SOME PROBABILITY INEQUALITIES FOR ORDERED MTP \mathbf{N}_{2} RANDOM VARIABLES: A PROOF OF THE SIMES CONJECTURE

By Sanat K. Sarkar
Temple University
Some new probability inequalities involving the ordered components of an MTP_{2} random vector are derived, which provide an analytical proof of an important conjecture in the field of multiple hypothesis testing. This conjecture has been mostly validated so far using simulation.

1. Introduction. This paper is motivated by the need to have a theoretical basis for a probability inequality which is fundamental to a number of recently devised multiple hypothesis testing procedures and has been mostly validated using simulation. This inequality, which concerns ordered values of a set of dependent continuous random variables, was originally used by Simes (1986) to improve upon the classical Bonferroni method.

Suppose that there are n hypotheses H_{1}, \ldots, H_{n} with the corresponding observed p-values p_{1}, \ldots, p_{n}. Then, for the purpose of testing the overall hypothesis $H_{0}=\bigcap_{i=1}^{n} H_{i}$ at a specified significance level α in terms of these p-values, Simes (1986) proposed a modification of the Bonferroni procedure by suggesting the rejection of H_{0} if $p_{(i)} \leq i \alpha / n$ for at least one i, where $p_{(1)} \leq \cdots \leq p_{(n)}$ are the ordered values of p_{1}, \ldots, p_{n}.

Clearly, this method is more powerful than the Bonferroni method which rejects H_{0} if $p_{(1)} \leq \alpha / n$, and, as Simes noted using simulation, this power improvement is quite significant when the underlying test statistics are highly positively correlated. Having had strong empirical evidence of its superiority over the Bonferroni method, researchers have begun using it in improving tests that rely on the Bonferroni method. Hochberg (1988), Hochberg and Rom (1995), Hommel (1988, 1989), and Rom (1990) adopted this method in devising some step-up multiple testing procedures for making statements about the individual hypotheses H_{i} once H_{0} is rejected. Being based on the Simes method, these procedures are more powerful than Holm's (1979) step-down procedure relying on the Bonferroni method and control the Type I error rate in situations where the Simes method does. But, except for some special cases, the conservativeness of the Simes method is yet to be theoretically verified. Simes (1986) proved that his method is conservative; that is, with $P_{(i)}$ representing the random variable corresponding to $p_{(i)}, i=1, \ldots, n$, the following inequality:

$$
\begin{equation*}
P_{H_{0}}\left\{P_{(i)} \geq i \alpha / n, i=1, \ldots, n\right\} \geq 1-\alpha \tag{1.1}
\end{equation*}
$$

Received April 1997; revised October 1997.
AMS 1991 subject classifications. Primary 62H15, 62H99.
Key words and phrases. P-values, Simes test, positive dependence.
holds if under H_{0} the underlying test statistics are iid with a continuous distribution, and conjectured, based on extensive simulation, that this may hold for dependent statistics with a variety of multivariate distributions with common marginals.

In attempting to prove this conjecture, Sarkar and Chang (1997) considered a class of exchangeable positively dependent multivariate distributions, and showed that this inequality is indeed true for these distributions. This is a multivariate generalization of Hochberg and Rom (1995) and Samuel-Cahn (1996) who considered only the bivariate case. Hochberg and Rom (1995) proved the conjecture for bivariate distributions with the totally positive of order two $\left(\mathrm{TP}_{2}\right)$ property (to be defined later), while Samuel-Cahn (1996) considered the bivariate normal distribution with positive correlation and the absolutevalued bivariate normal distribution. Although Samuel-Cahn's results follow from that of Hochberg and Rom, because the distributions considered by her are TP_{2}, she actually derived more general results for these distributions, providing certain montonicity properties of the Type I error rate of the Simes test with respect to the correlation. It has also been noted by these authors that the conjecture is not true for negatively dependent test statistics.

The class considered by Sarkar and Chang (1997) contains many continuous multivariate distributions commonly encountered in multiple hypothesis testing situations, for example, the equicorrelated and the absolute-valued equicorrelated multivariate normals, certain types of multivariate t, F, and gamma distributions, and includes the ones Simes (1986) used in his simulation study. Nevertheless, there are still a variety of other useful multivariate distributions for which the conjecture has yet to be proved. The main goal of this paper is to establish theoretically the conjecture for a much larger class of multivariate distributions.

