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SOME PROBABILITY INEQUALITIES FOR ORDERED MTP2
RANDOM VARIABLES: A PROOF OF THE

SIMES CONJECTURE

By Sanat K. Sarkar

Temple University

Some new probability inequalities involving the ordered components
of an MTP2 random vector are derived, which provide an analytical proof
of an important conjecture in the field of multiple hypothesis testing. This
conjecture has been mostly validated so far using simulation.

1. Introduction. This paper is motivated by the need to have a theoret-
ical basis for a probability inequality which is fundamental to a number of
recently devised multiple hypothesis testing procedures and has been mostly
validated using simulation. This inequality, which concerns ordered values of
a set of dependent continuous random variables, was originally used by Simes
(1986) to improve upon the classical Bonferroni method.

Suppose that there are n hypotheses H1� � � � �Hn with the corresponding
observed p-values p1� � � � � pn. Then, for the purpose of testing the overall hy-
pothesis H0 = ⋂n

i=1 Hi at a specified significance level α in terms of these
p-values, Simes (1986) proposed a modification of the Bonferroni procedure
by suggesting the rejection of H0 if p�i� ≤ iα/n for at least one i, where
p�1� ≤ · · · ≤ p�n� are the ordered values of p1� � � � � pn.

Clearly, this method is more powerful than the Bonferroni method which
rejects H0 if p�1� ≤ α/n, and, as Simes noted using simulation, this power im-
provement is quite significant when the underlying test statistics are highly
positively correlated. Having had strong empirical evidence of its superior-
ity over the Bonferroni method, researchers have begun using it in improving
tests that rely on the Bonferroni method. Hochberg (1988), Hochberg and Rom
(1995), Hommel (1988, 1989), and Rom (1990) adopted this method in devis-
ing some step-up multiple testing procedures for making statements about
the individual hypotheses Hi once H0 is rejected. Being based on the Simes
method, these procedures are more powerful than Holm’s (1979) step-down
procedure relying on the Bonferroni method and control the Type I error rate
in situations where the Simes method does. But, except for some special cases,
the conservativeness of the Simes method is yet to be theoretically verified.
Simes (1986) proved that his method is conservative; that is, with P�i� repre-
senting the random variable corresponding to p�i�, i = 1� � � � � n, the following
inequality:

PH0
�P�i� ≥ iα/n� i = 1� � � � � n� ≥ 1 − α(1.1)
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holds if under H0 the underlying test statistics are iid with a continuous
distribution, and conjectured, based on extensive simulation, that this may
hold for dependent statistics with a variety of multivariate distributions with
common marginals.

In attempting to prove this conjecture, Sarkar and Chang (1997) considered
a class of exchangeable positively dependent multivariate distributions, and
showed that this inequality is indeed true for these distributions. This is a mul-
tivariate generalization of Hochberg and Rom (1995) and Samuel-Cahn (1996)
who considered only the bivariate case. Hochberg and Rom (1995) proved the
conjecture for bivariate distributions with the totally positive of order two
(TP2) property (to be defined later), while Samuel-Cahn (1996) considered
the bivariate normal distribution with positive correlation and the absolute-
valued bivariate normal distribution. Although Samuel-Cahn’s results follow
from that of Hochberg and Rom, because the distributions considered by her
are TP2, she actually derived more general results for these distributions, pro-
viding certain montonicity properties of the Type I error rate of the Simes test
with respect to the correlation. It has also been noted by these authors that
the conjecture is not true for negatively dependent test statistics.

The class considered by Sarkar and Chang (1997) contains many continu-
ous multivariate distributions commonly encountered in multiple hypothesis
testing situations, for example, the equicorrelated and the absolute-valued
equicorrelated multivariate normals, certain types of multivariate t, F, and
gamma distributions, and includes the ones Simes (1986) used in his simula-
tion study. Nevertheless, there are still a variety of other useful multivariate
distributions for which the conjecture has yet to be proved. The main goal of
this paper is to establish theoretically the conjecture for a much larger class
of multivariate distributions.

