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Abstract. Using the notion of Jordan pairs, we give an axiomatic construction of
some linear representation of an algebraic group over an arbitrary commutative ring.
This representation is prehomogeneous in the sense that all the geometric fibers are
prehomogeneous vector spaces modulo scalar multiplications. We also determine one
generic stabilizer.

Introduction.
1. Let k be a field. Consider a triple (G, 6, M) consisting of a reductive k-group
G, and a finite-dimensional linear representation 6: G - GL(M) which, after tensoring
with & and replacing G® .k by its simply connected cover, becomes isomorphic to the
semi-simple part of one of the following prehomogeneous vector spaces (notation is of
[Sato-Kimura, §7, )]):
(5) = (GL(6), 43, V(20)),
(14) = (GL(1) x Sp(3), O®43, V(1)@ V(14)),
(23) = (GL(1) x Spin(12), OJ® half-spin rep., V(1) ® 1(32)), and
(29) = (GL(1) x E;, O® 44, V(1) ® V(56)) .

((5) is the third exterior power of the six-dimensional standard representation of GL(6),
and (14) is obtained from (5) via the inclusion Sp(3) — GL(6).)

2. Tt is known that those (G, 8, M) in 1 are related to Jordan algebras J= H;(%)
of 3 x3 Hermitian matrices with coefficients in various composition algebras € (cf.
[Freu, VIII]). Among the many works concerned with such (G, 0, M), [Igusa] and
[Baily] are closely related to our research. For (G, 8, M) of type (14), (23), or (29) in
1, Igusa determined the quotient set G{k)\M and the corresponding stabilizers in G,
under the assumption that k is an algebraically closed field of characteristic different
Jrom two and three (cf. [Igusa, §7]). On the other hand, using a Z-form of the real
octonion division algebra, Baily treated a triple (G, 8, M) over the ring of rational integers
such that the associated analytic group G(R) is a Lie group of type E, acting on a
bounded symmetric domain in C?7 (cf. [Baily]).
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To apply the theory of prehomogeneous vector spaces to number theory, we assume
k to be a global field. Then the main problem is to determine the quotient set
(k*x G(k)\M and the corresponding stabilizers in G, x G (cf. [Wright-Yukie]).
Equivalently, considering the projective representation G — Aut(P(M)) associated to 6,
the quotient set G(k)\ P(M)(k) and the corresponding stabilizers in G need to be de-
termined. In general, one prehomogenecous vector space admits several forms over a
given field, on the choice of which the above problem depends. Instead of considering
all the forms of a special prehomogeneous vector space, we are trying to define a triple
(G, 6, M) over an arbitrary commutative ring such that some (or all, if possible,) of the
fibers have the property stated in 1. The construction of (G, 8, M) and almost all of the
calculations work over an arbitrary commutative ring. Also our construction contains
Baily’s case, which is not of split type and causes special difficulties in characteristic
two. In fact, the desire to handle such a case leads us to considering schemes over Z,
and hence we are obliged to construct everything without assumption on the base ring.
In particular, we need to include the case of characteristics two and three, which are
avoided in [Igusa]. In this paper, we give an axiomatic construction of (G, 8, M) and
determine one stabilizer. More precisely:

3. Let k be an arbitrary commutative ring. Consider a quadruple (J; N, %, T') as the
data, where J is a finitely generated projective k-module, N a cubic form on J, i.e., N is
a homogeneous clement of degree three of the symmetric algebra S(J) of the k-module
J dual to J, # a quadratic map in J, which is a certain endomorphism of the k-scheme
Spec S(J), and T a symmetric bilinear form on J, satisfying certain conditions (cf. §1).
Then:

(a) We define a k-group sheaf G with respect to the fppf topology and its linear
representation 0: G- GL(M) in the k-module M .=k @S DkDJ.

(b) We choose one k-valued point u, of the projective space P(M):=Proj S(M)
and determine its stabilizer Centg(u,) in G (cf. §3).

(c) We choose a quartic form feS*(M) stabilized by G (cf. §4). Then the action
of G is induced on the open subscheme D, {f) of P(M). The point u, in (b) belongs to
D, (f)k).

(d) Under some additional condition on (J; N, ¥, T), we prove that, for any
k-algebra k — K with K an algebraically closed field, the action of G(K) on D (f}(K) is
transitive.

4. Main tools of our construction are the notion of Jordan pairs and the general
theory of associated algebraic groups both due to Loos (cf. [LIP], [LAG]). Also there
is an axiomatic construction of Jordan algebras J= H;(%) of 3 x 3 Hermitian matrices
by McCrimmon (cf. [Mc]). We modify McCrimmon’s construction to adapt to Loos’s
theory, and obtain our quadruple (J; N, #, T) (cf. 1.1). To use the general theory of
Loos in the construction of (G, 6, M), we have to prove some identities through
complicated calculation (cf. 2.6-2.8). Once we get (G, 6, M) and the quartic form f on
M, which is taken from [Freu, I], the remaining part of this paper (§§3-4) is reduced
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to direct calculations.

5. Thanks are due to Professor Yasuo Morita for introducing the author to
this problem and giving him constant support and encouragement. Thanks are also due
to the referee for valuable comments, and to the members of the number theory seminar
of Tohoku University.

Terminology.

0.1. Throughout this paper, k£ is an arbitrary commutative associative unitary
ring. k-alg stands for the category of commutative associative unitary k-algebras. We
denote by k-alg” the category of k-functors, whose objects are set-valued covariant
functors on k-alg and morphisms are natural transformations of functors. We fol-
low the general conventions of [D-G]. In particular, the category of k-schemes is
a full-subcategory of k-alg”. By a k-sheaf, we understand an fppf k-sheaf. O, e k-alg"
stands for the affine line, i.c., the forgetful functor. y, € k-alg” stands for the functor
R+ R*:={invertible elements of R}, which is an open subfunctor of O,. For an integer
n>0, we denote by ,u, the functor R— {re R*|1"=1}.

0.2. Following [LAG, 1.4], we use the notion of dense subfunctors. Namely, for
Xek-alg" and a subfunctor Uc X, U is said to be dense in X if the following property
holds for any scalar extensions: any open subfunctor V of X has no closed subfunctor
Z <V containing Un V other than V. The next lemma is cited from [LAG, 1.5]. It is
based on [EGA 1V, 11.10.107 and [SGA3, Exp. XVIII, Prop. 1.2].

Lemma (cf. [LAG, 1.5]). Let X be a smooth separated algebraic k-scheme with
non-empty connected fibers, and U an open subscheme of X. Then the following conditions
are equivalent:

(i) Uis densein X.

(i1) There exists an fppf extension R of k such that U(R)# .

(iii) U(K)+# & for any algebraically closed field K € k-alg.

0.3. Let M be a k-module. We define k-functors M,, P(M), and M,, by setting
M(R):=My:=M®,R,
P(MXR):={L|direct factor of My and invertible as an R-module},
M (R):={xeMy|AMx)=1,31e(Mg)},

for Rek-alg, where ‘My) stands for the R-module dual to My Denote by
Pur: M, — P(M) the morphism of k-functors sending x e M, (R), R k-alg, to py(x):=
R - x, the R-submodule of My spanned by x. If M is finitely generated and projective,
these k-functors are all k-schemes and we have, in the terminology of EGA, M, =
Spec S(M) and P(M)=ProjS(M) (cf. [EGA 1II, 4.2.3]). For example, we have k,=
O, and k,,= .

