/∂x

(0)

for the initial state x
(0)’s mapping onto the final state

x
(K) resulting from the process described in Algorithm 1

is determined. Because of the general process’ temporal
multistage property, the problem can be solved by a recursive
update scheme which mainly requires the calculation of
∂x

(k+1)/∂x
(k) in every sub-time step k.6

The results given in this section are not necessary to
conduct simulations with the ECTM. They allow for a
linearization of the model, as it is useful e.g. for state
estimation purposes.

A. Preliminaries

The approximate Jacobian is comprised of the directional
derivatives along all coordinate axes. When evaluated at

6Operators will be used as follows: ∂
∂

denotes partial derivatives as well
as components of the approximate Jacobian. δ denotes a small variation.

Fig. 3. Exemplary intersection modeling

A general intersection consists of several legs with every
leg being comprised of a certain number of entering and
exiting lanes. Within longer road segments, lanes are not
explicitely represented. When approaching the intersection,
lane choice can be modeled by a single diverge connector.
The intersection itself is represented by a single general
connector, which distributes traffic flows according to turning
proportions and priorities. (Circles denote connectors and
boxes denote cells. Where no flow direction is indicated by
an arrow, it goes from cell to connector.)

points of non-smoothness, an average of left and right sided
sensitivities is used.7 As the following analysis will show,
small state variations before a certain sub-time step may
cause intermediate regimes around this sub-time step to oc-
cur. Since we are interested in averaged sensitivities around
every sub-time step, we replace the original process by one
shifted half a sub-time step before calculating sensitivities.
The shifted process starts at x

(−1/2) = x
(0) and runs until

sub-time step K + 1/2:

x
(1/2) = x

(−1/2) + f(D(0))t(x(0),D(0))/2
x

(k+1/2) = x
(k−1/2)

+f(D(k−1))t(x(k−1),D(k−1))/2
+f(D(k))t(x(k),D(k))/2

x
(K+1/2) = x

(K−1/2)

+f(D(K−1))t(x(K−1),D(K−1))/2.

Apart from this formal shift in time this process is identical
to the original one. Its result x

(K+1/2) is generated just
as x

(K), therefore the shifted Jacobian ∂x
(K+1/2)/∂x

(−1/2)

equals the original ∂x
(K)/∂x

(0).
Some additional remarks are necessary for the following

discussion:

1) The relationship between any state and its availability

7Of course, this simplifi cation has to be kept in mind when applying a
certain algorithm to the complete state estimation problem.



is strictly monotonous for all i ∈ D(k):

∂ti(x
(k)
i ,D(k))

∂x
(k)
i

=
1

fi(D(k))
> 0. (1)

2) Every state running dry at the end of sub-time step k
had a positive flow rate during this sub-time step:

j ∈ B(k) ⇒ fj(D(k)) > 0. (2)

(Otherwise, the state could not have run dry.)
3) A small increase of any resource j ∈ B(k) having

just run dry may increase this resource’s availability
by more than an equally small value because of a
zero flow rate fj(D(k+1) ∪ {j}) = 0. In this case,
the remaining process must not be influenced by this
variation in terms of zero sensitivities with respect to
the varied resource. This requirement is fulfilled for the
general connector defined in III-F: If j corresponds to a
cell preceeding the connector, j ∈ B(k) implies that the
according cell is empty after sub-time step k. If now
an additional car is put in this cell (increase of resource
j), and this vehicle is unable to enter any succeeding
cell, it still does not influence any other vehicles, since
it is the only one on its cell. If j corresponds to a cell
succeeding the connector, j ∈ B(k) implies that the
according cell is totally blocked after sub-time step k.
If now the last car in this cell is removed (increase of
resource j), the new space on j remains unused only
if the remaining available upstream resources have a
zero turning proportion towards this successor. Still,
this also implies that no predecessor outflow rates are
influenced by this change on j. From this informal
argumentation8 it becomes clear, that variations of
such resources can be treated independently of the
remaining process variables. Therefore, they will not
be explicitely discussed in the succeeding sensitivity
analysis and only the more difficult case

j ∈ B(k) ⇒ fj(D(k+1) ∪ {j}) > 0 (3)

will be considered. This requirement is always fulfilled
if j is the only element in B(k), since this implies
D(k+1) ∪ {j} = D(k) and therefore (2) holds.

4) If state j is the only element in B(k), regime D(k)’s
duration is limited only by j’s availability, i.e. t(k) =
t
(k)
j . Using (1) and (2), a small variation δx

(k)
j of state

j implies the following small variation δt(k) of regime
D(k)’s duration:

B(k) = {j} ⇒ δt(k) =
δx

(k)
j

fj(D(k))
. (4)

B. Initial Variation

In the first sub-time step of the shifted process a tran-
sition from k = −1/2 to 1/2 is examined. B(−1) =
{1, . . . , n}\D(0) consolidates those resources that are already
exhausted when the process starts. D(−1) = {1, . . . , n}
equals the set of all possible state indices.

8The equations in III-F can be employed to support this more formally.

Fig. 4. Initial variation.

Schematic representation of resource variation at the process
beginning. Bold lines represent states’ availabilities. Below,
the assignment of these resources to time steps and their
according regimes is shown. The shaded area covers the
hypothetical time span before the process actually starts.

From Fig. 4 the nonzero dependencies for an initial
variation can be identified: All states i /∈ D(0) stay zero for
the entire time span of regime D(0) and remain uninfluenced
by all other states. If they are perturbed themselves by an
infinitely small value δx

(−1/2)
i > 0, there always remains

enough time for them to run dry again (with a positive
consumption rate ensured by (3)) before sub-time step 1/2
is reached.