The aforementioned results seem to suggest that the Simes conjecture prob-
ably holds only for positively dependent test statistics. A general class of
positively dependent multivariate distributions is characterized by the multi-
variate totally positive of order two (MTP2) condition, a natural multivariate
extension of the TP2 condition [Karlin and Rinott (1980)]. This is what we
consider in this paper, and we prove that the conjecture is true for these distri-
butions. There are some multivariate distributions arising in multiple testing
situations which are not MTP2 but are certain scale mixtures of MTP2 dis-
tributions. An important subclass of these distributions contains the central
multivariate t of Dunnett and Sobel (1954) type with the associated correla-
tion matrix having a common and nonnegative correlation, and also contains
the absolute-valued multivariate t of this type with any common correlation.
We establish the conjecture also for that subgroup, thereby giving a theoreti-
cal proof of the Simes inequality for these multivariate t and absolute-valued
multivariate t distributions, which was numerically verified in Sarkar and
Chang (1997). Karlin and Rinott (1980) also introduced the strongly multi-
variate reverse rule of order two (S − MRR2) condition that defines negatively
dependent multivariate distributions. We believe that the conjecture does not
hold in general for such distributions, although we have not been able to es-
tablish this yet and verify it only for some specific distributions of this type.
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An n-dimensional random vector X = �X1� � � � �Xn�′ is said to have an MTP2
(TP2 when n = 2) distribution if the corresponding probability density, f�x�,
satisfies the following condition:

f�x ∨ y�f�x ∧ y� ≥ f�x�f�y� for all x�y ∈ �n�

where, with x = �x1� � � � � xn�′ and y = �y1� � � � � yn�′, x ∨ y = �max�x1� y1�� � � � �
max�xn� yn�� and x∧y = �min�x1� y1�� � � � �min�xn� yn��. This condition is sat-
isfied by a large family of multivariate distributions in addition to those in
Sarkar and Chang (1997), such as the multivariate normal with nonnegative
correlations and the absolute-valued multivariate normal with some specific
covariance structures, and is fundamental to many probability inequalities
that have important applications to multivariate analysis, simultaneous sta-
tistical inference, and approximating probabilities [Karlin and Rinott (1980,
1981), Perlman and Olkin (1980), and Glaz and Johnson (1984)]. Toward prov-
ing the conjecture, we derive some new probability inequalities for the ordered
components of an MTP2 random vector. Denoting the ith marginal cdf of X
by Fi, i = 1� � � � � n, and the ordered components by X�1� ≤ · · · ≤ X�n�, we
show, in particular, that for these distributions the probabilities P�X�1� ≥
a1� � � � �X�n� ≥ an� and P�X�1� ≤ b1� � � � �X�n� ≤ bn� are greater than or equal
to 1 − �1/n�∑n

i=1 Fi�an� and �1/n�∑n
i=1 Fi�b1�, respectively, if the constant’s

ai’s and bi’s are chosen in some particular ways from the marginals. Similar in-
equalities hold also for the subgroup of scale mixtures of MTP2 distributions
mentioned above. It is important to point out that the inequalities derived
in this paper are different from those known in the literature for random
variables which are ordered as well as MTP2; for example, the ordered char-
acteristic roots of random Wishart matrices, the ordered components of an
exchangeable MTP2 random vector [Dykstra and Hewett (1978), Karlin and
Rinott (1980), Sarkar and Smith (1986)].

2. An identity. We present in this section an identity involving the joint
probability distribution of the ordered components of any random vector Y =
�Y1� � � � �Yn�, not necessarily MTP2. This is the key to the proofs of the proba-
bility inequalities presented in the next section, which will lead to a theoretical
verification of the Simes conjecture.

Lemma 2.1. Let Y�1� ≤ · · · ≤ Y�n� be the ordered components of Y =
�Y1� � � � �Yn�′. Then,

P�Y�1� ≥ a1� � � � �Y�n� ≥ an�
= 1 − 1

n

n∑
i=1

Fi�an�

+
n∑
i=1

n−1∑
j=1

E

[{
I�Yi ≤ aj+1�

j+ 1
− I�Yi ≤ aj�

j

}

×P
{
Y�−i�

�j� ≥ aj+1� � � � �Y�−i�
�n−1� ≥ an

∣∣Yi

}]
�

(2.1)
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where, for each i = 1� � � � � n, Y�−i�
�1� ≤ · · · ≤ Y�−i�

�n−1� denote the ordered components

of the �n − 1�-dimensional random vector Y�−i� obtained by eliminating Yi

from Y.