0.4. Let M, N be k-modules. By a polynomial law on the couple (M, N), we
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understand a morphism of k-functors M, - N, (cf. [Roby, p. 219]). Let f: M,—>N, be
a polynomial law and p an integer >0. We say that fis homogeneous of degree p if
Sx)=1"f(x) for all te R, xe My, Rek-alg. Denote by (M, N) (resp. by 0F(M, N)) the
k-module of the polynomial laws (resp. those which are homogeneous of degree p) on
(M, N). For N=k, we write O(M):= (M, k) and OP(M): = OP(M, k). Denote by N™ the
k-module of the maps from the underlying set of M to that of N. We say that a map
Qe NM is quadratic if Q(tx)=12Q(x) for tek and xeM, and if the map M x M >N
sending (x, y) to Q(x+y)—Q(x)—Q(y) is bilinear. In this case, we write
Olx, y):=0(x+y)—0(x)— Q) .

By definition, we have a natural map from OP(M, N) to N™, which is not injective in
general. However, this is the case if p<2. More precisely, 0°%(M, N) (resp. 0'(M, N),
O*(M, N)) is identified with the constant (resp. linear, quadratic) maps from M to N. We
refer to [Roby] and [Bou, IV, §5, Exercises] for details. For this reason, an element
of O*(M, N} is also called a quadratic map. Similarly, an element of 0*(M) is called a
quadratic form. By a cubic (resp. quartic, ...) form on M, we understand an element of
O(M) for p=3 (resp. p=4,...).

0.5. Let M, N be k-modules and f a polynomial law on (M, N). (cf. 0.4). For
any x, ye Mg, Rek-alg, we set

Jx+ey)=:f(x)+80,f(x)€ Ngpy ,

where R[e] is the ring of dual numbers, to obtain the polynomial law 0, f € O(My, Ng).
This definition may be read as follows: the tangent bundle Ty, of the k-functor M, can
be identified with M, x M, by means of Ty (R):=Mpg,3a+eb—(a, b)e Mgx Mg. [
is a morphism M, — N, (cf. 0.4), from which the morphism T, : Ty, — Ty, is induced.
Then we have

Ty(x, y)=(f(x), 0,f(x))
for all x, ye My, Rek-alg.

1. Basic Jordan identities.

1.1. Consider a quadruple (J; N, #, T), where J is a finitely generated projective
k-module, N a cubic form (cf. 0.4) on J, ?*: x> x* a quadratic map (cf. 0.4) from J
to J, and T a symmetric k-bilinear form on J, satisfying the following two identities
(CJ1), (CJ2) and the condition (*): for all x, yeJz, Rek-alg, we have

(CID) x*¥=N(x)x,
(CJ2) 3,N(x)=T(x% ),
and

There exist ¢, ¢, €J and a linear form A on J such that

()
N(c)ek* and AcH=1.
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The identities (CJ1) and (CJ2) should be read as commutative diagrams

Ja I Ja
(CJ1bis) " I I 0
(N, 1d)
Ja - Ok X Ja
and
Ty
7, —— T,
(CJ2bis) can. Ig ZI can.
Nopr,,
Lxg, Pl g o,

of k-schemes, where ¢: O, xJ,— J, is the scalar multiplication and {: J, xJ, = Oy is
the morphism sending (x, y) to T(x?, y) (cf. 0.5). In the following, we fix such a quadruple
(J; N, %, T) and set

(1) xxyr=(x+y)*—x*—p*,

2) Oy :=T(x, y)x—x*xy,

(3) N(x,y):=1-T(x, y)+ T(x*, yH) = N(x)N(y),
4) Plx, y)i=x—xFxy+ Nx)p*,

for all x, yeJg, Rek-alg, to obtain a bilinear product x in J and polynomial laws
Qe 0*(J,End(J)), N(,)eO(J xJ), P(,)eO(JxJ,J) (cf. 0.4). By definition, (x, y, z)+>
O(x, z)y (cf. 0.4) is a trilinear product in J. Denote any scalar extension of it by { }
and let D(x, y)z:={xyz}. Hence we have

&) D(x, y)z:={xyz}:=0(x, 2)y=T(x, Y)z+ T(y, 2)x —(z X x) x y,
for all x, y, ze Jg. Finally we set
(6) B(x, y)z:=z—{xyz} + Qx)Q(y)z

to obtain a polynomial law Be O(J x J, End(J)).

1.2. Let Rek-alg, and x, y, z,u, veJg. Since N is a cubic form, there exists an
R-linear form N on the degree 3 component I';(Jy) of the I'-algebra I'(Jg) of Jx such
that N(x)=(ys(x), N> (cf. [Bou, IV, §5, exerc. 10)]). Vp: Jr = T(Jg) (p=0) satisfy

Y3(X+ ) =73() +72(x)p1 (1) + 71X (¥) +v3(»)
P2(x +Y)y1(2) =72(X)y1(2) + 72y 1(2) + 71 (X1 (P)y1(2) S
72(X)y1(x)=3y5(x),

(cf. [Bou, IV, §5, exerc. 2)]), and we have T(u*, v)=0,N(u)={y,(u)y,(v), N> by (CJ2).
Hence, applying <2, N> to the above identities, we get
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(CJ3) N(x+y)=N(x)+T(x*, »)+T(x, y)+N(y),
(CJ4) T(xxy,z2)=N(x, y,2)=T(x, yx z),
(CJI3) T(x* x)=3N(x),

where  N(x, y,2): =<y, (W1(2), N)=N(x+y+2)—=N(x+y)—N(y+2)—N(z+x)+
N(x)+ N(y)+ N(z). Since N(x,y, z) is symmetric, the latter equality of (CJ4) follows
from the former. Next, taking the scalar extension R — R[] to the polynomial ring in
one variable 7, replacing x by x+ ¢y in (CJ1), expanding the result by using 1.1(1) and
(CJ3), and comparing the terms in ¢, 12, we get

(CJ6) xFx (xx p)=N(x)y + T(x*y)x,

(CI7) xFx y 4 (x xy) = T(xF, )y + T(x, y¥)x .
Linearization of (CJ7) with respect to y yields

(CI8) x*x(yx2)+(x xy)x (x x 2)=T(x*, Y)z+ T(x*, 2)y+ T(x, y x 2)x .
Applying T(?, z) to (CJ6) with (CJ4) in mind, we get

(CJ9) N xxy, 2)=NX)T(y, z2)+ T(x*, ) T(x, z) .

If we interchange y and z in (CJ9), and calculate the left-hand side using (CJ4) and the
symmetry of N(,,), then the result is

(CJ10) Nix, x* x y, 2y=N(x)T(y, z) + T(x*, 2)T(x, y) .
Applying T(x%, ?) to (CI7) with (CJ4), (CJ5), and (CJ1) in mind, we get
(CJ11) T(x%, (x x p))=T(x%, ¥)* + NX)T(x, y) .

On the other hand, we have
(H T(Q(x)u, v)=T(x, WT(x, v)— T(x*, uxv),

by 1.1(2) and (CJ4), which gives T(Q(x)u, v)=T(Q(x)v, u), since the right-hand side of
(1) is symmetric in # and v. However T is also symmetric by assumption. This gives

@) T(Q(x)u, v)=T'(u, Q(x)v) .

