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SOME PROBABILISTIC PROBLEMS AND METHODS 
IN SINGULAR PERTURBATIONS 

GEORGE C. PAPANICOLAOU* 

ABSTRACT. We discuss in detail the asymptotic analysis of 
deterministic and stochastic problems, within a certain class, 
from the point of view of order reduction or contraction of 
description. 

1. Introduction. Many problems that arise in the asymptotic analy-
sis of stochastic differential equations are singular perturbation prob-
lems, sometimes familiar from well studied deterministic problems. 

We attempt to give here a unified presentation of such problems 
emphasizing one aspect they have in common: the order-reduction or 
contraction in their description that emerges in the limit. One of the 
simplest examples of this kind in probability is the central limit 
theorem. 

In §2 we review some results on the method of averaging [1, 2] . 
The general ideas here help motivate later developments. In § 3 we 
take up the analysis of a class of linear operator-equation problems 
that arise in random evolutions [3], in the work of Kurtz [4], the work 
of Ellis and Pinsky [ 5] and in [ 6]. 

The framework of § 3 is not sufficient for the analysis of problems 
corresponding to the results of [7] as well as those in [8, 9] . In § 4 
we introduce a more elaborate framework in order to deal with them. 
The basic problem under consideration here is the long-time behavior 
of a dynamical system coupled to a heat bath. The relation to the 
problem of atoms coupled to radiation in the form treated by Davies 
[8, 9,10] and, more generally, to those in [11], is discussed briefly. 

The results of § 4 were obtained while the author was visiting the 
Observatoire de Nice. The hospitality of Uriel and Helene Frisch and 
their colleagues is gratefully acknowledged. The ideas discussed in 
[12] and conversations with Uriel Frisch and E. B. Davies provided 
initial motivation for this work. 

2. Averaging. The method of averaging for ordinary differential 
equations has played an important role both as an approximation 
method and as a theoretical tool [ 1]. We shall give an account of a 
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generalization of the averaging method [2] which illustrates the 
methods and results of later sections. 

Many problems in differential equations, after preliminary trans-
formations and scaling, assume the form 

U-=F(xit\yit)\ x<(0) = x, 
dt 

(2.1) 
^^=±G(xit),yit)\ yiO)=y. 

Here x€(t) G Rn and y€(t) G Rm and F and G are vector valued func-
tions of dimension n and m respectively. We refer to x€(t) as the slowly 
varying part of the pair (x*(t), ye(i)) and to y€(t) as the rapidly varying 
part. We assume that the components of F and G and their x and y 
derivatives are bounded functions of x and y. 

The object of interest is the asymptotic behavior of x€(t), 0 ^ t ^ 
T(T < oo ), as e I 0. We are not concerned about the behavior of 
y€(t) here. To motivate future developments we study (2.1) by passing 
to the Liouville equation that corresponds to it. Let f(x, y) be a dif-
ferentiate function on Kn X Rm and define 

(2.2) u\t9 x, y) = f(x*(t, x, y), y*(t, x, y)). 

Then we have for t > 0 

dU^X>y) - F(x,y) dU^X>y) - (lk)G(x,y) ^ ^ = 0, dt v ' * ' dx \ / \ >y> dy 

(2.3) 
w€(0, x, y) = /(x, y). 

Here d/dx stands for the x-gradient and Fd/dx stands for the dot 
product of F and the gradient; similarly for Gd/dy. We shall study 
the behavior of u*(t, x, y) as € 10 when / = f(x), i.e., the initial 
data depend on x only. 

Let Yx(t) be the solution of 

(2.4) ^-=G(x,Y'(t)),Y'(0)=y, 

where x is a parameter. For small t, of order €, y€(t) is approximated 
well by Yx(tfe). Suppose that 

(2.5) F(x) = lim i \T F(x, Y*(s)) ds, 
Hoc T JO 
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exists uniformly in x and y and defines a bounded vector function 
F(x) independent of y as shown. We also assume that the derivatives 
of F(x) are bounded functions of x. Let x(t) be defined by 

(2.6) - ^ - = F ( * ( t ) ) , * ( 0 ) = *, 

and let ü(t, x) be defined by 

(2.7) ü(t,x)= f(x(t)). 

Forf(x) differentiable, (2.6) and (2.7) imply that 

W f c x ) _ _ p ( x ) j O ( M ) _ Œ ( U > 0 

dt dx 
(2.8) 

O(0, *) = /(*). 

THEOREM. Under the above hypotheses and with f — f(x) in (2.3), 
u€(t, x, y) tends to û(t, x), 0 ^ t^ T, as e j 0 uniformly in x and y on 
compact sets. 