Proof. We start with the following identity:

P
{
Y�1� ≥ a1� � � � �Y�n� ≥ an

}

= 1 −
n∑
j=1

P
{
Y�j� < aj�Y�j+1� ≥ aj+1� � � � �Y�n� ≥ an

}
�

(2.2)

This identity follows from the following probability theory result: P�⋂n
j=1 Āj�

= 1 − P�⋃n
j=1 Aj� = 1 − ∑n

j=1 P�AjĀj+1� � � � � Ān�, for any set of n events
A1� � � � �An, with Ā1� � � � � Ān being the corresponding complements. The next
step is to show that the right-hand side of (2.2) is exactly equal to that of (2.1).
For this, we will first prove that, for j = 1� � � � � n,

P
{
Y�j� < aj�Y�j+1� ≥ aj+1� � � � �Y�−i�

�n−1� ≥ an
}

= 1
j

n∑
i=1

P
{
Yi < aj�Y�−i�

�j−1� < aj�Y�−i�
�j� ≥ aj+1� � � � �Y�−i�

�n−1� ≥ an
}
�

(2.3)

To this end, for any subset �i1� � � � � ij� ⊂ �1� � � � � n� of j indices, let Ai1···ij
denote the event that max�Yi1

� � � � �Yij
� < aj and the ordered components

of the �n − j� random variables left after ignoring Sj = �Yi1
� � � � �Yij

�, say

Y
S̄j
�1� ≤ · · · ≤ Y

S̄j
�n−j�, satisfy Y

S̄j
�1� ≥ aj+1� � � � �Y

S̄j
�n−j� ≥ an. Then, the probability

in the left-hand side of (2.3) is

∑
1≤i1<···<ij≤n

P�Ai1···ij��(2.4)

Since P�Ai1···ij� is same for all the permutations of �i1� � � � � ij�, the probability
in (2.4) can be written as

1
j

n∑
i=1

∑∗
P�Aii1···ij−1

��

with
∑∗ being the summation over i1� � � � � ij−1 such that 1 ≤ i1 < · · · < ij−1 ≤

n − 1 and ik �= i for k = 1� � � � � j − 1� which is the right-hand side of (2.3).
Thus, (2.3) is proved.
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Now, note that the right-hand side of (2.3) can be written as

1
j

n∑
i=1

P
{
Yi < aj�Y�−i�

�j� ≥ aj+1� � � � �Y�−i�
�n−1� ≥ an

}

− 1
j

n∑
i=1

P
{
Yi < aj�Y�−i�

�j−1� ≥ aj� � � � �Y�−i�
�n−1� ≥ an

}(2.5)

for j = 1� � � � � n. Of course, when j = 1, the second term in (2.5) does not
appear and the first term is

p∑
i=1

P
{
Yi < a1�Y�−i�

�1� ≥ a2� � � � �Y�−i�
�n−1� ≥ an

}�
whereas, when j = n, (2.5) is

1
n

n∑
i=1

P�Yi < an� −
1
n

n∑
i=1

P
{
Yi < an�Y�−i�

�n−1� ≥ an
}
�

Summing the terms in (2.5) from j = 2 to n− 1, we get

n−1∑
j=2

P
{
Y�j� < aj�Y�j+1� ≥ aj+1� � � � �Y�−i�

�n−1� ≥ an
}

=
n∑
i=1

n−1∑
j=2

1
j
P
{
Yi < aj�Y�−i�

�j� ≥ aj+1� � � � �Y�−i�
�n−1� ≥ an

}

−
n∑
i=1

n−2∑
j=1

1
j+ 1

P
{
Yi < aj+1�Y�−i�

�j� ≥ aj+1� � � � �Y�−i�
�n−1� ≥ an

}

=
n∑
i=1

n−1∑
j=1

E

[{
I�Yi < aj�

j
− I�Yi < aj+1�

j+ 1

}

×P
{
Y�−i�

�j� ≥ aj+1� � � � �Y�−i�
�n−1� ≥ an

∣∣Yi

}]

+ 1
n

n∑
i=1

P
{
Yi < an�Y�−i�

�n−1� ≥ an
}

−
n∑
i=1

P
{
Yi < a1�Y�−i�

�1� ≥ a2� � � � �Y�−i�
�n−1� ≥ an

}
�

If we now sum all the terms in (2.5) from j = 1 to n and subtract it from
1 to get the right-hand side of (2.2), it will be exactly what is given in the
right-hand side of (2.1). Hence, the lemma is proved. ✷
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Remark 2.1. By applying Lemma 2.1 to −Y, we see that, for any fixed
b1 ≤ · · · ≤ bn,

