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Experience has shown that unless special care is exercised in analyzing multiresponse 

data serious mistakes can be made. In this paper some problems associated with fitting 

multiresponse models are identified and discussed. In particular, three kinds of depend- 

encies are considered: dependence among the errors, linear dependencies among the 

expected values of the responses, and linear dependencies in the data. Since ignoring such 

dependencies can lead to difficulties, a method is described for detecting and handling 

them. The concepts involved are illustrated with a chemical example. 
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1. INTRODUCTION 

Engineers and scientists frequently need to analyze multiresponse data. When 
studying a chemical reaction for instance, for each setting of a group of “input” 
variables determining the reaction conditions, not one but a number of [‘output” 
variables or responses (such as the concentrations of each of the chemical con- 
stituents) may be measured. The capability of making such multiple measurements 
has greatly increased with the advent of better analytical tools such as the gas 
chromatograph. This capability has, in turn, increased the potential information 
generated by a particular experimental run, making possible more precise dis- 
crimination among models, more adequate checking of models, and more accurate 
estimation of parameters. 

But with the capability to measure with comparative ease all the substituents 
in the reaction mixture comes the necessity to take account of possible dependencies 
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among them (arising, for example, as a consequence of the law of conservation 
of matter). If a particular chemical mechanism is given, it may follow, for example, 
that to maintain the carbon balance a certain linear relationship must exist among 
the amounts of the substituents in all the experimental runs. ‘A second such relation- 
ship may exist to maintain the nit’rogen balance and so on. Relationships of this 
kind are called stoichiometric. Now in practice the experimenter is not given the 
mechanism but must learn about, it as a result of an iterative conversation between 
the generated data and the theoretical possibilities sparked off in his mind. He 
tentatively entertains possibilities and by suitably planned experiments and 

suitable analysis he allows the data to comment on these. 
Various kinds of problems all associated with dependencies of one kind or 

another then arise: 

(i) Whether or not stoichiometric type dependencies exist, to fit a tentative 
model to the data one must properly take account of correlatiolzs between the 
errors in different substituents. 

(ii) If the nature of dependencies among the expected values of the various 
substitucnts is known, this knowledge might confirm or deny the validity of the 
model under study or suggest the appropriateness of some new mechanistic form. 

(iii) The investigator frequently uses one or more stochiometric type relations 
to deduce the presumed values of substituents which are difficult to measure, or 
to adjust’ measured values to agree with these relations. He may be unaware of 
the implications of such practices on the estimation process and the data analyst 
may not always be aware of what the experimenter has done. 

Since the advent of new methods of chemical analysis and increasing interest 
in mechanistic studies using multiresponse data, we have encountered a rash of 
problems which point to the need for discussing and distinguishing the different 
types of dependencies and for providing methods for use in practical data analysis 
whereby mistakes can be avoided, and forgotten or unknown relationships can be 
made manifest. 

2. THREE RINDS OF DEPENDENCIES 

Suppose that, in an experimental program, n sets of reaction conditions (not 
necessarily all different) are run, and at each set of conditions r responses 

(YI , Y2, . . , Yt , . . 7 yr) are recorded. Suppose furt,hermore that we can write a 
mathematical model for the ith response at the uth set of reaction conditions 

Y zu = %(TU , 0) + Et, i=l , . . ..r (1) 

u = 1, .*. ,n 

where t,, is the error in the ith response for t,he uth run, 8 are unknown parameters 

and ?& are the values of the input variables defining the reaction conditions for 
the uth run. 

Three kinds of dependencies among the responses will be considered in this 
paper along with the effects of each on the fitting of multiresponse models. 