PROOF. It is enough to have f(x) differentiable with bounded 
derivatives. With this / fixed we define 

(2.9) * 

= l~ e^\F(x,Y*(s))^^-J(x)^±] * , A > 0 . 
Jo" I y y " dx w dx J 

Because of (2.5) it follows by elementary computations that 

(2.10) limXXM(x,y) = 0 

uniformly in x and y. This says that the Abel limit exists if the Cesaro 
limit does, a well known fact. From our differentiability hypotheses it 
follows that derivatives of X(x) exist and are bounded. 

From (2.3) and with initial data equal to f(x) + eXiK)(x, y) we 
obtain the identity 

f(xit)) + €X&W). yit)) - f(x) - exH*, y) 

(2.11) - }'o ( F(x<(s), yis)) £ + - j - G(xis), yis)) -^ ) 

• [f(xe(s)) + eX<*\xis), yis)] ds = 0. 

In (2.11) we first differentiate under the integral sign and then evaluate 
the result as indicated. Now from the definition of X(x) it follows that 
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(2.12) y 

= ÀX(x)(x, t/), X > 0. 

Thus from (2.12) and (2.11) we obtain 

/(*«(*)) - /(*) - J'o F(E(f(s)) a / ( ^ ) }
 ds 

(2.13) = -€x^>(xe(o, r W ) + €*(x)(*> Î/) 

+ 

dXik)(xjs), yjs)) _L 17/ et \ et \\ ^ ' l ^ W » j / V 1 

+ €F(xe(s), f/e(«)) •^-d J 
ds. 

By first choosing X sufficiently small, using (2.10) and then letting e 
go to zero, we deduce from (2.13) that, for 0 g t ^ T(T < o° ), 

(2.14) I f(x<(t)) - f(x) - P F(x*(s)) W**^ ds\-+0 
I o dx I 

as e 4 0, uniformly in x and y (recall x€ depends on y). 
We must now deduce from (2.14) that, for 0 ^ t = T, 

(2.15) |/(*«(*)) - f(x(t))\ -> 0, 

as e I 0, uniformly in x and j / on compact sets. From (2.8) it follows 
that 

(2.16) /(*(*)) - f(x) - £ F(x(s)) df(*(
x
S)) ds = 0. 

From (2.1) it follows that for (x, y) in a compact set, x€(t) form a uni-
formly bounded and equicontinuous family of functions of t, 0=t 
g T(T < oo ) with, say, O ^ e g l . The results (2.14) and (2.16) show 
that any limit x(t) of the x€(t) is a solution of (2.6). But the latter has 
a unique solution. Hence (2.15) follows. 

The usual method of averaging [1] is a special case of the above. 
Specifically, in (2.1) y€(t) is one-dimensional, G(x, y) is identically 
equal to one and F(x, y) is almost periodic in y. 

Recall thatX(x) was defined by (2.9). IfX(0) exists and is bounded, i.e., 

n^f-F«*]* < °°, 
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then it is easy to see that the right side of (2.14) will be 0(e). In general, 
we have o(l) as shown. 

In the following section we shall be concerned, directly or indirectly, 
with problems of the form (2.1) where y€(t), the rapidly varying part, is 
a stochastic process. We shall see that one can proceed there in much 
the same way as above. 

3. A general class of linear problems. Let us first begin with the 
following linear sy tern of ordinary differential queations 

dxe(t) 
—— = Anxit) + Al2yit), x*(0) = x, 

(3.1) 
dt 

^ = ^ V « + A2i*i*) + A22yit), yiO) = y. 

Here An, A12, A21 and A22 are matrices with appropriate dimensions, 
x€(t) and y*(t) being n-vectors and ra-vectors respectively. The matrix 
A is assumed to have eigenvalues with positive real parts. 

The result of section 2 yields easily that 

(3.2) x\t)~ eAn% O^t^T, 

which is clear since y€(t) decays rapidly to zero by our hypotheses. 
What can we say about x€(t) for 0 ^ t^ T/e, with T < <*> but 

arbitrary? In general, we have that 

(3.3) x*(t) ~ ^11+«v)tx> O S f g T/e, 

where 

(3.4) V= A^-iA^. 

If in addition An is skew-symmetric then, with 

(3.5) V = lim— r e-AnsVeAnsds, 
rf oo T J o 

we have 

(3.6) x€(t) ~ eAme^% O g ^ T/e. 

These approximations hold with error estimates O(e) uniformly on 
compact x, y sets. The second one, (3.6) is easier to implement and 
hence potentially most useful. The passage from (3.3) to (3.6) is simply 
an application of the averaging method and the arguments of section 2 
apply. They also apply in greater generality for linear operator equa-
tions but we shall concentrate on the approximation (3.3) here. 
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We shall formulate below a general result corresponding to (3.3) in 
an operator framework. Our motivation for this is the work on random 
evolutions [3], transport theory [13], the linearized hydrodynami-
cal limit of the Boltzmann equation [5, 6, 14], stochastic differen-
tial equations with Markovian coefficients and homogenization prob-
lems [ 15], to name a few applications. In the form given here, the 
results generalize a theorem of Kurtz [4]. A systematic presentation 
of several applications is given in [ 16]. 