The aforementioned results seem to suggest that the Simes conjecture probably holds only for positively dependent test statistics. A general class of positively dependent multivariate distributions is characterized by the multivariate totally positive of order two $\left(\mathrm{MTP}_{2}\right)$ condition, a natural multivariate extension of the TP_{2} condition [Karlin and Rinott (1980)]. This is what we consider in this paper, and we prove that the conjecture is true for these distributions. There are some multivariate distributions arising in multiple testing situations which are not MTP_{2} but are certain scale mixtures of MTP_{2} distributions. An important subclass of these distributions contains the central multivariate t of Dunnett and Sobel (1954) type with the associated correlation matrix having a common and nonnegative correlation, and also contains the absolute-valued multivariate t of this type with any common correlation. We establish the conjecture also for that subgroup, thereby giving a theoretical proof of the Simes inequality for these multivariate t and absolute-valued multivariate t distributions, which was numerically verified in Sarkar and Chang (1997). Karlin and Rinott (1980) also introduced the strongly multivariate reverse rule of order two ($\mathrm{S}-\mathrm{MRR}_{2}$) condition that defines negatively dependent multivariate distributions. We believe that the conjecture does not hold in general for such distributions, although we have not been able to establish this yet and verify it only for some specific distributions of this type.

An n-dimensional random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ is said to have an MTP_{2} (TP_{2} when $n=2$) distribution if the corresponding probability density, $f(\mathbf{x})$, satisfies the following condition:

$$
f(\mathbf{x} \vee \mathbf{y}) f(\mathbf{x} \wedge \mathbf{y}) \geq f(\mathbf{x}) f(\mathbf{y}) \text { for all } \mathbf{x}, \mathbf{y} \in \mathscr{R}^{n}
$$

where, with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, \mathbf{x} \vee \mathbf{y}=\left(\max \left(x_{1}, y_{1}\right), \ldots\right.$, $\left.\max \left(x_{n}, y_{n}\right)\right)$ and $\mathbf{x} \wedge \mathbf{y}=\left(\min \left(x_{1}, y_{1}\right), \ldots, \min \left(x_{n}, y_{n}\right)\right)$. This condition is satisfied by a large family of multivariate distributions in addition to those in Sarkar and Chang (1997), such as the multivariate normal with nonnegative correlations and the absolute-valued multivariate normal with some specific covariance structures, and is fundamental to many probability inequalities that have important applications to multivariate analysis, simultaneous statistical inference, and approximating probabilities [Karlin and Rinott (1980, 1981), Perlman and Olkin (1980), and Glaz and Johnson (1984)]. Toward proving the conjecture, we derive some new probability inequalities for the ordered components of an MTP_{2} random vector. Denoting the i th marginal cdf of \mathbf{X} by $F_{i}, i=1, \ldots, n$, and the ordered components by $X_{(1)} \leq \cdots \leq X_{(n)}$, we show, in particular, that for these distributions the probabilities $P\left\{X_{(1)} \geq\right.$ $\left.a_{1}, \ldots, X_{(n)} \geq a_{n}\right\}$ and $P\left\{X_{(1)} \leq b_{1}, \ldots, X_{(n)} \leq b_{n}\right\}$ are greater than or equal to $1-(1 / n) \sum_{i=1}^{n} F_{i}\left(a_{n}\right)$ and $(1 / n) \sum_{i=1}^{n} F_{i}\left(b_{1}\right)$, respectively, if the constant's a_{i} 's and b_{i} 's are chosen in some particular ways from the marginals. Similar inequalities hold also for the subgroup of scale mixtures of MTP_{2} distributions mentioned above. It is important to point out that the inequalities derived in this paper are different from those known in the literature for random variables which are ordered as well as MTP_{2}; for example, the ordered characteristic roots of random Wishart matrices, the ordered components of an exchangeable MTP_{2} random vector [Dykstra and Hewett (1978), Karlin and Rinott (1980), Sarkar and Smith (1986)].
2. An identity. We present in this section an identity involving the joint probability distribution of the ordered components of any random vector $\mathbf{Y}=$ $\left(Y_{1}, \ldots, Y_{n}\right)$, not necessarily MTP_{2}. This is the key to the proofs of the probability inequalities presented in the next section, which will lead to a theoretical verification of the Simes conjecture.