2.1 Deperrdence Amour ihe Errors 

Consider the r errors committed in the uth run, el = (tlU , cZu , . . , E,,). It will 

usually be true that’ these errors are correlated. It is important that the statistical 
treatment of the data should take account, of this correlat,ion, and t,his has not 
always been done. For example, one technique for estimating parameters which 
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has been used (for example, see Ball (1966)) is to find those parameters which 

minimize the overall residual sum of squares from all the responses 

However, it is easily seen (Box R: Draper (1965), Hunt’er (1967)) that this criterion 
is appropriate only if (a) the errors are all uncorrelated and (b) t,he errors all have 
ecmal variances. In practice neither of these circumstances is likely t,o be true, and 
analysis of data as if it were true can give incorrect result)s (Eakman (1969), 
Erjavec (1969)). A method which overcomes these difficulties was developed by 
Box and Draper (1965). Assuming that the errors were distributed according to 
a multivariatc Sormal distribut’ion with unknown variance-covariance matrix 
x = E(E,E:) and using a ‘(non-informative” prior distribution, they showed that, 

given t,he data, the posterior distribution for all the parameters, 8, is proportional to 

where 

IVJ”‘a (3) 

Estimates of 0 yielding maximum posterior density are those obtained by mini- 
mizing the determinant IV,1 . In the particular case of a single response, this 
procedure leads to the method of least squares. 

2.2 L&ear Dependence Among Expected Values of Responses 

In chemical systems stoichiometry, material and energy balances, or st,eady-state 
conditions will usually require that certain linear relationships exist among the 
expected values of the responses. For example, for every run, stjoichiometry may 
dictate that the sum of the expected values of the number of moles of the r con- 

st’ituents in the system must be the same. That is, 

(4) 

More generally, there may be m independent linear relations among the expecta- 
tions which must be satisfied for each run, 

T I 

c auzE(Yiu) = c a,,v,(L , 0) = a,, u = 1, *.. ,n (3 
2=1 *=1 

q = 1, ... , m 

Or, in matrix notation, 

WY,) = a, , u=l . 7 f n 05) 

where A = (a,,) is an m X r matrix and yU = (ylU , . . . , ylu)’ is the uth data vector. 

2.3 Linear Dependencies in the Data 

Suppose an experimenter knows that a formula such as (4), for example, cx- 
pressing some material balance relationship must be true for each of his experi- 
mental runs and yet, because of experimental error, it is not exactly satisfied by 
his observed responses. As is commonly done in practice, the experimenter may 
force his observations to fit his relationship by some normalizing calculation to give 

2~~ + y2 + . . . + yr = a0 (7) 

This is often done by multiplying each of the originally measured values of t’he 
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r observations y,t , y;“u , . . . , yTy * for a given run by the factor a,/xIZ1 y*, . In so 
doing he produces an exact, linear dependence among the responses y1 , yz , . . . , yV . 
Another way in which exact linear dependence in the data is introduced is when the 
investigator measures only r - 1 responses independently and calculates the rth 
response using the relat,ionship (7). More generally, by placing absolute trust in 
the specific model he favors, the experimenter might make use of m, 5 m of the 
relationships in (6). Thus he might make only r - m, independent determinations 
of the substituents and obtain the others by calculation, or, he might complete r 
independent determinations and then force the m, relationships to hold by nor- 
malizing or otherwise adjusting the data. Suppose the first m, < m relations are 
used for normalizing, and the matrix A and the vector a,, are partitioned after t’he 
m,th row so that (6) may be written 

If y,, is an r X 1 vect,or of ‘(data” values including those obtained by calculation, 
then there will be the following ml exact linear relationships connecting each data 

vector 

Alyw = alo 69 

Whenever possible, of course, normalizing or adjusting ‘(data” in the manner 
described above should be avoided. The experimenter should be prepared to go to 
some trouble to det,ermine each response independently, and having done so he 
should refrain from forcing observed responses to satisfy theoretical relationships 

that he believes to be true. He should do this because independent information on 
each of the m relationships can not only provide better estimates of the parameters 
but also make possible a more comprehensive check on the model which is currently 
being entertained. In some situations, however, the avoidance of linear dependencies 
in the data is not possible. In some instances the analytical procedures or equipment 
necessarily make use of such relationships. Such is the case with chemical composi- 
tion data obtained from gas chromatographs, for example, where it is only possible 
to calculate relat,ive percentages. 