Before stating the theorem we shall consider briefly the case of 
stochastic equations with Markovian coefficients in order to illustrate 
the framework of the theorem that follows. 

Let y(t) be an Rm valued Markov process and let B be its in-
finitesimal generator defined on smooth functions by 

Bf(y) = lim h 
E{f(y(h))\y(0) = y}-f(y) 

/ i |0 

Let xe(t) be the Revalued process satisfying 

dxHi) 1 
~ ~ = -F(*«(t ) , yit)) + G(x<(t), yit)), x<(0) = *, 

yit)=y(tk2). 

We assume that F and G are smooth vector functions; the discussion of 
this example will be informal. If f(x, y) is a smooth function and if 

tf(t,x,y)= E{f(xit),yit))}, 

then it follows that 

- ^ - = (l/€)F(x, y) ~ + G(x, î/) ~ + QJ*2)Bu\ t > 0, 

(3.7) 
ue(0, x, y) = f{x, y), 

which is the backward Kolmogorov equation for the Markov process 
(xe(£), y€(t)), yit) = y(tle2). The scaling in (3.7) is motivated by the 
fact that the intermediate term (l/e)Fd/dx is assumed, sometimes, 
to average to zero in an appropriate sense. 

Our interest is in x€(t) so we wish to find the limit as e | 0 of 
E{f(x€(t))} for a sufficiently rich class of functions / on Rn. This 
is the same as studying the asymptotic limit of the solution of (3.7) 
with / = f(x) for initial data. This problem is of the form covered 
by the theorem below (with B = B, A = Fdldx, C = Gdldx). A 
basic hypothesis for the asymptotic analysis that follows is that the 
process y(t) be ergodic in a sufficiently strong sense. We return to this 
after the statement of the theorems. 
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Let L be a Banach space and let B be the infinitesimal generator of 
an ergodic contraction semigroup eBt that is, 

(3.8) lim I"" e-"eBtfdt =Pf,fG L. 

Here Pf is projection into the nullspace of B; (see [ 17, p. 516] and 
[4]). Let L0= PL. 

Let A and C be linear operators on L such that for each e > 0 

(3.9) H* = (l/€2)ß + (lle)A + C 

has a closure that generates a continuous contraction semigroup on L 
which we denote by T€(t). Let D be a subspace of L0, dense in L0, 
contained in the intersection of the domains of A, B and C and such 
that the equation 

(3.10) BXY + (A- PA)f =0 (Xl = - B-i(A - FA)/) 

has a solution in L for e a c h / G D (so Pf = / ) . We assume in addi-
tion that Xi belongs to the intersection of the domains of A and C. 
With / G D and X > 0 define X2

(A) by 

(3.11) X2
(^ = J" e-^B*[itt! + C / - PAXi - PCf\ ds. 

We assume that X2
(A) also belongs to the intersection of the domains of 

A and C. 
Let G€ be defined by the closure of 

&f= (He) PAPf+ PAXX + PCPf 
(3.12) J 

= ( l /e)PAP/+ G / / £ D , e > 0 , 

in L0. Assume that it generates a continuous contraction semigroup in 
L0 which we denote by S€(£). Assume also that the closure in L0 of 
the set 

(3.13) H (X - &)D 
e>0 

is L0 for X > 0. 

THEOREM 1. Under the above hypotheses, for fE. L0 andX > 0, 

(3.14) l i m | | R ^ / - C / / | | = 0, 
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*V= JJ e-»T*(t)dt9 

Qk
€= [°° e-*sSit)dt, X> 0. 

PROOF. Let f Œ D, let Xj be the solution of (3.10) and for À > 0 
let X2

(x) be defined by (3.11). From our hypotheses and (3.8) it follows 
that 

(3.15) BK2
M + AXY + Cf- PAK, - PCf= XX2

M 

and 

(3.16) lim AX2
(X) = 0. 

AiO 

Moreover, X2°°, X > 0, belongs to the intersection of the domains of 
A and C. 

Now with / G D, / + eXi + €% ( x ) , À > 0, is in the domain of 
H€ and hence 

T*(t)(f+ €XY + €%&>) - ( / + €X! + 6 % ^ ) -
(3.17) 

- J' Tis)((lk2)B+ (l/e)A + C)(/ + €Xx + € % ^ ) ds = 0. 

Using the definitions of X1? X2
(x) and Ge we rewrite (3.17) in the follow-

ing form 

nt)f-f-\\ ns)Gids 
(3.18) = - r«(t)(eXi + e2 X2^) + éKi + e%&> 

+ P T<(s)[AX2
w + e(CXi + AX2M) + e2CX2<*>] ds. 