P�Y�1� ≤ b1� � � � �Y�n� ≤ bn�
= P�−Y�n� ≥ −bn� � � � �−Y�1� ≥ −b1�

= 1 − 1
n

n∑
i=1

P�−Yi ≤ −b1�

+
n∑
i=1

n−1∑
j=1

E

[{
I�−Yi ≤ −bn−j�

j+ 1
− I�−Yi ≤ −bn−j+1�

j

}

×P
{−Y�−i�

�1� ≥ −b1� � � � �−Y�−i�
�n−j� ≥ −bn−j

∣∣−Yi

}]

= 1
n

n∑
i=1

Fi�b1� +
n∑
i=1

n−1∑
j=1

E

[{
I�Yi ≥ bn−j�

j+ 1
− I�Yi ≥ bn−j+1�

j

}

×P
{
Y�−i�

�1� ≤ b1� � � � �Y�−i�
�n−j� ≤ bn−j

∣∣Yi

}]
�

(2.6)

If Yi’s are iid with a common cdf F�y�, then the identities (2.1) and (2.6)
reduce to

P�Y�1� ≥ a1� � � � �Y�n� ≥ an�

= 1 −F�an� + n
n−1∑
j=1

[
F�aj+1�
j+ 1

− F�aj�
j

]

×P�Y�j�:n−1 ≥ aj+1� � � � �Y�n−1�:n−1 ≥ an�
and

P�Y�1� ≤ b1� � � � �Y�n� ≤ bn�

= F�b1� + n
n−1∑
j=1

[
F̄�bn−j�
j+ 1

− F̄�bn−j+1�
j

]

×P�Y�1�:n−1 ≤ b1� � � � �Y�n−j�:n−1 ≤ bn−j��
respectively, where F̄�x� = 1 − F�x�, and Y�1�:n ≤ · · · ≤ Y�n�:n denote the
ordered components of �Y1� � � � �Yn�. These last two identities were obtained
by Sarkar and Chang (1997).

3. Some probability inequalities and proof of the Simes conjecture.
The principal theorem leading to a proof of the Simes conjecture is the
following.

Theorem 3.1. Let X�1� ≤ · · · ≤X�n� be the ordered components of an MTP2
random vector X = �X1� � � � �Xn� and Fi be the marginal cdf of Xi. Then we
have the following.
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(i) For fixed a1 ≤ · · · ≤ an,

P�X�1� ≥ a1� � � � �X�n� ≥ an� ≥ 1 − 1
n

n∑
i=1

Fi�an��(3.1)

if j−1Fi�aj� is nondecreasing in j = 1� � � � � n for all i = 1� � � � � n;
(ii) For fixed b1 ≤ · · · ≤ bn,

P�X�1� ≤ b1� � � � �X�n� ≤ bn� ≥ 1
n

n∑
i=1

Fi�b1��(3.2)

if j−1F̄i�bn−j+1� is nondecreasing in j = 1� � � � � n for all i = 1� � � � � n, where

F̄�x� = 1 −F�x�.

Proof. From Lemma 2.1, we see that

P�X�1� ≥ a1� � � � �X�n� ≥ an� −
{

1 − 1
n

n∑
i=1

Fi�an�
}

=
n∑
i=1

n−1∑
j=1

E

[{
I�Xi < aj+1�

j+ 1
− I�Xi < aj�

j

}]

×P
{
X�−i�

�j� ≥ aj+1� � � � �X�−i�
�n−1� ≥ an

∣∣Xi

}
�

(3.3)

Since X is MTP2 and the indicator function of the set
{
X�−i�

�j� ≥ aj+1� � � � �

X�−i�
�n−1� ≥ an

}
is nondecreasing in X�−i�, the conditional probability of this set

given Xi is a nondecreasing function of Xi [Theorem 4.1 of Karlin and Rinott
(1980)]. Also, note that �I�Xi < aj+1�/j + 1� − I�Xi < aj�/j is less than 0
when Xi < aj, and is greater than or equal to 0 when Xi ≥ aj. Therefore, the
�i� j�th term in the double summation in (3.3) is greater than or equal to{

Fi�aj+1�
j+ 1

− Fi�aj�
j

}
P
{
X�−i�

�j� ≥ aj+1� � � � �X�−i�
�n−1� ≥ an

∣∣Xi = aj
}
�(3.4)

for all i = 1� � � � � n; j = 1� � � � � n− 1. This proves the first part of the theorem.
The second part of the theorem follows by applying the first part to

−X�n� ≤ · · · ≤ −X�1�, the ordered components of −X which is also MTP2.