Similarly, we have T(D(x, y)u, v)=T(x, y)T(u, v)+ T(y, u)T(x, v)— T(u x x, v x y) by 1.1(5)
and (CJ4), which gives

3) T(D(x, y)u, v)=T(u, D(y, x)v) .
Finally, using (2), (3), and 1.1(6), we get
(€3] T(B(x, y)u, v)=T(u, B(y, x)v) .

1.3. Now we shall use the assumption (%) in 1.1. Recall that the k-functor
J,: R—Jy is a smooth separated algebraic k-scheme with non-empty connected fibers
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(cf. 0.3). Moreover we have:

(a) The inverse image of J,, = J, under the morphism ?%: J, - J, and the principal
open subscheme defined by the section Ne (¢(J) are both dense in J,.

(by Themorphism ?*: J, — J,is scheme-theoretically dominant (cf. [EGA1, 5.4.2]).

Indeed, (a) follows from 0.2, and (b) amounts to saying that the corresponding
ring homomorphism O(J)— O(J), say o, is injective (cf. [EGA I, 5.4.1]). This can be
verified as follows: since ?* is quadratic, we have @(0"(J))< ©*?(J) for all p>0. This
implies that ker ¢ is a homogeneous ideal. Thus it suffices to show that any homogeneous
element f of ker¢ is zero. Indeed, choosing p>0 so that fe@?(J), we have 0=
o(f)xF)= f(x*) = f(N(x)x) (by (CJ1))=N(x)°f(x). Hence f: J,— O, vanishes on the
principal open subscheme of J, defined by the section Ne@(J). This implies f=0, in
view of (a).

Using (a), we get

(C112) N(xH=N(x)?,
(CJ13) xx (x*xy)=N(x)y + T(x, y)x*,

for all x, yeJp, Rek-alg. Indeed, we have N(x*)x*=x"*=N(x)>x* by (CJ1). Hence
the morphisms No#: J,— O, and N*: J,— O, coincide on the invese image of J,,=J,
under the morphism ?%: J,— J,. In view of (a), this implies No#=N?, namely (CJ12).
As for (CJ13), we fix y and consider the morphisms f: J,®,R - J,&®, R sending x to
xx(x*xy)and g: J,®, R—J,®,R sending x to N(x)y+ T(x, y)x*. Replacing x by x*
in (CJ6) and using (CJ1) and (CJ12), we get N(x)x x (x* x y)=N(x)*y + N(x)T(x, y)x*,
namely N(x)f(x)=N(x)g(x). Hence the morphisms f and g coincide on the ®,R of
the principal open subscheme of J, defined by the section Ne @(J). In view of (a), this
implies f=g, namely (CJ13).

1.4 THEOREM (a modification of McCrimmon [Mc, Th. 11). The data (VE, Q)
withV*Y=V":=J, 0, =0_:.=QisaJordan pair over k, which has an invertible element.

1.5. The proof of the theorem requires long calculations. Here we indicate its
outlines with some additional identities for later use. We first recall that (cf. [LIP, 1.2])
a Jordan pair over k is a pair of k-modules (V*, V') together with a pair (Q,, Q_) of
quadratic maps Q,: V°—>Hom(V "%, V), 6 = +, satisfying

(JPD) D ,(x, Y)Qs(x)=Qox)D_(y, x) ,
(JP2) Do(Qy(x)y, y)=Dy(x, @ _o(y)x) ,
(JP3) Qo QX)) = Qo(x)Q - (1) Do(x) ,

for all 6=+, xe Vg, ye Vg ?, Rek-alg. Here we set D (x, y)z:= Q,(x, z)y. An element
x in V7 is said to be invertible if the linear map Q. (x): V™7 — V7 is invertible (cf. [LJP,
1.10]). Returning to the situation in 1.1, let Rek-alg, and x,y,zeJg. By direct
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calculations using 1.2, we have Q(x)Q(x*)=N(x)*1d and Q(x*)Q(x)= N(x*)Id, which
become
(CJ14) Q(x)Q(x%) = Q(xQ(x)= N(x)*1d,

by (CJ12). Hence Q(c;)eEnd(J) is invertible for ¢, in 1.1(*). Thus it remains to
check the defining identities of Jordan pairs. Start with taking the scalar extension
R — R[] to the polynomial ring in one variable ¢, replace x by x +fz in (CJ13), expand
the result by using 1.1(1) and (CJ3), and compare the terms in ¢. Then we get

(CJ15) xX((xxz)xyy+zx(xFx ) =T 2+ T(x, y)x xz+T(y, 2)x* .
Moreover, by direct calculations using 1.1(1), (2), and (CJ13, 1, 7), we have
(Cl16) (O(x)y)* =0(x*)y*.

We can now verify (JP1), (JP2), and (JP3) by straightforward calculations using (CJ6,
3), (CJ15, 8, 4), and (CJ16, 6, 15, 10), respectively. Thus the proof of the theorem is
complete. Let us introduce some more identities. Add 2N(x)y to (CJ6) (resp. (CJ13)),
use (CJ5), and subtract x* x (x x y) (resp. x x {x* x y)). Then we get

2N(x)y =T(x* x)y+ T(x*, y)x —x* x (x x )
(resp. 2N(x)y =T(x*, x)y + T(x, y)x* —x x (x* x y)),
which in operator forms become
(CI17) D(x, x*)=D(x*, x)=2N(x)1d ,
whose linearization yields
(CI18) D(x, x x y)+D(y, x*)=D(x x y, z) + D(x*, ) =2T(x*, y)Id .

1.6. From now on, we apply the notion of Jordan pair (cf. [LIP]) to (V*, Q)
with V' =V":=J, Q,=0_:=0. Recall that an element x of J is said to be invertible
if Q(x)eEnd(J) is invertible (cf. [LJP, 1.10]). In this case, x ':=Q(x) 'x is the
inverse of x (cf. [LIP, 1.107). If N(x)ek*, then x is invertible by (CJ14), and we have
x ' =N(x)"2Q(x")x=N(x)"'x* by 1.1(1), (2), and (CI1, 5).

PROPOSITION.  An element x of J is invertible if and only if the scalar N(x) is invertible;
if that is the case, we have

1) xTT=N(x)"1x?,
and, for any yeJ,
) N(x, y)=NXN(x"'~y).

Indeed, we have N(x*— N(x)y)=N(x)*N{(x, y) by (CJ3, 12, 1). Hence (2) follows
from (1). It remains to prove the implication: x invertible = N(x)ek*. This is a
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consequence of (CJ20) in the following lemma, since there exist ¢;, yeJ such that
Ox)y=cy, N(c,)ek* (cf. 1.1(x)).

1.7 LeMMA. For all Rek-alg, and x, y, ze Jy, we have

(CJ19) N(xxy)=T(@x* p)T(x, y*)—N(X)N(y),
(CJ20) N(Q(x)y)=N(x)’N(y),
(CJ21) N(B(x, y)z)= N(x, y)*N(z) .

Proor. Taking the scalar extension R - R[¢] to the polynomial ring in one
variable ¢, replacing x by x4ty in (CJ12), expanding the result, and comparing the
terms in 13, we get N(xxp)+N(x* xxy, y*)=2N(x)N(»)+ T(x*, y)T(x, y*), which
becomes (CJ19) by (CJ9) and (CJ5), (CJ20) follows from the expansion of the left-hand
side using 1.1(2), (CJ3), and (CJ19). For (CJ21) we may assume N(x) to be invertible,
since the principal open subscheme defined by the section (x, y)— N(x)is dense in J, x J,
(cf. 0.2). Then x is invertible by the remark at the beginning of 1.6 (which is independent
of the proposition) and we have B(x, y)=0(x)0(x '—y) by [LJP, 2.12]. Thus the
assertion follows from (CJ20) and 1.6(2).