Jo 

Thus, since Te(t) is a contraction and (3.16) holds we obtain for/ G. D, 

(3.19) l i m i l i ^ ) / - / - f0 T W / d » ! = 0. 

It remains to show that (3.19) implies (3.14). 
From (3.19), it follows that for/ E D 

(3.20) lim | | / - fl^A - G«)/|| = 0, X > 0. 
€Ì0 

Let g G fì€>o (A - G€)D. Let / € be defined by 
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(3.21) /« = Qk% 

Since f* is in D for all e > 0 the corresponding X^ and X2
(eX) have 

the requisite properties independently of e > 0. Thus the right hand 
side of (3.16), with Xi and X2

(x) replaced by X^ and X2
(€X), goes to 

zero again and so (3.17) is valid with / = f€. This leads to (3.20) 
w i t h / = f€ and hence, by (3.21), 

(3.22) l i m | | C / g - R / g | | = 0 , X > 0 . 

Since the closure of f \ > 0 (A - G€)D is L0, (3.20) holds for all g £ L 0 

and hence (3.14). 

REMARK 1. In the case PAP = 0 the above theorem is essentially 
Kurtz's result [4]. In this case Ge is independent of € and it is given 
(dropping the superscript) by 

(3.23) Gf = PAXy + PCPf, fGD. 

The condition stated immediately above the theorem simplifies to: 
the closure of (X — G)D is L0 for each X > 0. It is well known, see for 
example [ 18], that since both H* and G of (3.23) are generators of 
contractions, the result (3.14) implies that 

(3.24) lim sup \\Tit)f - S(t)f\\ = 0, / G L0, T < ™ . 

In general, it is not true that (3.24) holds with S(t) replaced by 
S€(t). This observation is due to E. B. Davies. 

We give next a theorem that leads directly to the result (3.24) in the 
general case. Instead of (3.13) the basic requirement is now smooth-
ness as follows. 

F o r / G D C L0let 

(3.25) vit) = Sit)f 

so that 

di)
€
(t) 

(3.26) ~d = G V ^ ' t > °' ü 6 ( 0 ) = ^ 

Similarly, let 

(3.27) u\t) = T*(t)f. 

We shall assume that D C L0 is dense in L0 and that for f G D, 
v€(t) and powers of A, C and G acting on ve(t) have finite norm for 
0 S ^ = T independently of e > 0. This is the smoothness require-
ment. We also assume that B~l exists and is bounded on a l l / G L 
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such that Pf = 0 and, moreover, that B~l does not alter the smooth-
ness properties. 

THEOREM 2. Under the above hypotheses and withf E D 

(3.27) sup | | T « ( t ) / - S « ( * ) / | | ^ « , 

where T < oo is arbitrary and c is a constant that depends on T and 
/ E D but is independent ofe. 

PROOF. With / E D fixed let v€(t) be given by (3.25) and let 
Xiit) be defined by 

(3.28) X^t) = - B- >(A - PA)v*(t). 

Since S€(t) is a semigroup on L0, B~l is well defined here because 
(PA - PA)v\t) = 0. Clearly 

(3.29) Bxxit) + (A - PA)v*(t) = 0. 

Similarly letX2
€(t) be given by 

X2<(£) = -B-'lAX^t) + Cue(*) - Gv'(t) + B-HA - PA)PAPt;e(*)]. 
(3.30) 

Again, this is well defined because P acting on the expression in the 
brackets equals zero by definition of G in (3.12) or (3.23) and since 
B~l commutes with P. Thus 

BX2*(t) + AX^t) + Cv*(t) - Gv*(t) + B-\A - PA)PAPv*(t) = 0. 
(3.31) 

By our smoothness hypotheses Xi*(i) and X2
e(t) are bounded on 

finite t intervals independently of e. We may therefore estimate 
u<(t) - v'(t) - €Xi'(t) - €%«(£), instead of ue(t) - ve(t), and show 
that its norm is 0(e). But, using (3.30), (3.31) and (3.26), we have 

(ft-H') [««(*) - vit) - eX.it) - e%it)] 

= ( ^ B + 7 A + c - ^ ) Mt) + xAt) + «%«(«)] 

(3.32) 

= e[AX2it) + Odit) + B-'(A - PA)Gvit) 

+ AB-\A - PA)PAPvit) - CPAPvit) 

+ GPAPvit) - B-\A - PA)PAPAPvit)] 

+ €°-[CX2it) + B-lAB~l(A - PA)Gvit) - B~[Cvit) 

+ ß - ' G V ( t ) - B-2(A - PA)PAPGvit)]. 

http://eX.it
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Our smoothness hypotheses imply now that for T < oo 

(3.33) sup \\uit) - v€(t) - eXiit) - €%*(£) || ^ ce, 

where c depends clearly on the terms in the brackets on the right 
side of (3.32). This completes the proof. 