Remark 3.1. Suppose that Xi’s have a common marginal distribution F,
and that for each i = 1� � � � � n, Pi, the random p-value corresponding to Hi,
is based on a left-tailed or right-tailed test based on Xi. Since Pi is defined
as F�Xi� for a left-tailed test and as F̄�Xi� for a right-tailed test, in terms of
P�i� the inequalities (3.1) and (3.2) are equivalent to

P�P�i� ≥ ci� i = 1� � � � � n� ≥ 1 − cn�(3.5)

where 0 < c1 ≤ · · · ≤ cn < 1 are such that ci/i is nondecreasing in i = 1� � � � � n.
This, with ci = iα/n for all i, proves the following.
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Proposition 3.1. The Simes conjecture (1.1) holds for MTP2 random vari-
ables with common marginals.

A number of multivariate distributions arising in multiple testing situa-
tions are not MTP2 but are certain scale mixtures of MTP2 distributions; for
instance, the multivariate t, multivariate Cauchy, and so on. Does the Simes
conjecture hold for these distributions as well? For some specific distributions
of this type, as described in the following corollary to Theorem 3.1, the answer
is yes.

Corollary 3.1. Let T = �T1� � � � �Tn� = Z−1X, where X is exchangeable,
having a probability density of the following form:

f�x1� � � � � xn� =
∫ { n∏

i=1

g�xi� y�
}
h�y�dy�

and Z is a positive-valued random variable independent of X. Let g�x�y� be
such that

g∗�x�y� =
∫ ∞

0
zg�zx�y�q�z�dz�

where q�z� is the probability density of Z, is TP2 in (x�y). Then we have the
following:

(i) for fixed a1 ≤ · · · ≤ an, all having the same sign,

P�T�1� ≥ a1� � � � �T�n� ≥ an� ≥ 1 −P�T1 ≤ an�(3.6)

if j−1P�T1 ≤ aj� is nondecreasing in j = 1� � � � � n; and
(ii) for fixed b1 ≤ · · · ≤ bn, all having the same sign,

P�T�1� ≤ b1� � � � �T�n� ≤ bn� ≥ P�T1 ≤ b1�(3.7)

if j−1P�T1 ≥ bn−j+1� is nondecreasing in j = 1� � � � � n.

Proof. Note that for fixed aj’s,

P�T�1� ≥ a1� � � � �T�n� ≥ an� = P�X�1� ≥ a1Z� � � � �X�n� ≥ anZ�

= E

[
E

{ n∏
i=1

I�aiZ ≤X�i��
}∣∣∣∣X

]

≥ E

{ n∏
i=1

P�aiZ ≤X�i��
∣∣∣∣X

}

= P
{
X∗

�1� ≥ a1� � � � �X
∗
�n� ≥ an

}
�

(3.8)

where X∗ has the density

f∗�x1� � � � � xn� =
∫ { n∏

i=1

g∗�xi� y�
}
h�y�dy�
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The inequality in (3.8) follows from the fact that, according to Kimball’s in-
equality [Tong (1980)], the expectation of a product of positive-valued func-
tions of a random variable, all nondecreasing or nonincreasing, is greater than
or equal to the product of their expectations. Noting that the corresponding
marginals of T and X∗ are the same, and that X∗ is MTP2 because g∗�x�y� is
TP2 [see, e.g., Karlin and Rinott (1980)], we see that the first part of the corol-
lary follows from Theorem 3.1(i). Similarly, the second part of the corollary
follows from Theorem 3.1(ii). ✷

Remark 3.2. Suppose that X has the equicorrelated standard multivariate
normal distribution with a nonnegative common correlation ρ. Since the Xi’s
with such a distribution have the following representation:

Xi = �1 − ρ�1/2Yi + ρ1/2Y0�

where Yi are iid N�0�1� [Johnson and Kotz (1972)], the g�x�y� for this dis-
tribution is

g�x�y� = 1
�1 − ρ�1/2

φ

(
x− ρ1/2y

�1 − ρ�1/2

)
�

and h�y� = φ�y�, where φ�·� is the density of N�0�1�. Let Z ∼ χ2
ν/ν.