When it is impossible to determine all the substituents independently or to 
avoid “normalized” data, careful note should be made of which observations are 
independent, which were obtained by calculation, and which of the expectation 
relationships (6) have been employed in obtaining the data. Ignoring such de- 
pendencies can lead to serious mistakes in interpretation. Unfortunately, even 
if the investigator can identify the precise nature of dependencies in the data, 

he may be unaware of the importance of ensuring that they are taken account of 
in the subsequent stat,istical analysis. 

Careful preliminary analysis of the system under study ought in principle to 
reveal all t,he dependencies in the expected values of the responses, and adequate 
inquiry ought to show which of the relationships may have been utilized, either 
consciously or otherwise, to normalize the results. Unfortunately, we have found 
from bitter experience that in practice dependencies are frequently overlooked 

and we t,herefore now regard it a practical necessity to look for such relationships 
empirically as a preliminary to the analysis of multiresponse data. Frequently, 
the results of such an analysis reveals unexpected but highly informative de- 
pendencies. Further analysis should not be proceeded with until these dependencies 
have been satisfactorily explained. 



SOME PROBLEMS ASSOCIATED WITH THE ANALYSIS OF MULTIRESPONSE DATA 37 

3. EIGENVALUE-EIGENVECTOR ANALYSIS 

Suppose the data analyst were a priori unaware of the nature of the possible 

linear relationships existing among the responses. He could then proceed as follows. 
Ordinarily, the vector of constants a,, on the right of (6) are unknown, but they 
can be eliminated by working with the matrix D = (&) = ( Y,~ - ai ] of deviations 
from the individual averages. The eigenvalues hk and the r-dimensional eigen- 
vectors zk of DD’ are such thab 

z;DD’ = x,z; (9) 

and the eigenvectors can be normalized so that 

ZLZk = 1 k = 1, ... ,r. (10) 

If there are m1 independent exact linear relations in the data 

Alyu = al0 u = 1,2, *.. ,n (11) 

then 

Ald, = 0 u = 1,2 f *.. ,n. (12) 

In this case therefore there will be m, zero eigenvalues, X, = 0, . . . , X,, = 0, 
and the associated m, eigenvectors z1 , zZ , . . . , z,, will define the same hyperplane 
as do the ml rows of A, . Thus, if 2, is the m, X r matrix whose rows consist of 
these eigenvectors, then a non-singular transformation exists such that 

A, = T& (13) 

In general, in addition to the ml exact linear relations in the data we will have 

m, = m - ml further linear relations in the expected values so that 

AzdU = e, u = 1, ..* ,n (14) 

where A, is an m, X r matrix of coefficients and e, is an m, X 1 vector of errors all 
of whose elements have expected value zero. To correspond with these relations 
one can expect a further m, small eigenvalues whose expected size depends on the 
experimental errors via the following relation derived in the Appendix: 

E(X,) = (n - l)Z$Zk k = ml + 1, . ‘. , m, •l- m2 (15) 

where B = E(E,E:) is the r X r variance-covariance matrix for the errors in the 
r responses. The corresponding eigenvectors (which we suppose form the rows of 
the m2 X r matrix 2,) define a hyperplane which approximately coincides with 
the hyperplane given by those components of the m2 vectors in A, which are 

orthogonal to A, . 

In the situation envisaged, then, there would be 
(i) m, eigenvalues produced by adjustment of data which differ from zero, 

if at all, only because of rounding error*; 
(ii) a further m2 = m - ml eigenvalues produced by other relations among the 

expected values and whose magnitudes are determined by experimental error; 
(iii) r - m values which would typically be very much larger since they would 

be quadratic functions of the changes in response produced by changes in 
the experimental conditions. 

These three different kinds of roots usually differ in size by orders of magnitude. 