REMARK 2. It was realized in [5] that in the hydrodynamical limit 
for the linearized Boltzmann equation the condition PAP = 0 is not 
satisfied. The present theorem covers that case. We should note that 
both results in [4] and the results in [5], or the present ones, constitute 
a formalized and streamlined way to do "second order perturbation 
theory" (see for example [19], Chapter IV). In [5] the smoothness 
requirements are easily verified because Ge has constant coefficients 
and so commutes with differentiations. 

REMARK 3. The theorem above was formulated in such a way that 
the simplicity of the proof remains transparent, i.e., the correctors 
Xi and X2 are chosen so that the singular in e terms cancel and (3.18) 
or (3.32) follow. We have not attempted to optimize the various regu-
larity conditions (domains) or the notions of convergence (other than 
strong) so that some interesting cases may be ruled out. The idea is, 
however, that in specific problems as for example [ 13], one should 
simply adapt the present method of analysis rather than try to fit the 
situation to the present (or other) theorems verbatim. The method 
shows also how higher order corrections can be obtained. 

4. Dynamical systems coupled to a heat bath. It was pointed out 
by Davies in [20] that results such as the one of § 3 are not sufficient 
for problems that he considers [8, 9] and that arise in quantum me-
chanical contexts [11]. They are also not sufficient for the results in 
[7, 21] and, in addition, it is of interest to have a method of analysis 
that does not rely on expansions of infinite order [8, 9] . The pur-
pose of this section is to extend the analysis of § 3 appropriately so 
that such problems are covered. We consider a classical dynamical 
system coupled to a heat bath and analyze it asymptotically in the 
weak coupling limit. The problem is equivalent to the asymptotics 
for stochastic equations with non-Markovian coefficients ([21] and 
references therein). Our approach is motivated by Davies' ideas in 
[20], the work of Kurtz in [22] and the work in [21]. A more 
general approach using Martingale theory is given in [27]. 

Let (fi> ^ , F) be a probability space and let 

(4.2) CO—> <ü(t), — oo < £ < oo 

file:////uit
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be a measure preserving group of transformations on O. Let H = 
L2(fì, P) be the real Hilbert space of square integrable random vari-
ables on £1 with inner product 

(X, Y) = E{X, Y} = J" X(a>)Y(ü))P(da>). 

Let F(x, o>) be a measurable function on Rn X O—» Rn such that 

(4.3) E " 2 { ( s u p \F(x, -)|)2} = || sup|F(x, -)|||„ < °° 
X X 

and 

(44, ^{(«yliffei |)'}<.. 
Here | | stands for the Euclidean norm of vectors or matrices. 

Consider the solution xe(t) = x*(t, x, co) of 

dx€(t) 
(4.5) —^- = (l/e)F(*«(t), v<(t))> *e(0) = x. 

Here a)€(t) = cü(^/e2), o>(0) = co and (4.5) has, in view of (4.3) and 
(4.4), solutions for almost all o) G Ù that exist for all time if e > 0. 

We shall assume that 

(4.6) J F(x, co)P(do)) = E{F(x, •)} = 0, 

which corresponds to the case PAP = 0 of the previous section. Just 
as in the theorem of the previous section it can be removed if neces-
sary but the limit problem will then depend on e. See remark 3. 

The motion o)(t) in O will be referred to as the bath. P is the prob-
ability measure with respect to which the initial state of the bath is 
distributed. The motion x€(t), scaled appropriately already, will be 
referred to as the system. It depends on the initial state of the system 
x as well as on the initial state of the bath a). Thus, the only way 
randomness enters in the system is via the initial distribution of the 
bath. 

F o r / G H define 

(4.7) U(t)f(w) = f(a>(t)) = f(t, a.), * G ( - » , oo ). 

Since co —> œ(t) is measure preserving, U(t) is a unitary group of 
operators on H. The function f(t, co) is a stationary random function 
generated by U(t). If we define 

(4.8) (U(t)F(x, •))(*>)= F(x,t,œ) 
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(abbreviated F(x, t) frequently), then (4.5) takes the form 

(4.9) tLT1= (Ifc)F(xit), tie2), x«(0) = x, 
at 

which is the familiar form for stochastic equations ([21] and refer-
ences therein). 

We now proceed to show the connection of the above problem with 
the framework of [8, 9, 11]. The actual treatment we shall give 
later does not use all of the assumptions made here for this comparison. 