States i ∈ D(0) run dry not earlier than in sub-time step 1
and have a constant consumption rate. Therefore, they have
a strictly positive value at sub-time step 1/2. Considering the
general state equation, to affect x

(1/2)
i , either the preceeding

value x
(−1/2)
i or the consumption rate fi(D(0)) have to be

perturbed. Since the consumption rate is fully defined by
regime D(0)’s composition, only variations of states j ∈
B(−1) (hypothetically ending directly before regime D(0)

starts) can influence it.

1) i = j ∈ D(0). Any variation δx
(−1/2)
i of x

(−1/2)
i

directly punches through to the next sub-time step
without influencing any other states:

δx
(1/2)
i = δx

(−1/2)
i . (5)

2) i ∈ D(0), j ∈ B(−1). Since x
(−1/2)
j = 0, only a

positive variation δx
(−1/2)
j > 0 is feasible. Such

a variation implies by (1) an increase in state j’s
availability and causes a new regime D′ = D(0) ∪ {j}
to occur at the very beginning of D(0) (see Fig. 4). D′

is limited by B′ = {j}, therefore (4) can be used to
obtain its duration δt′ = δx

(−1/2)
j /fj(D′). During δt′,

all states i ∈ D(0) are reduced by flow rates fi(D′)
instead of fi(D(0)). This varies the subsequent x

(1/2)
i

by δx
(1/2)
i = (fi(D(0)) − fi(D′))δt′. Therefore, we

obtain

δx
(1/2)
i

δx
(−1/2)
j

=
fi(D(0)) − fi(D(0) ∪ {j})

fj(D(0) ∪ {j}) (6)

with a nonzero denominator ensured by (3).



Fig. 5. Intermediate variation.

Schematic representation of intermediate resource variation.
For explanations, see Fig. 4.

C. Intermediate and Final Variation

Following the outline given in the previous section, two
cases can be identified in Fig. 5, for which non-zero sensi-
tivities occur.

1) i = j ∈ D(k). This is the punch-through-case as ex-
plained before:

δx
(k+1/2)
i = δx

(k−1/2)
i .

2) i ∈ D(k), j ∈ B(k−1). By (2), x
(k−1/2)
j must be

strictly positive. This allows for both negative and
positive variations δx

(k−1/2)
j . Calculations for a pos-

itive variation can be found in the previous section.
For δx

(k−1/2)
j < 0, (1) implies a decrease in state

j’s availability and therefore causes a new regime
D′′ = D(k−1)\{j} to occur at the very end of
D(k−1). D(k−1) is then limited only by {j}, there-
fore (4) can be used to obtain its reduced duration
t(k−1) + δx

(k−1/2)
j /fj(D(k−1)). The remaining dura-

tion of D′′ is given by δt′′ = t(k−1) − (t(k−1) +
δx

(k−1/2)
j /fj(D(k−1))) = −δx

(k−1/2)
j /fj(D(k−1)).

During δt′′, all states i ∈ D(k−1) are reduced by flow
rates fi(D′′) instead of fi(D(k−1)). This varies the
subsequent x

(k+1/2)
i by δx

(k+1/2)
i = (fi(D(k−1)) −

fi(D′′))δt′′. Averaging sensitivities for negative and
positive variations yields

δx
(k+1/2)
i

δx
(k−1/2)
j

=
fi(D(k−1)\{j})− fi(D(k−1))

2fj(D(k−1))

+
fi(D(k)) − fi(D(k) ∪ {j})

2fj(D(k) ∪ {j}) , (7)

where positive denominators are ensured by (2) and
(3). For i ∈ D(k), {j} = B(k−1), it follows that
D(k) = D(k−1)\{j} and D(k−1) = D(k) ∪ {j}, which
simplifies (7):

δx
(k+1/2)
i

δx
(k−1/2)
j

=
fi(D(k)) − fi(D(k−1))

fj(D(k−1))
. (8)

These results are now incorporated into the recursive update
scheme for all nonzero rows i ∈ D(k) of the approximate
Jacobian

∂x
(k+1/2)
i

∂x
(−1/2)
j

=
n∑

l=1

δx
(k+1/2)
i

δx
(k−1/2)
l

∂x
(k−1/2)
l

∂x
(−1/2)
j

=
δx

(k−1/2)
i

δx
(−1/2)
j

+
∑

l∈B(k−1)

δx
(k+1/2)
i

δx
(k−1/2)
l

∂x
(k−1/2)
l

∂x
(−1/2)
j

,

where the variational quotients are given by (7) or (8) and
initial sensitivities are obtained from (5) or (6).

This calculation scheme also holds for the process’ final
sub-time step K . The final result ∂x

(K+1/2)/∂x
(−1/2)(=

∂x
(K)/∂x

(0)) yields the sensitivities of all final process
states with respect to the initial ones.

V. OUTLOOK

We presented a generalized representation of Daganzo’s
Cell Transmission Model, which allows for arbitrary cell
connectivity and approximate sensitivity analysis.

Although no strict proof of the model’s correctness in
terms of the LWR theory is given, its strong structural
analogy to the original CTM hopefully makes it a promising
approach also from a more theoretical point of view. Due to
its approximate differentiability, the model is well suited for
application in a mathematical programming context.

We prepare to give experimental results on the model’s
applicability in the near future.
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