To separate them into appropriate classes all that is usually needed is a rough 
est)imate of the anticipated size of the X’s associated with the expectation rela- 

* For a precise measure of how large these near zero eigenvalues could be a covariance matrix 

X re for rounding error could be substituted in (15). 
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tionships given by (15). When runs have been replicated, then the sample estimate 
f; may be substituted in (15) to yield estimates of the &‘s. When no replicated 
experiments exist sometimes previous experimentation will provide a rough value 
for I;. Since only a very approximate ‘(order of magnitude” value is really needed, 
if high correlations between experimental errors in the various responses are not 
expected it will be enough to approximate B by 1~’ where 5’ is an average value 
for the residual error variance of the r responses. Then 

E&J ‘v (n - l)z:Iz,crZ = (n - l)a2 (16) 

If the order of magnitude of the r responses is very different, for example because 
of different measurement units, then it would be better to approximate B by a 
diagonal matrix containing the appropriate estimates of the variances of the 

individual responses. 

After proceeding with the subsequent main analysis in which the parameters 8 
are estimated a value for x will be available from the residuals so that at this later 
stage we can return to the preliminary analysis and recheck for agreement. 

4. A SIMPLE ILLUSTRATION 

For illust’ration, suppose that r = 3 constituents can be measured, and that 

6) E(yd + E(Y,) + E(ys) = 6 (17) 

(ii) E(yl) - 2E’(y,) = 3. (18) 

Suppose, in fact, the experimenter chemically determines y1 and yz separately but 
estimates y3 “by difference” according to 

~1 + yz + ~3 = 6 (19) 

(This same linear dependency (19) would also result if the experimenter measured 
all three responses for a given run U, y,: , y2z , and y3z , and then “normalized” 
the data by multiplying each measurement for that run by the factor 6/(y,*, + 
y2t + y3t)). Then a t,ypical set of data might be as follows: 

Y’= : 3 0 

6 1 

3 J 

-1 

5 1 0 

w-3 

with averages g1 = 3, & = 0, and $5 = 3. The relationship (19) is exactly true for 

every row, but because y1 and yz are subject to error, the relationship (18) yields 

(Y1 - El) - 2(yz - %) = 3 (21) 

so that 

y, - 2yz = 3 + e (‘w 

where 

e = cl - 2+ . (23) 
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The matrix D of deviations from the individual averages is 
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-1 0 1. 

-4 -2 6 

D’= 0 0 0 

3 1 -4 

- 2 1 -3. 

and 

(24) 

30 13 -43 

DD’ = 13 i I 6 -19 (25) 

-43 -19 62 

The eigenvalues and eigenvectors for DD’ are shown in Table 1. Since A, is 

zero, z1 corresponds to an exact linear dependence among the responses, 

0.5774 ylu + 0.5774 yZU + 0.5774 yjU = a constant (26) 

Or, after multiplying both sides by l/0.5774, we have 

Ylu + Yzu + Y 3u = a constant (27) 

TABLE 1 

The Eioenvalues and Eigenvectors of DD’ for the Simple Illustration. 

1 0 ( 0.5774 0.5774 0.5774) 

2 0.338 ( 0.6006 -0.7793 0.1787) 

3 97.66 (-0.5531 -0.2436 0.7967) 

J 

agreeing with (19). Suppose that the error variance for the substituents yttL is 
known to be of the order of 0.1. Since XZ (= 0.338) is of the same order of magnitude 
as (n - 1)~’ (= 4 X 0.1 = 0.4) we anticipate that zZ corresponds to a linear 

relationship among the expected values of the responses, or, more specifically, 
to that part of the relationship which is orthogonal to z1 . To see that this is so, 
note that the component of A, = (1, -2, 0) which is ort’hogonal tJo A, = (1, 1, 1) 
is (0.617, -0.772, 0.154) when normalized. This vector is very close to the eigen- 
vector zZ as expected. We see in this simple illustration how eigenvalue-eigenvector 
analysis helps in uncovering the linear relationships which exist among the observa- 
tions and among the expected values. 