Assume that the flow co(£) is ergodic so that 

(4.10) lim A I"" e-»U(s)fds = E{f} = f /(co)P(cico), / G tf, 

the limit being taken in the H norm. Since U(t) is unitary, there exists 
a possibly unbounded selfadjoint operator Bon H such that 

(4.11) U(t) = eiBt. 

Consider now the space L of functions f(x, co) on Rn X H-» R, 
measurable, bounded continuous in x for almost all co and in H as 
functions of co. Let 

(4.12) | | / | | L = | | s u p | / ( x , -)I||H. 
X 

Let L0 be the Banach space of bounded continuous functions on Rn 

with ||/||Lo. = sup»|/(x)|. We define on L the group T€(t) by 

(4.13) P(*)/(x, co) = / (x ' ( 0 , «•(*)), 

where x€(t) is the solution of (4.5). This group is a contraction on L 
and for appropriately restricted functions in L 

(4.14) lim T€(h)f~f = H « / = (lk)F(x, co) Jß*L^L + (t/€
2)B/(x, co). 

MO h à* 

Here B acts on f as a function of co alone. 
The operator H* of (4.14) has the same form as the operator 

H€ of (3.8) except that C = 0 here. Motivated by this formal similarity 
we seek to analyze the asymptotic behavior of T€(t) for e I 0 in the 
manner of Section 3. If we define A formally by 

(4.15) A = F(x, co) -jt- , 

then, because of (4.6), we have PAP = 0 with the projection P defined 
by (4.10) :P= E{ - }. Let u*(t) = T€(*)/andput 



666 G. C. PAPANICOLAOU 

vit) = PT<(t)f 

wit) = (1 - P)Tit)f. 

Then the formal evolution equation for Te(t)f becomes 

^=(lk)P(AW<), 

(4.16) 

— ^ = (ile*)Bw* + (lle)Av* + (1/€)(1 - P)Aw*. 

In this form the problem looks similar to the problems in [8, 9, 10, 
11]. Note however that A in (4.15) is unbounded, being a differen-
tial operator, and hence infinite expansion procedures are not suitable 
here. Note that the first equation in (4.16) has no 1/e2 term on the 
right hand side. All problems that at first have such terms there, can 
be transformed into the form (4.16) (provided that the original problem 
did admit the kind of asymptotics we are contemplating). See remark 
2. 

The difficulty with H€ of (4.14), or the system (4.16), is that on 
attempting to use the procedures of Section 3 the correctors Xi and 
X2 do not have the required properties. This difficulty is in the nature 
of the problem and cannot be avoided. With / = f(x) G L0 solu-
tions Xi of 

(4.17) iBXi + Af= 0 

exist only for special F(x, co) in (4.15) despite the fact that (4.6) holds. 
If (4.17) has solutions in L then PAXy = 0 and our problem has a 
trivial limit. On the other hand PAXi 7^ 0 implies that (4.17) does not 
have solutions in L. Said another way, PAX\ ^ 0 requires B to have 
0 in the continuous spectrum and then (4.17) is solvable for special 
F for which PAXi = 0. Using (4.8) we have 

P ^ - j ; E {F(x,0) A ( F ( , , * ) ^ - ) } * 

,= f- F(x,t)-*fU 
Jo dx 

formally, from which the above statements can be verified. 
Now we proceed to what seems to be the proper way to treat the 

asymptotics of PT\i)f, with f G L0. We shall not adhere to the 
Hilbert space framework above since it is not necessary to do so. 
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Let F(x, co) be a measurable function on Rn X Ù -^ Rn and let 9 f 

£ = 0 , be the a-algebra generated by F(x, co(s)) = F(x, s, co), 
O ê s ê f . Assume that 

E{sup|F(x? -)|} < oo? £ ( s u p I a F ( x ' ' } I } < oo? 

x i x i ax i j 

which implies 

sup E { sup I F (x, £, - ) | }< oo? 

r I dF(x,t, •) l i 
sup E i sup — — I < oo . 

With these hypotheses, the solution x€(t) = xe(£? x? cu) of 

dxHt) 
(4.18) — - ^ - = (UeF(xit\ ««(*)), x«(0) = x, 

with coe(£) = ü)(tfe2), is well defined and it is ^f/c2 measurable. 

Let L be the collection of measurable functions fix, t, co) on 

Rn X [0, oo) x fì ^ R such that /(x, t, •) is <?, measurable ^ 0, 

x G fìn and 

| | / | | = sup E { s u p | / ( x ^ , • ) l } < ° ° . 