LEMMA 2.1. Let $Y_{(1)} \leq \cdots \leq Y_{(n)}$ be the ordered components of $\mathbf{Y}=$ $\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$. Then,

$$
\begin{align*}
& P\left\{Y_{(1)} \geq a_{1}, \ldots, Y_{(n)} \geq a_{n}\right\} \\
& =1-\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(a_{n}\right) \\
& +\sum_{i=1}^{n} \sum_{j=1}^{n-1} E\left[\left\{\frac{I\left(Y_{i} \leq a_{j+1}\right)}{j+1}-\frac{I\left(Y_{i} \leq a_{j}\right)}{j}\right\}\right. \tag{2.1}\\
&
\end{align*}
$$

where, for each $i=1, \ldots, n, \mathbf{Y}_{(1)}^{(-i)} \leq \cdots \leq \mathbf{Y}_{(n-1)}^{(-i)}$ denote the ordered components of the $(n-1)$-dimensional random vector $\mathbf{Y}^{(-i)}$ obtained by eliminating Y_{i} from \mathbf{Y}.

Proof. We start with the following identity:

$$
\begin{align*}
& P\left\{Y_{(1)} \geq a_{1}, \ldots, Y_{(n)} \geq a_{n}\right\} \\
& \quad=1-\sum_{j=1}^{n} P\left\{Y_{(j)}<a_{j}, Y_{(j+1)} \geq a_{j+1}, \ldots, Y_{(n)} \geq a_{n}\right\} \tag{2.2}
\end{align*}
$$

This identity follows from the following probability theory result: $P\left(\bigcap_{j=1}^{n} \bar{A}_{j}\right)$ $=1-P\left(\bigcup_{j=1}^{n} A_{j}\right)=1-\sum_{j=1}^{n} P\left(A_{j} \bar{A}_{j+1}, \ldots, \bar{A}_{n}\right)$, for any set of n events A_{1}, \ldots, A_{n}, with $\bar{A}_{1}, \ldots, \bar{A}_{n}$ being the corresponding complements. The next step is to show that the right-hand side of (2.2) is exactly equal to that of (2.1). For this, we will first prove that, for $j=1, \ldots, n$,

$$
\begin{align*}
& P\left\{Y_{(j)}<a_{j}, Y_{(j+1)} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} \\
& \quad=\frac{1}{j} \sum_{i=1}^{n} P\left\{Y_{i}<a_{j}, \mathbf{Y}_{(j-1)}^{(-i)}<a_{j}, \mathbf{Y}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} \tag{2.3}
\end{align*}
$$

To this end, for any subset $\left\{i_{1}, \ldots, i_{j}\right\} \subset\{1, \ldots, n\}$ of j indices, let $A_{i_{1} \cdots i_{j}}$ denote the event that $\max \left(Y_{i_{1}}, \ldots, Y_{i_{j}}\right)<a_{j}$ and the ordered components of the $(n-j)$ random variables left after ignoring $S_{j}=\left(Y_{i_{1}}, \ldots, Y_{i_{j}}\right)$, say $\mathbf{Y}_{(1)}^{\bar{S}_{j}} \leq \cdots \leq \mathbf{Y}_{(n-j)}^{\bar{S}_{j}}$, satisfy $\mathbf{Y}_{(1)}^{\bar{S}_{j}} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-j)}^{\bar{S}_{j}} \geq a_{n}$. Then, the probability in the left-hand side of (2.3) is

$$
\begin{equation*}
\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} P\left\{A_{i_{1} \cdots i_{j}}\right\} . \tag{2.4}
\end{equation*}
$$

Since $P\left\{A_{i_{1} \cdots i_{j}}\right\}$ is same for all the permutations of $\left\{i_{1}, \ldots, i_{j}\right\}$, the probability in (2.4) can be written as

$$
\frac{1}{j} \sum_{i=1}^{n} \sum^{*} P\left\{A_{i i_{1} \cdots i_{j-1}}\right\}
$$

with \sum^{*} being the summation over i_{1}, \ldots, i_{j-1} such that $1 \leq i_{1}<\cdots<i_{j-1} \leq$ $n-1$ and $i_{k} \neq i$ for $k=1, \ldots, j-1$, which is the right-hand side of (2.3). Thus, (2.3) is proved.