5. IMPLICATIONS IN DATA PITTING 

When there are r responses containing m, exact linear relations the r X r matrix 
V, formed as in equation (3) has rank r - m, . Attempts which have occasionally 
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been made to make inferences about the parameters by studying IV,/ have led to 
nonsensical results since this determinant is equal to zero for all values of the 
parameters. Small rounding errors have further confused the picture since, when 
these are present, IV,\ will be not quite zero and will change as the parameters 
are changed. A correct analysis is obtained by studying IV,-,,1 . This (r - m,) )( 
(r - m,) determinant should contain only those responses which have been inde- 
pendently determined (or more generally any r - m, independent linear combina- 
tions of them). In particular, on the assumptions made earlier the posterior 
distribution of the parameters 8 is proportional to /Vl-ml/-n’Z and the estimates 
yielding maximum posterior density are obtained by minimizing t’his determinant. 

The existence of m2 further independent linear relationships in the expected 
values of the r responses should not lead to elimination of m, further responses. 
These relationships do not cause singularities in IV,-,,/ and they contain valuable 
information allowing us to check the adequacy of the model and to obtain more 
precise estimates of the parameters 8. An eigenvalue-eigenvector analysis can 
draw attention to both kinds of relationships. The former kind must be allowed 
for in subsequent data fitting; the latter are of interest to the experimenter and in 
some cases may confirm or deny the adequacy of the model which is being fitted, 
but they will not directly affect the fitting of the data. 

Each problem must be considered on its merits. The object of this paper is to 
point out that a preliminary eigenvalue-eigenvector analysis is a useful tool and, 
preferably, further analysis should not be proceeded with until the relationships 
it points to have been satisfactorily explained. 

6. CHEMICALEXAMPLE 

The thermal isomerization of a-pinene to dipentene and allo-ocimene which in 
turn yields (Y- and fi-pyronene and a dimer was studied by Fuguitt and Hawkins 
(1947). The proposed reaction scheme for this homogeneous chemical reaction is: 

y 5 
The concentrations of the reactant and the four products were reported by li’uguitt 
and Hawkins at eight time intervals, and these data are reporduced in Table 2. 
Mathematical models can be derived which give the concentration of the various 
species as a function of time if the chemical reaction orders are known. Hunt,er 
and MacGregor (1967), assuming first-order kinetics throughout, derived the 
following equations: 

r]lU = he 
-+t Y 

, %u = y (1 - em”‘“), 113u = C,e-+‘w + C,eS’u + C3eytu, 

74x4 = e3 
( 
$I (1 _ e-Otu) + % (eotU - 1) + $ (e”” - 1) 

> 
, 
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rlsu = 8.3 ( 
cB2 +) em”” + (&2 p) ePt” + & eYt” ’ > 

where ylo = the value of y, at t = 0, a = 0,+0,+0,, p = (--o( + da” - 48,&)/2, 

Y = (-a - .\/(y” - 4wW, d = 4 + 0,) cl = ~2Ylo(~s - d/((4 + P)(+ + Y)), 
c2 = e2Ylo(e5 + PM+ + P)(P - Y)), c3 = wlo(e5 + Y)/((+ + Y)(IY - a). 

TABLE 2 

Concentration vs. Time Data for the Isomerization of cu-pinene at 189.5”C. 

Time (min.) I Yl 

I 
J. y2 y4 

.-pl~~flt3 dipentene allo-oolmene pyronene dlmer 

1230 88.35 7.3 2.3 0.4 1.75 

3060 

4920 

7800 

10680 

25030 

22620 

36420 

Assuming these models to be appropriate, we can obtain the posterior dist’ribution 
of the parameters (the five rate constants) following Box and Draper (1965). 
In particular, we can find those parameter values which have the highest posterior 
density by minimizing the determinant criterion. If data dependencies are ignored, 

however, and parameter values which minimize the determinant criterion IV51 
(using all five responses) are found, the result is the unsatisfactory data fit shown 
in Figure 1. This example demonstrates how analysis of multiresponse data that 
ignores dependencies can lead to meaningless answers if linear dependencies are 
present. 

From an examination of Fuguitt and Hawkins’ paper, it can be found that y4 
(a- plus /%pyronene), because of experimental difficulties, was not measured 
independently but rather was assumed to constitute three percent of the total 
conversion of a-pinene (yl). That is, it was assumed that 

y4 = 0.03(100 - yl). 