1.8. Recall that a pair (x, y) of elements of J is said to be quasi-invertible if
B(x, y)e End(J) is invertible (cf. [LIP, 3.2]). In this case, x”:=B(x, y)~ }{(x— Q(x)y) is
the quasi-inverse of (x, y) (cf. [LIP, 3.2]).

COROLLARY. A pair (x,y) of elements of J is quasi-invertible if and only if the
scalar N(x, y) is invertible; if that is the case, we have

(CJ22) x’=N(x,y) ' P(x, y),

(CI23) (P =N(x, y) Hx* = N(x)),

(C124) N(x*)=N(x, y)"'N(x),

and, for any z,weJ,

(C125) (B(x, y)2)* =N(x, y)*B(y, x) " 'z*,

(C126) (B(x, y)z) x (B(x, y)w)=N(x, y)*B(y, x)" 'z x w) .

The quasi-invertibility of (x, y) implies the invertibility of N(x, y) by (CJ21), since
there exist ¢, zeJ such that B(x, y)z=c;, N(c,;)ek*. Conversely if N(x, y) is invertible,
then we have B(x, y)z=x—0(x)y and B(x, y)0(z)y=(x)y for z:=N(x, y)” ! P(x, y) by
the following 1.9(3), (4). This implies the quasi-invertibility of (x, y) together with (CJ22)
by [LJP, 3.2 (ii)]. We have

(CJ23bis) P(x, y)F = N(x, yfx*~N(x)y),
by direct calculation using (CJ1, 6, 7, 13). Hence (CJ23) follows from (CJ22). Since
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(CJ26) is a linearization of (CJ25), it remains to verify (CJ24) and (CJ25). We may
assume x to be invertible, since the principal open subscheme defined by the section
(x, y)>N(x) is dense in J,xJ, (cf. 0.2). Then, we have x*=(x"1—»)" !, B(x,y)=
O(x)Q(x~ ' —y),and B(y, x)= Q(x ' —y)Q(x) (cf. [LIP, 2.12, 3.13]). Hence (CJ24) follows
from 1.6(2), and (CJ25) can be verified as follows:

(B(x, y)2)* =(Q(x)Q(x~ ' = y)z)*
=Q(x"Q((x "1 —yz* (by (CI16))
=NE)?N(x ™1 —pP0x)710(x "=y =% (by (CT14))
=N(x, y)*B(y, x)"'z* (by 1.6(2)).

1.9 Lemma. For any x, y, ze Jg, Rek-alg, we have

) B(x, p)y*=p*— N(p)x = N(»)(x — Q(x)y) ,

2 B(x, y)z x y)=z x P(y, x)+ Tz, x)(p* = N(»)x)— Tz, y*Jx — Q(x)y) »
(3 B(x, y)P(x, y)=x—Q(x)y ,

“) B(x, y)Q(P(x, y))=N(x, y)*Q(x)y ,

(5) Bl ez—(zxx)xy+T(z, x* )y*)=N(x, y)z — T(z, P(y, X))(x— Qx)y) .

This lemma was used in the proof of 1.8 (also will be used in 2.7). All the formulas
can be proved independently of 1.8 by direct calculation.

1.10 LEMMA. For any x, y, ze Jg, te R, Rek-alg such that (x, y) is quasi-invertible,
we have

(1) N(tx, z)=N(x, tz),
(2) P(tx, z)=P(x, tz),
3 N(x, p)N(x*, 2)=N(x, y+2),
“4) N(x, y)P(x*, 2)=Px, y+2) .

Proof. (1), (2): Direct consequences of the definitions 1.1(3), (4).

(3): We may assume x to be invertible, since the principal open subscheme
defined by the section (x,y,z)r>N(x) is dense in J,xJ,xJ, Then, by 1.6(2)
and (CJ24), we have N(x*, z2)=N(x)N((x*) ' —=z)=N(x, y) 'Nx)N(x "1 —y)—2)=
NG, ) 'NOON(x ™! = (y +2)=N(x, y)" ' N(x, y+2).

(4): We may assume (x, y+2z) to be quasi-invertible, since the principal open
subscheme defined by the section (x,y,z)— N(x,y+z) is dense in J,xJ,xJ,.
Then, by (CJ22), (3), and [LJP, 3.7 (a)], we have P(x,y+z)=N(x, y+z)x>* "=
N(x, Y)N(x?, 2)(x*)* = N(x, y)P(x?, z).
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2. Representation.

2.0. In this section, let (J; N, ¥, T) be a quadruple as in 1.1, and we use the
following notation:

(J, J): the associated Jordan pair (cf. 1.4), i.e., the Jordan pair V'=(V*, Q) with
Vi=V :=J,0,=0_:=0, Ox)y:=T(x, y)x—x*xy (cf. 1.1(2)).

W : the scheme of quasi-invertible pairs in (J, J). This is precisely the principal
open subscheme of J, x J, defined by the section (x, y)— N(x, y) (cf. 1.8), which is dense
inJ,xJ,

Recall that the automorphism group Aut(V) of a Jordan pair V=(V*, Q,) is the
group of all (h,, h_)e GL(V*)x GL(V™) such that A,Q(x)= Qh,(x)h_, for o=+,
xe Vg, Rek-alg (cf. [LIP, 1.3]). The k-group functor R Aut{Vg) is denoted by
Aut(V), which is an affine algebraic k-group scheme (cf. [LAG, 2.3]).

2.1. Consider the k-group scheme y, x GL(J)? and denote any R-valued point A
of it in the form

(M h=:(x(), hysh),

where y(h)e R* and /., h_ e GL(Jg). Denote by H the subgroup scheme of p, x GL(J)?
whose R-valued points is the group of 4’s satisfying

(HI) Thex, h_y)=T(x, ),
(H2) (hexf=xh)""h-x*, (h_xy=yWh.x*,
(H3) N x)=N(h_x)=xhN(x),

for all x, yeJg, S e R-alg. Note that we have

{ (h o x)=y(h) " h_x*, (o x)x (hyy)=y(h) ™ h_(xxy),
(h-x)*=x(h)h x*, (h-x)x (h_y)=x(Wh.(xxy),

which is the linearization of (H2). Note also that the inclusion H — u, x GL(J)* is a

Sfinitely presented closed immersion. Indeed, our definition amounts to saying that the
diagram

(H2bis)

incl.
H —5 puxGL(J)

Lo,k

Speck —— E,

is Cartesian, where E:={J® J) x O4(J, J)* x ©3(J)?, s:=the section corresponding to

(T, %, % N,N)eE=E k), andd(A, h,, h_):=(Toth, ®h_), Ah"totoh A *hi ofoh_,

A"INoh Y, A7 INoh_) for AeR*, h,, h_eGL(Jy), Rek-alg. However the section s is

a finitely presented closed immersion, since £ is a finitely generated projective k-module.
In particular, H is an affine algebraic k-group scheme. If he H(R), then
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2 R =(h) " ho hy)

also belongs to H(R) and A+ A" becomes an automorphism of H of period two. If
te R*, then

3) z(t):=(¢t"3,¢1Id, r 'Id)

belongs to H(R) and, varying R, we get an inclusion z: y, — H, which factors through
the center of H. Define — 1€ H(k) to be z(—1) and set

4 —h:=z(—1)he H(R)

for he H(R), Rek-alg. Then hr— —h becomes an automorphism of H of period two.
Since we have x(z(2)) =t~ 3 by (3), the character y : H — p, is an epimorphism of k-sheaves.
By 1.2(2), (CJ4), (CJ16), and 1.6(1),

&) b(x):=(N(x), N(x)" ' Q(x), N(x)Q(x 1)

belongs to H(R) for invertible x € J,.