On L we define the semigroup of operators [22] 

(4.19) Ü(s)f(x, t, co) = E{f(x, t + «, • )| <?t}, 

the semigroup property being an immediate consequence of the 
properties of conditional expectation. We also have that 

ii0«/iit2i imi£ 

so that 0(s) is a contraction. Note that 0(s) acts on / as a function 
of t and co only; x is merely a parameter. The conditional expectations 
in (4.19) have a version that renders Ü(s)f an element of L again 
[22]. On suitably restricted elements of L we define the infinitesi-
mal generator B of 0(s) by 

(4.20) Bf = lim °{h){-f 

in L. Let L() be the Banach space of bounded continuous functions 
o n f l » , w i t h | / | | ^ = s u p x | / ( * ) | . 
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F o r / G L w e define f€(s) by 

(4.21) T*(s)f(x, t, co) = E{f(x%t + * ) , * + sie2, • ) | Ot], 

where x€(t) is the solution of (4.18). For functions in L that are appro-
priately restricted (at least differentiable in x) we have that 

lim iW^f- = Hi= (l/e)F(x, t, „) ^ «"»> 
(4.22) *» * 

+ (l/e2)S/(x, t, <u). 

From this we see that He is again of the form (3.6) so we shall study 
the asymptotics of Te(s) by the methods of § 3. 

Let f(x) be a bounded smooth function on Rn, i.e., with bounded 
derivatives of all orders and define 

(4.23) Xi(x, t, co) = J " E { F ( X , t + s, • ) " ^ H ^ ( } ds 

(4.24) X2(x, t, «a) 

= £ [ E {F(X,t + s, • ) a X l ( x > f
a x

+ * ' - ) | 9 ( } - Lflx)] * 

where 

(4.25) L/(x) = / J E {F(x, 0, • ) ± ( F ( x , *, • ) - ^ ) } , , 

We assume that F is such that Xx and X2 exist as elements of L, i.e., 

(4.26)supE{sup|X!(x, t, • )|} < <*>,sup £ | sup (x, t, • ) 1 < oo 

(4.27) 
sup E{ sup|X2(x,f, •)!}< °°-
f^o 

Recall that (4.6) holds here so that (4.26) is a form of mixing similar 
to Rosenblatt's [23, 24]. More appropriately, the existence of 
X1? in the sense of (4.26), corresponds to the existence of the recurrent 
potential [25, 26]. Definition (4.25) is the same as 

/ J ds E { E { F(x, t + s, • ) dUX> ' + '' • } | 9, } } = L/(x) 
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so that the integrand in (4.24) has zero expectation. The existence of 
X2 is the same sort of affair as the existence of Xi but more involved. 

In addition to the above hypotheses we shall assume that 

(4.28) sup E { sup I F(x, t, • ) dX^ *> ' } I 1 < «>, 

and 

(4.29) lim (Uh) \h E{XY(x, t+ s)\ <9t} ds = XY(x, t), 

(4.30) lim (Uh) \h E{X2(x, t + s) \ S?t] ds = X2(x, t)9 

the limits being in the L norm. 

LEMMA. With the above hypotheses and with f(x) smooth we 
have 

E {I E{f(xit + s))\Vt}-f(xit)) 
(4.31) 

- £ E{Lf(x*(t+<r))\*t}d* | } =0(6) , 

for allt =1 0 and 0 g s ̂  T < œ . 

PROOF. From the definitions of Xi and X2, (4.26), (4.27) and (4.29) 
and (4.30) it follows that X{ and X2 are in the domain of B and satisfy 
the potential equations (f(x) smooth is fixed) 

(4.32) BX{ + F - ^ - = 0, 
dx 

dX — 

(4.33) Bx2 + F — - - Lf = 0. 

Thus, we have the identity 

(4.34) 

- f f«(a) ( A ß + - F Ì - f - ( / + eX1 + e*X2)dv = 0, 
Jo \ e~ e / dx 

which, in view of (4.32) and (4.33), becomes 
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P(s)f - / - fo Ti<r)Lf da= - P(s)(eX, + € % ) 

+ (eX! + e%) 

From the hypotheses above, including (4.28), and the fact that T€(s) is 
a contraction in the L norm the conclusion (4.31) follows. 

We wish now to use (4.31) to conclude that if ü(t, x) is the solution 
of 

(4.36) — = Lû(t, x), t > 0, ö(o, x) = /(x), 
dt 

assuming it exists in the classical sense, then E{f(xe(t + s))\Qt} is 
approximated well by ü(s, x€(t)), i.e., our system x*(t) tends in the 
limit under consideration to the diffusion generated by L. The most 
appropriate way to cany out this step is by Martingale theory as in 
[27]. Here we proceed in an elementary way using smoothness. 

Assume that the coefficients of L are smooth, i.e., have bounded 
derivatives of all orders, but L need not be uniformly elliptic. If / 
has bounded derivatives of all orders then ü(t, x) in (4.36) has a 
solution with bounded derivatives of all orders [28] in 0 ^ t ^ 
T < oo . The result (4.31) remains valid if / = f(t, x) is a smooth 
function of t = 0 and x G Rn. However, in this case the operator L 
should be replaced by did a + L under the integral sign in (4.31). 
If we now apply this modified (4.31) to f= u(t + s — er, x), with a 
the "running" variable, the integral term cancels by (4.36) and the 
following results obtains. 