Now, note that the right-hand side of (2.3) can be written as

$$
\begin{align*}
& \frac{1}{j} \sum_{i=1}^{n} P\left\{Y_{i}<a_{j}, \mathbf{Y}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} \tag{2.5}\\
& \quad-\frac{1}{j} \sum_{i=1}^{n} P\left\{Y_{i}<a_{j}, \mathbf{Y}_{(j-1)}^{(-i)} \geq a_{j}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\}
\end{align*}
$$

for $j=1, \ldots, n$. Of course, when $j=1$, the second term in (2.5) does not appear and the first term is

$$
\sum_{i=1}^{p} P\left\{Y_{i}<a_{1}, \mathbf{Y}_{(1)}^{(-i)} \geq a_{2}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\}
$$

whereas, when $j=n$, (2.5) is

$$
\frac{1}{n} \sum_{i=1}^{n} P\left\{Y_{i}<a_{n}\right\}-\frac{1}{n} \sum_{i=1}^{n} P\left\{Y_{i}<a_{n}, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\}
$$

Summing the terms in (2.5) from $j=2$ to $n-1$, we get

$$
\begin{aligned}
& \sum_{j=2}^{n-1} P\left\{Y_{(j)}<a_{j}, Y_{(j+1)} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} \\
& =\sum_{i=1}^{n} \sum_{j=2}^{n-1} \frac{1}{j} P\left\{Y_{i}<a_{j}, \mathbf{Y}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} \\
& -\quad \sum_{i=1}^{n} \sum_{j=1}^{n-2} \frac{1}{j+1} P\left\{Y_{i}<a_{j+1}, \mathbf{Y}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n-1} E\left[\left\{\frac{I\left(Y_{i}<a_{j}\right)}{j}-\frac{I\left(Y_{i}<a_{j+1}\right)}{j+1}\right\}\right. \\
& \left.\quad \times P\left\{\mathbf{Y}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n} \mid Y_{i}\right\}\right] \\
& \quad+\frac{1}{n} \sum_{i=1}^{n} P\left\{Y_{i}<a_{n}, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} \\
& \quad-\sum_{i=1}^{n} P\left\{Y_{i}<a_{1}, \mathbf{Y}_{(1)}^{(-i)} \geq a_{2}, \ldots, \mathbf{Y}_{(n-1)}^{(-i)} \geq a_{n}\right\} .
\end{aligned}
$$

If we now sum all the terms in (2.5) from $j=1$ to n and subtract it from 1 to get the right-hand side of (2.2), it will be exactly what is given in the right-hand side of (2.1). Hence, the lemma is proved.

Remark 2.1. By applying Lemma 2.1 to $-\mathbf{Y}$, we see that, for any fixed $b_{1} \leq \cdots \leq b_{n}$,

$$
\begin{aligned}
P\left\{Y_{(1)}\right. & \left.\leq b_{1}, \ldots, Y_{(n)} \leq b_{n}\right\} \\
\quad= & P\left\{-Y_{(n)} \geq-b_{n}, \ldots,-Y_{(1)} \geq-b_{1}\right\} \\
= & 1-\frac{1}{n} \sum_{i=1}^{n} P\left\{-Y_{i} \leq-b_{1}\right\} \\
& +\sum_{i=1}^{n} \sum_{j=1}^{n-1} E\left[\left\{\frac{I\left(-Y_{i} \leq-b_{n-j}\right)}{j+1}-\frac{I\left(-Y_{i} \leq-b_{n-j+1}\right)}{j}\right\}\right.
\end{aligned}
$$

$$
\left.\times P\left\{-\mathbf{Y}_{(1)}^{(-i)} \geq-b_{1}, \ldots,-\mathbf{Y}_{(n-j)}^{(-i)} \geq-b_{n-j} \mid-Y_{i}\right\}\right]
$$

$$
=\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(b_{1}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n-1} E\left[\left\{\frac{I\left(Y_{i} \geq b_{n-j}\right)}{j+1}-\frac{I\left(Y_{i} \geq b_{n-j+1}\right)}{j}\right\}\right.
$$

$$
\left.\times P\left\{\mathbf{Y}_{(1)}^{(-i)} \leq b_{1}, \ldots, \mathbf{Y}_{(n-j)}^{(-i)} \leq b_{n-j} \mid Y_{i}\right\}\right],
$$