2.2. We see from (H2bis) and 2.0 that pr,: H—GL(J)*> factors through
Aut(J, J). Since there exists x € J such that N(x)ek* (cf. 1.1(*)), we see from (H3) that
the morphism H — Aut(J, J) sending /4 to (h,, #_) is a monomorphism. If ~e H(R) and
(x, y)e #(R), then

(1) pthy=(p +(h), p (1)) := (eI 1, x(h) " "h )
as well as (b, 2_) belongs to Aut(J, J)(R), while
(2 b(x, y):=(N(x, y), N(x, )" ' B(x, y), N(x, y)B(y, x) ")

belongs to H(R) by 1.2(4), (CJ25), and (CJ21). Varying R, we get a homomorphism
p: H— Aut(J, J) of k-groups and a morphism &: #" — H of k-schemes. Note that we
have

3) p+h)=p_(h), p_(h")=p.(h),
4) b(x, y)' =b(y, )1,
by definition and 2.1(2).

2.3 LemMma. ((J, J), H, p, b) is a Jordan system and the kernel of p: H— Aut(J, J)
is the functor-image of ,u, =, under z: w,— H.

Proor. We first recall that (cf. [LAG, 5.1]) a Jordan system over k is a quadruple
(V, H, p, by where (1) V=(V'*, Q,)is a Jordan pair with V'* finitely generated projective
k-modules, (2) H is a separated k-group sheaf, (3) p=(p,, p-) is a homomorphism
H— Aut(V) of k-groups, (4) b is a morphism #" — H, with #” the scheme of quasi-
invertible pairs of V, satisfying
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(Js1) p(b(x, y)=(B(x,y), B_(3,x)71),
(JS2) hb(x, )b~ =b(p . (h)x, p_(h)y) ,
(JS3) b(tx, t~'p)=b(x, y) ,

(JS4) b(x, Y)b(x?, w)=b(x, y+w)
(JS%) bz, y)blx, y)=blz+x, y),

for all Rek-alg, te R*, he H(R), and x,ze V{, y, we Vg such that (x, ), (x, y+w),
(x +z, y)e #(R). Here we set, in the notation of 1.5, B (u, v) : =1d — D (u, v) + Q (1) O _ ,(v).
In our situation, (JS1) follows from the definitions (1) and (2) in 2.2, and (JS2-5) from
[LIP, 3.9] and 1.10. As for the last assertion, we have p(z(¢))=(t"*Id, t*1d) by
2.1(3) and 2.2(1). Hence pz is trivial on ,u; (cf. 0.1). Conversely if p(h)=1, then we
have h,.=t"'Id and h_=1¢Id with ¢:=y(}), from which we get t>=1 by (H3). This
shows h=2z(t) by 2.1(3).

2.4. Denote by (G, ¥) the elementary system associated to the Jordan system
((J, ), H, p, b) in 2.2 (cf. [LAG, 5.2]). By definition, G is a separated k-group sheaf,
Y is an action g, x G — G of y, on G, and we have a diagram

exp., eXp—
_—

G H

a

of k-group sheaves whose arrows are all monomorphic (cf. {LAG, 3.1, 3.3]). Hence,
H can be identified with its image, which coincides with the subgroup sheaf G, the set
of fixed points of G under ¥ (cf. [LAG, 4.9]). Denote by U° (6= +) the functor-image
of exp,. Then, H normalizes U? and the multiplication U* x U™ x Hx U* — G is an
epimorphism of k-sheaves (cf. [LAG, 3.6, 3.8]). The multiplication U~ x Hx U* > G
is an open immersion (cf. [LAG, 3.4]) whose functor-image Q is dense in G (cf. [LAG,
3.8]). We have

exp 4 (x)exp_(y)=exp_(yH)b(x, y)exp . (x”)

for (x, y)e #(R), Rek-alg, and # <=J, x J, coincides with the inverse image of Q=G
under the morphism J, xJ, — G sending (x, y) to exp ,(x)exp _{y) (cf. [LAG, 4.1]).
2.5. Consider the k-module

o, fek, a,beJ},

oa da
(1) M:=k@JOkDJ= .{(b ﬁ)

and set

5 0.(h)- o a>:=<x(h)_loc h+a>’
@ w55 )= 1
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3) 0+(x)-< a>:=< o # a-+oax . )5
B b+axx+ax® f+Tb, x)+ T(a, x*)+aN(x)

> R

@ 8 m.(d a>:=<<x—T(a,y)+T<b,y“)—ﬂN<y) a~bxy+ﬂy”>
B b B b—By B ’
o a t'a a

(o ay (B —b
© ’ (b ﬂ)'"<a —a>’

for all Rek-alg, he H(R), te R*, x, y, a, be Jg, and a, e R. Thus we have

@) e2=—1d,
3 €0, (x)e”'=0_(x),
©) e0o(h)e ™1 =0o(h") .

By (2), the endomorpshisms 8,(%) of the R-module M are invertible and A 04(k) is
a homomorphism. Since 6, (0)=1Id and 0,(x)0 . (»)=0,(x+y) by (3) and (CJ3, 4), it
follows, in view of (7) and (8), that the endmorphisms 0_(x) (¢ = +) are also invertible
and x+ 0,(x) are homomorphisms. Varying R, we get a diagram

6.,0_ B
J,=——=3GL(M)«——H

of k-group schemes. Note that we have

(10) (Int () « (Bo(h)) = Oo(h) ,
an (Int (1)) - (01 (x))=0,.(1x) ,
(12) (Intp(e) - (O-()=0-(t""y),
for te R*, he H(R), x, ye Jg. In addition, we have

(13) Oo(—h)=—8o(h) ,

(14) 0.,+(x)0-(x™ 10 (x)= ~O5(b(x))e ,

for invertible xeJg, by (2), (3), (4), 2.1(4), (5), and straightforward calculation.

2.6 THEOREM. There exists a unique homomorphism 0: G— GL(M) of k-group
sheaves extending 0,, 0, and 0 _; moreover, 0 is a monomorphism.

To prove the first assertion, it suffices to verify
(1 (IntGo(h) - (0 (x)=0.(p.(h).x),
2 (Int6o(n)) - O-(y)=0_(p-(h).y),
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€) 0.+(x)0_(»)=0_(y)0o(b(x, YN0+ (x) ,

for all Rek-alg, he H(R), (x, y)e #(R) (cf. [LAG, 4.14]). Direct calculation using
(H1, 2bis, 3) shows (1) and, in view of 2.5(8), (9) and 2.2(3), we see that (2) follows
from (1). We prove (3) in 2.8 after introducing some formulas. We now prove the last
assertion of the theorem on which the following 2.7 and 2.8 do not depend. Let g € G(R),
R e k-alg, such that 6(g)=1d. Then there exists an fppf extension S of R and x, y, ze Jg,
he H(S) such that

gs=exp . (x)exp_(y) exp.(2)h
(cf. 2.4). Hence we have Id =0(gs) =0 ,(x)0 ()8 ,(2)8,(h). In particular

0 0>=< —N(y) y”—N(y)X>
01 —P(y,x) N(y,%)

0(h)‘1-<° 0>=<0 0 >
¢ 0 1 0 x(h) !

are equal and we get N(»)=0, y*—N(»)x=0, i.e., y*=0, and P(x, y)=0 (cf. 1.1(4)),
i.e., y=0, successively. Hence gg=exp, (x +z)h. Thus we have Id =0(gg) =0, (x +z)0,(h).