So, g∗�x�y� here is the density of �1 − ρ�1/2t′ν�γ�, where t′ν�γ� is the non-
central t with ν degrees of freedom and the noncentrality parameter γ =
�ρ1/2/�1 − ρ�1/2�y. As Karlin [(1968), page 118] proved, the density of the
noncentral t at x with the noncentrality parameter γ, say f�x� γ�, is TP2
in (x� γ). Hence, g∗�x�y� is TP2 in (x�y) if ρ ≥ 0. Thus, with Ti = Z−1Xi,
i = 1� � � � � n defined in terms of these Xi’s and Z, that is, for the central
multivariate t of Dunnett and Sobel (1954) type with the associated corre-
lations being equal and nonnegative, the inequalities (3.6) and (3.7) hold if
the ai’s and bi’s are chosen from the central univariate t distribution subject
to the conditions stated there. Note that �T�1� ≥ a1� � � � �T�n� ≥ an� is the
acceptance region of the Simes test combining left-tailed tests based on the
Ti’s, whereas �T�1� ≤ b1� � � � �T�n� ≤ bn� is the acceptance region of the Simes
test that involves right-tailed tests based on the Ti’s. Hence, for the an to
satisfy P�T1 ≤ an� = α and the ai’s to have the same sign, it is required that
0 < α < 1

2 . The same condition on α is required for the right-tailed tests.
Next, suppose that the Xi’s have the squared equicorrelated multivariate

normal distribution with any correlation ρ. Since this distribution depends on
ρ only through its square, we may assume without any loss of generality that
ρ ≥ 0. Using the above representation for the equicorrelated multivariate
normal with nonnegative ρ, one can see that here g�x�y� is the density of
�1−ρ�χ′

1
2�λ�, where χ′

1
2�λ� is the noncentral chi-squared random variable with

1 degree of freedom and the noncentrality parameter λ = ρy/�1−ρ�, and h�y�
is the density of χ2

1, the central chi-square with 1 degree of freedom. Hence,
with Z ∼ χ2

ν/ν, g
∗�x�y� is the density at x of �1 − ρ� times the noncentral F

with 1 and ν degrees of freedom and the noncentrality parameter λ, which is
TP2 in (x� λ), and hence in (x�y). Hence, the inequalities (3.6) and (3.7), with
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Ti’s defined in terms of these Xi’s and Z and the constants subject to the
stated conditions involving the central F distribution with 1 and ν degrees of
freedom, also hold.

Thus, we have also established the following proposition.

Proposition 3.2. For one-sided t tests with 0 < α < 1
2 , the Simes con-

jecture (1.1) holds when the underlying normals have equal and nonnegative
correlation. This conjecture also holds for two-sided t tests when the underlying
normals are equicorrelated with any common correlation.

Remark 3.3. It is clear from the proof of Theorem 3.1 that the inequalities
in (3.1) and (3.2) will reverse; that is, the Simes conjecture will not hold if the
distribution of X is such that the probability P

{
X�−i�

�j� ≥ aj+1� � � � �X�−i�
�n−1� ≥

an�Xi

}
is strictly decreasing in Xi. For example, in the bivariate case, if X =

�X1�X2� is negatively dependent in the sense of being strictly reverse rule of
order two (RR2) that is, if (X1�−X2) is strictly TP2, then the above property
is true. In other words, the Simes conjecture does not hold for a bivariate
distribution with the strict RR2 property. A multivariate version of the strict
RR2 property, known as the strong multivariate reverse rule of order two
(S − MRR2), has been introduced by Karlin and Rinott (1980). Although it
can be proved that the above probability is strictly decreasing in Xi for some
specific distributions of this type, for example, the equicorrelated multivariate
normal with a negative common correlation and the exchangeable Dirichlet
distributions, it is, however, not known if this property is true in general for all
such negatively dependent multivariate distributions. Thus, it is not known
yet if the Simes conjecture is false in general for all S − MMR2 distributions.

Acknowledgments. I thank Burt Holland and the referee for suggestions
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