If Y_{i} 's are iid with a common $\operatorname{cdf} F(y)$, then the identities (2.1) and (2.6) reduce to

$$
\begin{aligned}
& P\left\{Y_{(1)} \geq a_{1}, \ldots, Y_{(n)} \geq a_{n}\right\} \\
& =1-F\left(a_{n}\right)+n \sum_{j=1}^{n-1}\left[\frac{F\left(a_{j+1}\right)}{j+1}-\frac{F\left(a_{j}\right)}{j}\right] \\
& \\
& \quad \times P\left\{Y_{(j): n-1} \geq a_{j+1}, \ldots, Y_{(n-1): n-1} \geq a_{n}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& P\left\{Y_{(1)} \leq b_{1}, \ldots, Y_{(n)} \leq b_{n}\right\} \\
& =F\left(b_{1}\right)+n \sum_{j=1}^{n-1}\left[\frac{\bar{F}\left(b_{n-j}\right)}{j+1}-\frac{\bar{F}\left(b_{n-j+1}\right)}{j}\right] \\
& \quad \times P\left\{Y_{(1): n-1} \leq b_{1}, \ldots, Y_{(n-j): n-1} \leq b_{n-j}\right\},
\end{aligned}
$$

respectively, where $\bar{F}(x)=1-F(x)$, and $Y_{(1): n} \leq \cdots \leq Y_{(n): n}$ denote the ordered components of $\left(Y_{1}, \ldots, Y_{n}\right)$. These last two identities were obtained by Sarkar and Chang (1997).
3. Some probability inequalities and proof of the Simes conjecture. The principal theorem leading to a proof of the Simes conjecture is the following.

Theorem 3.1. Let $X_{(1)} \leq \cdots \leq X_{(n)}$ be the ordered components of an $M T P_{2}$ random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and F_{i} be the marginal cdf of X_{i}. Then we have the following.
(i) For fixed $a_{1} \leq \cdots \leq a_{n}$,

$$
\begin{equation*}
P\left\{X_{(1)} \geq a_{1}, \ldots, X_{(n)} \geq a_{n}\right\} \geq 1-\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(a_{n}\right) \tag{3.1}
\end{equation*}
$$

if $j^{-1} F_{i}\left(a_{j}\right)$ is nondecreasing in $j=1, \ldots, n$ for all $i=1, \ldots, n$;
(ii) For fixed $b_{1} \leq \cdots \leq b_{n}$,

$$
\begin{equation*}
P\left\{X_{(1)} \leq b_{1}, \ldots, X_{(n)} \leq b_{n}\right\} \geq \frac{1}{n} \sum_{i=1}^{n} F_{i}\left(b_{1}\right) \tag{3.2}
\end{equation*}
$$

if $j^{-1} \bar{F}_{i}\left(b_{n-j+1}\right)$ is nondecreasing in $j=1, \ldots, n$ for all $i=1, \ldots, n$, where $\bar{F}(x)=1-F(x)$.

Proof. From Lemma 2.1, we see that

$$
\begin{align*}
& P\left\{X_{(1)} \geq a_{1}, \ldots, X_{(n)} \geq a_{n}\right\}-\left\{1-\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(a_{n}\right)\right\} \\
&=\sum_{i=1}^{n} \sum_{j=1}^{n-1} E\left[\left\{\frac{I\left(X_{i}<a_{j+1}\right)}{j+1}-\frac{I\left(X_{i}<a_{j}\right)}{j}\right\}\right] \tag{3.3}\\
& \times P\left\{\mathbf{X}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{X}_{(n-1)}^{(-i)} \geq a_{n} \mid X_{i}\right\}
\end{align*}
$$

Since \mathbf{X} is MTP_{2} and the indicator function of the set $\left\{\mathbf{X}_{(j)}^{(-i)} \geq a_{j+1}, \ldots\right.$, $\left.\mathbf{X}_{(n-1)}^{(-i)} \geq a_{n}\right\}$ is nondecreasing in $\mathbf{X}^{(-i)}$, the conditional probability of this set given X_{i} is a nondecreasing function of X_{i} [Theorem 4.1 of Karlin and Rinott (1980)]. Also, note that $\left(I\left(X_{i}<a_{j+1}\right) / j+1\right)-I\left(X_{i}<a_{j}\right) / j$ is less than 0 when $X_{i}<a_{j}$, and is greater than or equal to 0 when $X_{i} \geq a_{j}$. Therefore, the (i, j) th term in the double summation in (3.3) is greater than or equal to

$$
\begin{equation*}
\left\{\frac{F_{i}\left(a_{j+1}\right)}{j+1}-\frac{F_{i}\left(a_{j}\right)}{j}\right\} P\left\{\mathbf{X}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{X}_{(n-1)}^{(-i)} \geq a_{n} \mid X_{i}=a_{j}\right\} \tag{3.4}
\end{equation*}
$$

for all $i=1, \ldots, n ; j=1, \ldots, n-1$. This proves the first part of the theorem.
The second part of the theorem follows by applying the first part to $-X_{(n)} \leq \cdots \leq-X_{(1)}$, the ordered components of $-\mathbf{X}$ which is also MTP_{2}.