In particular
0+(X+2)_<1 0)=< 1 x+z )
01 (x+2)* 1+Nx+z)

1. 10>=<x(h) 0 )
Ooll) (o 1 0 7!

are equal and we get x+z=0. Hence gg=~Ah. Now Id =0(gs)=0,(#) implies h=1 by 2.5
(2) and, since R— S is fppf and G is a sheaf, gg=hA=1 implies g=1. This shows the
last assertion.

2.7. For the proof of 2.6(3), we introduce some formulas. For any me M with
entries o, B, a, b (cf. 2.5(1)), we define polynomial laws m°e ((J), and m” e O(J, J) by
setting

0.(x)0-(»0.(2)* (

and

and

(1) <: ;)6(W):=oc—T(a, w)+T(b, w*)—BN(w),
o ay’ #
@) <b ﬂ>(w)'=a_bxw+ﬁw |

for all weJg, Rek-alg (cf. 0.4).
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LemMma. The map M — O(J)x O(J, J) sending m to (m°, m®) is injective k-linear,
and the following formulas hold for all me M, he H(k), x, yeJ, tek® and weJy, Re
k-alg such that (w, x) is quasi-invertible:

(3) 0_(y) - mP(w)=m’(y +w),

C)) 0-()-m)’(wy=m*(y+w),

©) (P(t) - mY(w)=1""m’(tw),

(6) (P(2) - m)(w)=m"(tw),

(N (O(h) * mY’(w)=z() ™ 'm’(p _()~ '),

(&) (Oo(h) - my(w)y=h  m*(p _(h)~'w),

9) (0 (x) - m’(w)= N(x, wim’(w”) ,

(10 (0 4(x) - m)’(w)=(0 . (x) - mP°(W)x* + N(x, w)B(x, w)~'m*(w™).

PROOF. m+—(m® m®) is k-linear by the definitions (1) and (2). To show the
injectivity, let m®=0 and m*=0 for me M with entries a, B, a, b. Then we have, by (1)
and (2), a=m?’0)=0 and a=m"(0)=0. Moreover, if ¢ is a variable over k and weJ,
then BN(w)ek is the coefficient of ¢® in m’(rw)ek{¢] and there exists we J such that
Nw)ek* (cf. 1.1(#)). This shows 8 =0. There remain relations T'(b, w*)=0and b x w=0,
which yield 5=0, since 0=(b x w) x w* = N(w)b+ T(w*, byw = N(w)b by (CJ6). Thus we
get m=0, which shows the injectivity. Let us show the latter half of the proposition.
By the definitions (1), (2) and 2.5(4), we have

md(w) mv>
b—pw p

(notation as in (1), (2)). Hence (3) and (4) follows from the fact that 6_ is a
homomorphism (cf. 2.5). On the other hand, (5) and (6) follow from

7 Imow) m(tw) >
Hb—prw)  t%B
(cf. 2.5(5), (12)). Moreover we have, by (1), (2) and 2.5(2),
Oo(h) - m¥(w)=x(h) ™o~ T(h,a, w)+T(h_b, w*)— (BN (W),
(Oo(h) - my(w)=h,a—(h_byxw+xh)pw*,
from which (7) and (8) follow, in view of 2.1(H1), (H2bis), (H3). Finally, we have
(9bis) (0 4 (x) - m)°(w) = aN(x, w)— T(a, P(w, x))+ T(b, w* — N(w)x)— BN (w)

0_(w)-m=(

9—(W)¢(t)'m=q’)(t)9¥(tw)-m=<

and

(10bis) (0, (x) - m)(w)=aP(x, w)+a—(axx)x w+ T(a, x* w*—bx w+T(b, x)w* + pw*
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by (1), (2), 2.5(3) and (CJ6). Thus (9) follows from (9bis) and (CJ22, 23, 24). (10) acted
on by B(x, w) becomes

B(x, W)+ (x) » m)(w) = (0 4 (x) - mP’(w)x — Qx)w) + N(x, wm*(w*) ,
which we prove by acting B(x, w) on (10bis) and by using 1.9(1), (2), (3), (5), (CJ22,
23, 24) and the above (9bis).

2.8 Verification of 2.6(3). Now we show the identity 6_(»)8,(x)=0,(x*)0(b(x,
y)~ 10 _(»*) which becomes 2.6(3) after we take inverses and replace (x, y) by (—x, — ).
After taking scalar extension and applying the first part of the lemma in 2.7, we are
reduced to verifying the equalities of polynomial laws
(1) (0 (10 +(x) - m)’ =(0 .(x)0o(b(x, )~ MO _(y¥) - m)’,

(2) (0 (2)0+(x) - m) =(0,(x")0(b(x, y)~ N0 _(y™) - m)”,
for arbitrary (x, y) € # (k) and me M. For this, it suffices to verify the equalities of the
values at weJg, Rek-alg such that (w, x*) is quasi-invertible, since such w’s form a
dense subscheme of J,. Then the following calculations work:
(0 (x)Bo(b(x, y)~ )0 _(y) - m)’(w)

= N(x?, w)0o(b(x, y)~ )0 _(y™) - mP(w™")  (by 2.7(9))

= N(x*, wN(x, YO - (™) - m)P(B(y, x)” ' (w™)  (by 2.7(7))

=N(x, y+w)m’(y*+B(y, x) " '(w*™)  (by 2.7(3), 1.9(3))

=N(x, y+wm’(y+w)") (by [LIP, 3.7 (2)])

=0, (x)- m’(y+w) (by 2.7(9))

=(0-(»)0.(x)-my’(w) (by 2.7(3)),

from which (1) follows. Moreover

(0 (x")0o(b(x, y) ™0 _(y*) - m)’(w)
=(0+(x")0o(blx, y) ™10 _(p*) - mP(w)x)*
+N(x?, w)B(x?, w) ™ H0o(b(x, y) ™10 () m)(w™")  (by 2.7(10))
=(0_(1)0 4 (x) - mP(w)x” "
+N(x?, w)B(x?, w) ' N(x, y)B(x, )"0 _(y™) - m)'(B(y, x)~ 'w™)
(by (1) above, 2.7(8), [LIP, 3.7 (D)])
=(0+(x) - m’(y+w)x* "+ N(x, y+w)B(x, y+w) " 'm"(y +w))
(by 2.7(3), (4), 1.10(3), [LJP, 3.6 (JP33), 3.7 (2)])
=(0.+(x)-m)(y+w) (by 2.7(10))
=(0-(»)0 ., (x) - m)(w) (by 2.7(4)) ,
from which (2) follows. This completes the verification of 2.6(3).
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3. Stabilizer.
3.0. We keep the notation in §2. The representation 6 induces linear and projective
representations

U X G—->GL(M)
and
G — Aut(P(M)) ,

respectively. Note that, if meM, (k) (cf. 0.3), then pr,: u, xG—G induces an
isomorphism

Cent, . ;(m) > Centy(p,(m)),

since M, is a p-torsor with structure morphism p,,: M, — P(M). We consider the
element