THEOREM. Under the hypotheses of the Lemma above and the 
existence of smooth solutions for (4.36) with f(x) smooth, 

(4.37) E{\E{f(x*(t + s) | S f} - ü(s, xit))\} = 0(e) 

for all t^ 0 andO S s S T < oo . 

We conclude this section with some remarks concerning extensions 
to related problems. 

REMARK 1. Let H = L2(ß3) and consider on C 0 H the evolution 
equation [9 and more generally in 10] 
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at e 
( 4

-
3 8 ) 

™f = J- (A + a)W + —FuS u>«(0) = 0. 
at e- e 

Here v<(t) G C and w'(t) G L^W) for each t^ 0, F G H is a fixed 
function, co > 0 and A is the Laplacian on L^R3). We are interested 
in the behavior of v\t) as € | 0. If F G L2(R3) D L\BP) then, as is 
shown in [9], ve(t) tends to v(t) and 

(4.39) ^ = - a S ( 0 , ö(0) = v0, 

where 

a = f" (F?e'(*+^F) 
Jo 

eis 

is well defined and Re a > 0. 
This problem is similar to (4.16) so the results of § 3 do not apply, 

directly. It would be interesting to know if procedures such as the 
one of this section apply to this and, ultimately, more involved prob-
lems of this form [11]. 

REMARK 2. Frequently, the problem of interest is not in the 
form (4.18) but in the form 

dxHt) 
(4.40) — ^ - = (lle-2)Axit) + (lle)F(xit), a>«(*)), xe(0) = x, 

at 

where A is an oscillatory matrix. In the terminology of [8, 9, 20], 
the free system (uncoupled from the bath) is not in a trivial constant 
state but undergoes oscillatory motions. These rapid motions are 
removed by passing to the slowly varying quantities 

so that 

dxe(t) 

x*(t) = e-At'*2x%t) 

(lk)e-Ati<2F{eAti<\*{t\ wit)) 
dt 

(4.41) 

= (lle)F(xit), tie2, co), x*(0) = x. 

Here, F is defined by 

(4.42) F(x, t9 a>) = e-AtF(eA% a>(t)), 
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with t dependence entering from both the motion of the bath as well 
as the oscillations. We assume again that (4.6) holds, i.e., 

(4.43) "e*f)x,t, •)} = (>. 

With minor modifications the above theorem remains valid but 
without the 0(e) estimate. The differences are as follows. First L in 
(4.25) is now given by 

Lf(x) = lim (1/T) 

(4.44) 

•rcM^-»^-'--)-^)}** 
uniformly in x and t0 ^ 0. Next, X2 is not defined by (4.24) but we 
work with X2

U) defined by 

x2
{kK*>t> Û>) = 

This is similar to what we did in sections 2 and 3. We assume that 
(4.28) and (4.30) hold here with X2 replaced by X2

{K\ X > 0 and that 

lim sup E{ sup|AX2
(x)(x, t, • )|} = 0, 

AiO t ^ 0 x 

which is compatible with the definition (4.44) of L. 
The importance of being able to deal with systems such as (4.40) 

was emphasized in [21]. To deal with linear problems our other 
hypotheses above must be modified in the manner of [21] and Lemma 
3 of [21] must be used, with minor modifications. 

REMARK 3. Consider (4.18) again but this time assume that 

(4.45) E{F(x,t,')}= F(x), 

where F(x, t, co) = F(x, (o(t)). This corresponds to the case PAP 
^ 0 in § 3 so the approximation under consideration will be e 
independent. We define 

£•/(*) = ( l / 6 ) F ( z ) - ^ -
dx 

(4.46) 

+ J" E {(F(x,0, • ) " F(«)) i [(FM, • ) - F(x)) -^gL] } dt 
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and assume that the solution u€(t, x) of 

(4.47) ; ; ; = LV*(t, x), ««(0, x) = /(*), 

has bounded derivatives of all orders (up to order 4 is enough) in 
0 ^ t ^ T < oo 9 independently of € > 0, if f(x) is smooth. This 
assumption corresponds to the smoothness assumption in Theorem 2 
of § 3. The result is now: 

(4.48) lim E{\E{f(xit + s))\ Vt} - C«(«, x\t)\} = 0 
«40 

for all* ^ 0 and, O g ^ K o o . 

REMARK 4. The problem of stochastic equations with Markovian 
coefficients discussed in § 3 is a special case of the above problem: the 
conditional expection given "Dt reduces in this case to a point func-
tion of the state at time t. The results in our asymptotic limit are 
identical in both cases. 
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