REMARK 3.1. Suppose that X_{i} 's have a common marginal distribution F, and that for each $i=1, \ldots, n, P_{i}$, the random p-value corresponding to H_{i}, is based on a left-tailed or right-tailed test based on X_{i}. Since P_{i} is defined as $F\left(X_{i}\right)$ for a left-tailed test and as $\bar{F}\left(X_{i}\right)$ for a right-tailed test, in terms of $P_{(i)}$ the inequalities (3.1) and (3.2) are equivalent to

$$
\begin{equation*}
P\left\{P_{(i)} \geq c_{i}, i=1, \ldots, n\right\} \geq 1-c_{n} \tag{3.5}
\end{equation*}
$$

where $0<c_{1} \leq \cdots \leq c_{n}<1$ are such that c_{i} / i is nondecreasing in $i=1, \ldots, n$. This, with $c_{i}=i \alpha / n$ for all i, proves the following.

Proposition 3.1. The Simes conjecture (1.1) holds for MTP_{2} random variables with common marginals.

A number of multivariate distributions arising in multiple testing situations are not MTP_{2} but are certain scale mixtures of MTP_{2} distributions; for instance, the multivariate t, multivariate Cauchy, and so on. Does the Simes conjecture hold for these distributions as well? For some specific distributions of this type, as described in the following corollary to Theorem 3.1, the answer is yes.

Corollary 3.1. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)=Z^{-1} \mathbf{X}$, where \mathbf{X} is exchangeable, having a probability density of the following form:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\int\left\{\prod_{i=1}^{n} g\left(x_{i}, y\right)\right\} h(y) d y
$$

and Z is a positive-valued random variable independent of \mathbf{X}. Let $g(x, y)$ be such that

$$
g^{*}(x, y)=\int_{0}^{\infty} z g(z x, y) q(z) d z,
$$

where $q(z)$ is the probability density of Z, is TP_{2} in (x, y). Then we have the following:
(i) for fixed $a_{1} \leq \cdots \leq a_{n}$, all having the same sign,

$$
\begin{equation*}
P\left\{T_{(1)} \geq a_{1}, \ldots, T_{(n)} \geq a_{n}\right\} \geq 1-P\left\{T_{1} \leq a_{n}\right\} \tag{3.6}
\end{equation*}
$$

if $j^{-1} P\left\{T_{1} \leq a_{j}\right\}$ is nondecreasing in $j=1, \ldots, n$; and
(ii) for fixed $b_{1} \leq \cdots \leq b_{n}$, all having the same sign,

$$
\begin{equation*}
P\left\{T_{(1)} \leq b_{1}, \ldots, T_{(n)} \leq b_{n}\right\} \geq P\left\{T_{1} \leq b_{1}\right\} \tag{3.7}
\end{equation*}
$$

if $j^{-1} P\left\{T_{1} \geq b_{n-j+1}\right\}$ is nondecreasing in $j=1, \ldots, n$.
Proof. Note that for fixed a_{j} 's,

$$
\begin{aligned}
P\left\{T_{(1)} \geq a_{1}, \ldots, T_{(n)} \geq a_{n}\right\} & =P\left\{X_{(1)} \geq a_{1} Z, \ldots, X_{(n)} \geq a_{n} Z\right\} \\
& =E\left[E\left\{\prod_{i=1}^{n} I\left(a_{i} Z \leq X_{(i)}\right)\right\} \mid \mathbf{x}\right] \\
& \geq E\left\{\prod_{i=1}^{n} P\left(a_{i} Z \leq X_{(i)}\right) \mid \mathbf{x}\right\} \\
& =P\left\{X_{(1)}^{*} \geq a_{1}, \ldots, X_{(n)}^{*} \geq a_{n}\right\},
\end{aligned}
$$

where \mathbf{X}^{*} has the density

$$
f^{*}\left(x_{1}, \ldots, x_{n}\right)=\int\left\{\prod_{i=1}^{n} g^{*}\left(x_{i}, y\right)\right\} h(y) d y .
$$

The inequality in (3.8) follows from the fact that, according to Kimball's inequality [Tong (1980)], the expectation of a product of positive-valued functions of a random variable, all nondecreasing or nonincreasing, is greater than or equal to the product of their expectations. Noting that the corresponding marginals of \mathbf{T} and \mathbf{X}^{*} are the same, and that \mathbf{X}^{*} is MTP_{2} because $g^{*}(x, y)$ is TP_{2} [see, e.g., Karlin and Rinott (1980)], we see that the first part of the corollary follows from Theorem 3.1(i). Similarly, the second part of the corollary follows from Theorem 3.1(ii).