Ug:=pulmg)e P(M)k), where m0:=<(1) (1) ) .
The purpose of this section is to determine the stabilizer of 4, in G, which is canonically
isomorphic to that of ni, in y, x G.
3.1. We first introduce a notational convention. Recall that 6 is a monomorphism
(cf. 2.6) and the image of G(k) under (k) contains ee GL(M) (cf. 2.5(14)). We regard
£ as an element of G(k) via 8. Thus we have

(1) §2=—1,
2) ghe '=h",
(3) exp(x)exp_(x "exp.(x)= —b(x)e,

for he H(R), and invertible x € J,, Rek-alg (cf. 2.5(7), (9), (13), (14)).
3.2. Let H'c—H be the kernel of the character hr y(h)* of H (cf. 2.1). If h=
(x(h), h,, h_)e H(R), Rek-alg, then
sthy:=(2, A%h_, A%h,) with A:=yx(h)
belongs to H'(R). Indeed, since A*=1, we have z(A?)=(A2, A?1d, A*1d) (cf. 2.1(3)), and
hence s(h)=z(A?)h* € H(R) (cf. 2.1(2)). In particular, we have
(1) x(sthy) =yx(h),

from which s(k) e H'(R) follows. Thus we get an automorphism s: h— s(h) of the k-group
H’ of period two. Let the constant k-group (Z/2Z), act on H’ via s (cf. [D-G, II, §l1,
3.3 a)]), and construct the semi-direct product H' x,(Z/2Z),. Hence we have

@ (b, ) (B, f)=ths g (R), [+ 1),
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for all 4, h'e H'(R), and f, f'e(Z/2Z),(R), R € k-alg, where we regard (Z/2Z),(R) as the
group of idempotents in R with operation [« f' :=f+ f"—2ff" (cf. [D-G, III, §5,
2.4]), and s.(h")e H'(R) is the element corresponding to (7', s(h'))e H'(R, _ ;) x H'(R;)
under the decomposition R~R; _ ; X R, of R with respect to the idempotent f. Therefore,
in view of (1),
(h, f) = x(h): H' X (Z)2Z) — 4p

is a character. Moreover, since the morphism (Z/2Z), — ,u, sending f to 1—21 is also
a character, we can define a character y': H' x,(Z/2Z), — 1, by setting

€) 2 f):=xh)*(1-2f),

for he H(R) and fe{(Z/2Z)(R), Rek-alg. Let H' = H' x (Z/2Z), be the kernel of yx'.
Hence we have

(4) H'(R)={(h, /e HR)x R| f2=f, y(h}* =121},

for all Rek-alg. For any (h, f)e H'(R), R € k-alg, define f(h, f)e G(R) to be the element
with components (h, he)e G(R,_ ;) x G(R;) under the decomposition R~R;_,x R,.
Varying R, we get a morphism

f:H' -G
of k-sheaves.

3.3. THEOREM. f is a homomorphism of k-group sheaves and factors into the
composite

incl.
fi H -~ Centg(ug)) — G,
whose first arrow is an isomorphism.

3.4. First, we show that f is a homomorphsim. Consider (k, f), (#', f')e H'(R),
Rek-alg, and describe any element in G(R) in terms of four components with respect
to the decomposition

ey R=Rii - pa-p X Ra-pp* Rpa-py X Ry
of R. Then we have
S, f)=(h, h,he, he) and f', f)=WF, e, I, h'e)
by definition, so that we have
2 S, ) f(h', f)=(hh', hh'e, h(h') e, —h(h')")
by 3.1(1), (2). On the other hand, we have
3 S, 1Y, SN =hsp(B'), hs (W), hs p(h')e, hsp(h")
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by 3.2(2). However, by 3.2(4) and the formula s(h)=z(y(h)*>)h*, the components
of s (h)eH'(R) with respect to R~R;,_ xR, is (h',s(h)=(h'",2(1-2f")h"")e
H'(R,_;)x H'(R;), and that of 1-2f"e R with respect to R~R,_, xR} is (1, —1).
Thus we have
“4) sph )=, b, (h)", —(R')")
with respect to (1). Hence, by (2), (3), and (4), we get f{(h, /Y, [N)=f(h, ) f(h', [).
3.5. Next, we show that fis a monomorphism. Consider (h, f)e H'(R), R k-alg
such that f(h, f)=1g&) Then we have A=1in G(R,_) and he=1 in G(R,). Hence we
have i=—¢ in G(R,) (cf. 3.1(1)), which yields =1 and —e=1 in G(R,), since
HnUYU U" is trivial (cf. [LAG, 3.6 (c)]). In particular, we have A=1 in H(R).
Moreover, in view of 2.5(6), —&=1 occurs only when R;=0. Thus we have f=0.
3.6. For any (h, f)e H'(R), Rek-alg, we have

e(f(h,f))-<(l) (1)>=x(h)“<(1) ?)

Indeed, since f(h, f)=(h, he) and y(h)?>=1—-2f=(1, —1) with respect to the
decomposition R~R, _,x R, (cf. 3.2(3), (4)), we have

(10 B .10_x(h)—10__1<10>
0(f(h, 1)) <0 1>R1_,_0°(h) <0 1>—< 0 X(h)>—x(h) 01

1oy {10\ (a7t 0\ (10
0(f(h, ) <0 1>Rf—90(h£) (0 1>—< 0 _X(h)>—x(h) (0 1>,

from which the assertion follows. Thus the morphism f: H” — G factors through
Centg(u,). The resulting morphism f”: H” — Centg(u,) is a monomorphism, since so is f
(cf. 3.5). To complete the proof of Theorem 3.3, it remains to show that f is an
epimorphism (cf. [D-G, III, §1, 2.17). In view of 2.4, the question is reduced to the
following lemma:

and

3.7 LemMa. Let Rek-alg, ve R*, x, y,ze Jp and he H(R) such that

10 10
| 0, (x)0_(¥)0 (2)0y(h) - = .
(D V0. (x) (y)+(Z)o()<01> (01>
Then, there exists an idempotent feR and an element h'e H(R) with the following
properties:
(1) xh)P=1-2f,
(i)  xh)=v,

(iii) the components of g:=exp . (x)exp_(y)exp . (2)he G(R) with respect to the
decomposition R~R,_ ;X R, are (h', h'e)e G(R{_ ;) x G(R;).
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Proor. We define a, te R and aeJy, depending on (v, x, y, z, h), by

) ti=xh)?,

A3) a:=N(z, y)—IN(y),

€] a:=z—z*xy+(N@)+1)y*.

Then direct calculation shows that (1) is equivalent to the four conditions:
®) a=yhy™ ',

(6) a*=t>N(y)T(z, y)~2)—tN(z, yXT(z, y)— 1) ,

M y=00)z,

(8) x=—a 'a.

By (2), (3) and (5), we have

) 2Nz, y) =y N(y)=1.
Moreover, by (7), we have
(10) N(z, y)N(»)=0.