REMARK 3.2. Suppose that \mathbf{X} has the equicorrelated standard multivariate normal distribution with a nonnegative common correlation ρ. Since the X_{i} 's with such a distribution have the following representation:

$$
X_{i}=(1-\rho)^{1 / 2} Y_{i}+\rho^{1 / 2} Y_{0},
$$

where Y_{i} are iid $N(0,1)$ [Johnson and Kotz (1972)], the $g(x, y)$ for this distribution is

$$
g(x, y)=\frac{1}{(1-\rho)^{1 / 2}} \phi\left(\frac{x-\rho^{1 / 2} y}{(1-\rho)^{1 / 2}}\right),
$$

and $h(y)=\phi(y)$, where $\phi(\cdot)$ is the density of $N(0,1)$. Let $Z \sim \chi_{\nu}^{2} / \nu$. So, $g^{*}(x, y)$ here is the density of $(1-\rho)^{1 / 2} t_{\nu}^{\prime}(\gamma)$, where $t_{\nu}^{\prime}(\gamma)$ is the noncentral t with ν degrees of freedom and the noncentrality parameter $\gamma=$ $\left(\rho^{1 / 2} /(1-\rho)^{1 / 2}\right) y$. As Karlin [(1968), page 118] proved, the density of the noncentral t at x with the noncentrality parameter γ, say $f(x, \gamma)$, is TP_{2} in (x, γ). Hence, $g^{*}(x, y)$ is TP_{2} in (x, y) if $\rho \geq 0$. Thus, with $T_{i}=Z^{-1} X_{i}$, $i=1, \ldots, n$ defined in terms of these X_{i} 's and Z, that is, for the central multivariate t of Dunnett and Sobel (1954) type with the associated correlations being equal and nonnegative, the inequalities (3.6) and (3.7) hold if the a_{i} 's and b_{i} 's are chosen from the central univariate t distribution subject to the conditions stated there. Note that $\left\{T_{(1)} \geq a_{1}, \ldots, T_{(n)} \geq a_{n}\right\}$ is the acceptance region of the Simes test combining left-tailed tests based on the T_{i} 's, whereas $\left\{T_{(1)} \leq b_{1}, \ldots, T_{(n)} \leq b_{n}\right\}$ is the acceptance region of the Simes test that involves right-tailed tests based on the T_{i} 's. Hence, for the a_{n} to satisfy $P\left\{T_{1} \leq a_{n}\right\}=\alpha$ and the a_{i} 's to have the same sign, it is required that $0<\alpha<\frac{1}{2}$. The same condition on α is required for the right-tailed tests.

Next, suppose that the X_{i} 's have the squared equicorrelated multivariate normal distribution with any correlation ρ. Since this distribution depends on ρ only through its square, we may assume without any loss of generality that $\rho \geq 0$. Using the above representation for the equicorrelated multivariate normal with nonnegative ρ, one can see that here $g(x, y)$ is the density of $(1-\rho) \chi_{1}^{\prime 2}(\lambda)$, where $\chi_{1}^{\prime 2}(\lambda)$ is the noncentral chi-squared random variable with 1 degree of freedom and the noncentrality parameter $\lambda=\rho y /(1-\rho)$, and $h(y)$ is the density of χ_{1}^{2}, the central chi-square with 1 degree of freedom. Hence, with $Z \sim \chi_{\nu}^{2} / \nu, g^{*}(x, y)$ is the density at x of $(1-\rho)$ times the noncentral F with 1 and ν degrees of freedom and the noncentrality parameter λ, which is TP_{2} in (x, λ), and hence in (x, y). Hence, the inequalities (3.6) and (3.7), with
T_{i} 's defined in terms of these X_{i} 's and Z and the constants subject to the stated conditions involving the central F distribution with 1 and ν degrees of freedom, also hold.