Indeed, the left-hand side equals N(y)—N(»)>N(z)—T(y, z)N(y)+T(*, z*)N(y) (cf.
1.1(4)). Acting N(?) and Q(¥*) on (7) with (CJ20, 1, 5, 14) in mind, we get N(y)=
N(»)®N(z) and N(»)y*=N(y)’z. Hence we have T(y,z2)N(¥)=T(y,z2)N(y)*N(z)=
T(y, N(y)y*)N(z)=3N(»)’N(z) =3N(y), and T(y*, z)N(y)=T(N(y)*z, z*)=3N(y)*N(z)=
3N(y) (cf. (CJ5)). Thus (10) holds. By (9) and (10), the element

S i=—xhpN(y)

of R is an idempotent. Since y becomes invertible after the scalar extension R — R (cf.
1.6), we can define h'e H(R) to be the element with components (h, —b(y A" )e
H(R, _;)x H(R;) (cf. 2.1) with respect to the decomposition R~R; _, x R;. We claim
that (f, &) is what we want. Namely:

(a) After the scalar extension R— R, _,, we have y(h)*=1-2f, y(h')=v, and
g=~h'. Indeed, (y, z) becomes quasi-invertible by (9) and 1.7, and we have B(y, z)y=
B(y, 2)Q(y)z=0Q(y—Q(»)z)=0 by (7) and [LJIP, 2.11 (JP23)], from which we get y=0.
Then we have 1=y(hv™" (by (3), (5)), 1=x(h)* (by (2), (3), (6)), x=—2z (by (3), (4),
(8)), and g=exp.(x)exp _(y)exp(2)h=h. Thus the assertion follows, since we have
h'=hand 1-2f=(1-2/)1—f)/(1—f)=1 after our scalar extension.

(b) After the scalar extension R — R, we have y(h')>=1-2f, y(h')=v,and g=h'e.
Indeed, y becomes invertible by 1.6, and we have z=y~! by (7), from which we get
Mz, y)=0, T(z, y)=3, z* x y=2z, and y*=N(z) 1z, in view of 1.6(2), (CJ5), and (CJ1).
Then we have v=—N(»)™ 'x(h) " (by (2), (3), (5)), N(»)*x(h)* = — 1 (by (2),3), (6)), x=y !
(by (2), 3), (4), (8)), and g=exp  (x)exp_(y)exp,(2)h=exp (x)exp_(x~")exp(x)h=
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—b(x)eh=—b(y Y)h'e (by 3.1(2), (3)). Thus the assertion follows, since we have
B=—=b(y WA, 1=2f=(1=21)flf=—1, k)= —N()"'y(h)"" (by 2.1(1), (4)) after
our scalar extension.

4. Freudenthal quartic and transitivity.

4.0. Recall that (J; N, #, T) is a quadruple as in 1.1, that G is the k-group sheaf
defined in 2.4, and that M is the k-module k@ J @ kP J (cf. 2.5), on which G acts via
the representation 6 defined in 2.6. Recall also that we have two vector subgroups U°
(0 =+) of G together with isomorphisms J,~ U’ (cf. 2.4), and that the composite
J,~U°cG A GL(M) coincides with 6,: J,—GL(M) described in 2.5(3), (4). The
purpose of this section is to show that the projective representation G — Aut(P(M))
associated to  admits a G-stable open subscheme Y« P(M) such that, under some
condition on (J; N, #, T), the action of G(K) on the set Y(K) is transitive for any
algebraically closed field K € k-alg (cf. 4.4, Corollary 1). Yis the principal open subscheme
defined by the “Freudenthal quartic” (cf. 4.1).

4.1. Consider the quartic form (cf. 0.4) fe®* M) and the alternating form
{, }e'(A*M) such that

(1 f<2C ;>:=(T(a, b)—af)? +4N(a)B+ 4N (B —4T(a*, b*),
2) {(: ;),(Z: ;/,)}:zT(a’b/)—T(b,a’)-l-,BOC'——aﬁ"

for all a,a', 8, B'eR, and a,b,a’,b’eJy, Rek-alg. By calculation, we see that G
stabilizes f and { , }. Denote by (M), (resp. D.(f)) the principal open subscheme of
M, (resp. P(M)) defined by the section f'e ¢*(M), and define subschemes (M)}, (M)} *

of (M,), by
aeR*},

a’ﬂER*}’

a a

(M,); (R):={( b B

0
(Ma);+(R>:={<°O‘ ﬁ)

for Rek-alg. Since G stabilizes f, the subscheme (M), is stable under G, and so is D ,.(f).

> e(M,)/(R)

4.2 ProposiTION. If Kek-alg is an algebraically closed field, then we have
(M)} (K)=U"K)U(K) - (M,); *(K).

This follows from the same argument as in {Igusa, pp. 427-428].

4.3, Consider the following condition on a quadruple (J; N, #, T):
(xx) For any field K € k-alg of characteristic different from two, the symmetric bilinear
form (x, y)r— T'(x, y) on J is non-degenerate.
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PROPOSITION.  Under the assumption (x), we have
(Ma)f(K): U_(K) : (Ma);(K) s
for any infinite field K € k-alg.

Proor. In view of 2.5(4) and 2.7(1), it suffices to show that for any me(M,)(K)
there exists weJg such that m%w)e K*. Then we are reduced to showing that the
polynomial law m®e O(J) (cf. 0.4) is not zero, since K is an infinite field (cf. [Bou, 1V,
§2, no 3, Cor. 2 of Prop. 9]). In general, we have

(1) {meMlm"=0}={<2 g)

Indeed, the left-hand side contains the right-hand side by the definition 2.7(1). To see
the converse, let m? =0 for m e M with entries «, B, a, b. Then, equating the homogeneous
components of the polynomial m® to zero, we get a=0, T(a, )=0€ O'(J), T(b, ?*)=
0e 0*(J), and BN=0¢e ¢*(J). However this also implies T(b, ?)=0 and =0, since the
morphism ?¥ is scheme-theoretically dominant (cf. 1.3(b)) and there exists ¢, €J such
that N(c,)ek* (cf. 1.1()). This shows (1). Now apply (1) after the scalar extension
k — K. If char(K)#2, the right-hand side of (1) is {0} by our assumption (*x), and if
char K=2, we have f(m)=0 for all m in the right-hand side of (1). In all cases, we have
{meMg|m®°=0}={me M| f(m)=0}, i.e., m’e O(J) is not zero if me(M,)(K).

a,beld, T(a,)=T(b, ?)=Oe@1(J)} .

4.4, Let us assume the condition (*x) in 4.3.

COROLLARY 1. For any algebraically closed field K € k-alg, the action of G(K) on
D (f)K) is transitive.

In view of the canonical bijection {xe M| f(x)e K*}/K* 5 D, (f)(K), this follows
from:

COROLLARY 2. For any algebraically closed field K e k-alg, the set (M,)(K) is a
single orbit under K* x G(K).

Indeed, if m, m’€(M,)(K), there exists f€ K* such that t*= f(m) ' f(m’), since K
is algebraically closed. For such ¢, we have f(tm)=f(m’), since f is a quartic form (cf.
0.4). Now the assertion follows from:

CoRrROLLARY 3. For any algebraically closed field Kek-alg and ie K*, the set
{meMy| fim)=i} is a single orbit under G(K).

Proor. By 4.2 and 4.3, we are reduced to verifying that two elements

<o¢ 0> , <oz’ 0)
m= and m'=
0B 0 p

of M, are conjugate under G(K) if (af)*=(a’f’)?, or, in view of the action of e, if
af=a'f’. Since y: H—op, is an epimorphism of k-sheaves (cf. 2.1), there exists
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he H(K) such that y(h)=p'"'p. For such h, we have 8y(h) - m=m' (cf. 2.5(2)).

This corollary was proved by Igusa in [Igusa, p. 428] in the case where char(K)#

2,3.
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