Thus, we have also established the following proposition.
Proposition 3.2. For one-sided t tests with $0<\alpha<\frac{1}{2}$, the Simes conjecture (1.1) holds when the underlying normals have equal and nonnegative correlation. This conjecture also holds for two-sided tests when the underlying normals are equicorrelated with any common correlation.

Remark 3.3. It is clear from the proof of Theorem 3.1 that the inequalities in (3.1) and (3.2) will reverse; that is, the Simes conjecture will not hold if the distribution of \mathbf{X} is such that the probability $P\left\{\mathbf{X}_{(j)}^{(-i)} \geq a_{j+1}, \ldots, \mathbf{X}_{(n-1)}^{(-i)} \geq\right.$ $\left.a_{n} \mid X_{i}\right\}$ is strictly decreasing in X_{i}. For example, in the bivariate case, if $\mathbf{X}=$ (X_{1}, X_{2}) is negatively dependent in the sense of being strictly reverse rule of order two $\left(\mathrm{RR}_{2}\right)$ that is, if $\left(X_{1},-X_{2}\right)$ is strictly TP_{2}, then the above property is true. In other words, the Simes conjecture does not hold for a bivariate distribution with the strict RR_{2} property. A multivariate version of the strict $R R_{2}$ property, known as the strong multivariate reverse rule of order two ($\mathrm{S}-\mathrm{MRR}_{2}$), has been introduced by Karlin and Rinott (1980). Although it can be proved that the above probability is strictly decreasing in X_{i} for some specific distributions of this type, for example, the equicorrelated multivariate normal with a negative common correlation and the exchangeable Dirichlet distributions, it is, however, not known if this property is true in general for all such negatively dependent multivariate distributions. Thus, it is not known yet if the Simes conjecture is false in general for all $\mathrm{S}-\mathrm{MMR}_{2}$ distributions.

Acknowledgments. I thank Burt Holland and the referee for suggestions that led to an improved presentation.

REFERENCES

Dunnett, C. W. and Sobel, M. (1954). A bivariate generalization of Student's t distribution with tables for certain cases. Biometrika 41 153-169.
Dykstra, R. L. and Hewett, J. E. (1978). Positive dependence of the roots of a Wishart matrix. Ann. Statist. 6 235-238.
GlaZ, J. and Johnson, B. M. (1984). Probability inequalities for multivariate distributions with dependence structures. J. Amer. Statist. Assoc. 79 436-440.
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75 800-802.
Hochberg, Y. and Rom, D. M. (1995). Extensions of multiple testing procedures based on Simes' test. J. Statist. Plann. Inference 48 141-152.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 65-70.
Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified test procedure. Biometrika 75 383-386.
Hommel, G. (1989). A comparison of two modified Bonferroni procedures. Biometrika 76 624-625.
Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York.

Karlin, S. (1968). Total Positivity. Stanford Univ. Press.
Karlin, S. and Rinott, Y. (1980a). Classes of orderings of measures and related correlation inequalities I. Multivariate totally positive distributions. J. Multivariate Anal. 10 467-498.
Karlin, S. and Rinott, Y. (1980b). Classes of orderings of measures and related correlation inequalities II. Multivariate reverse rule distributions. J. Multivariate Anal. 10 499516.

Karlin, S. and Rinott, Y. (1981). Total positivity properties of absolute value multinormal variables with applications to confidence interval estimates and related probabilistic inequalities. Ann. Statist. 9 1035-1049.
LiU, W. (1996). Multiple tests of a non-heirarchical finite family of hypotheses. J. Roy. Statist. Soc. Ser. B 58 455-461.
Perlman, M. D. and Olkin, I. (1980). Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statist. 8 1326-1341.
Rom, D. M. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77 663-665.
SAMUEL-CAHN, E. (1996). Is the Simes improved Bonferroni procedure conservative? Biometrika 83 928-933.
SARKAR, S. K. and Chang, C.-K. (1997). The Simes method for multiple hypothesis testing with positively dependent test statistics. J. Amer. Statist. Assoc. 92 1601-1608.
SARKAR, S. K. and Smith, W. (1986). Probability inequalities for ordered MTP ${ }_{2}$ random variables. Sankhyā Ser. A 48 119-135.
Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika 73 751-754.
Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions. Academic Press, New York.

Department of Statistics
TEmple University
Speakman Hall
Philadelphia, Pennsylvania 19122
E-MAIL: sanat@sbm.temple.edu