Thus, there is the following exact linear relationship among the observations: 

@.03)Y, + (O)Yz + (O)Ys + (l)Y* + my5 = 3. @f9 

Furthermore, by reducing the first order differential equat)ions defining the kinetic 
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5 IO 
TIMF (MI&S x251o-3, 

30 35 40 

FIGURE l--Data Fit with Parameter Values Which, Ignoring Dependencies, hlirlimize IVs/. 

system to a canonical form following Ames (1962), it can be shown that the following 

two relationships must exist among the expectations of the y’s: 

and 

E(yd + Ekh) + E(yd + E(y,) + E(yd = const. (2% 

-Wyd + (1 + e,/elw(y2) = con& (30) 

The first of these relationships (29) simply expresses an overall mass balance for 
the syst,em while t,he second (30) results from the fact that the isomerizatjions of 
oc-pinene (y,) are assumed irreversible. The experimenters in this study chose to 
report their data in “normalized” weight percentage form, and so in effect, con- 
sciously or otherwise, used their knowledge of the expectation relationship (“9) to 
force the following relationship among the observed responses: 

y1 + y2 + y3 + y4 + ys = 100. (31) 

Thus there exist three linear relationships (28), (30), and (31) in this system, 
t,wo of which, (28) and (31), are exact apart from rounding error. Because of t’he 
rounding error the value of the determinant was not exactly zero for all values of 
the parameters and this made it technically possible to obtain a minimum for IV,1 
which however is meaningless. 
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6.1 Eigenvalue-Eigenvector Analysis 

43 

We now illustrate how empirical analysis could reveal these relationships. To 
implement the eigenvalue-eigenvector analysis, the individual means are first 
eliminated from the various responses to form a new data matrix, D = (&}, where 

CL = y,, - ii, . The eigenvalues and the associated eigenvectors of the DD’ matrix 
are then obtained. These quantities are given in Table 3 for the present example. 

TABLE 3 

Eigenvalues and Eigenvectors of DD' 

Eigenvalues of DD’ 
-I 

Al x2 x3 x4 x5 

.0013 .OlGS 1.21 25.G 9660. 

Eigenvectors of DD' -- 

5 E2 z3 -z4 -zs 

-.169 .476 -.296 .057 .809 

-.211 .490 -.611 -.224 -.540 

-.161 .435 .640 -.612 -.013 

.931 .364 -.OlO .004 -.024 

-.185 ,459 .360 .756 -.231 

By employing the overall residual sum of squares (RSS) obtained from minimiz- 
ing (a), one can obtain a crude estimate of the average experimental error variance 
by calculating 

- RSS 19.87 
a2 ‘v x-, = (40 _ 5) = 0.6 

where d.f. stands for residual degrees of freedom. Hence by equation (16) we can 
expect those eigenvalues arising from linear relationships among the expect,ed 
values of the responses to be of the order of (n - 1)7 = 4.2. The eigenvalue XB 
is seen to be of this order of magnitude and will be shown later to correspond to 
equation (30). The eigenvalues A~ and x5 are however much larger and we would 
therefore not expect them to be associated with any linear relationships. It is 
clear that the capability of estimating the parameters in our models is coming 
mostly from z5 , the eigenvector associated with As . 

To see whether there are any exact linear relationships among the responses, 
one should look for eigenvalues which are zero. In this case, there are none which 
are exact,ly zero but both X1 and xZ are very small and much smaller than t,he value 
4.2 which one would expect from a linear expectation relationship. Thus one might 
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suspect that eigenvalues z1 and z2 correspond to linear relationships among the 

recorded responses which are exact except for rounding error. 
To obtain an estimate of the expected value of an eigenvalue when there is only 

rounding error present, we can assume that the rounding error is distributed 
uniformly with range -0.5 to +0.5 of the last digit reported. Rounding error 
variance & is then given by the range squared divided by 12, and since in this 
example all responses have been rounded to the same number of significant figures, 
the corresponding expected value of an eigenvalue using (3) may be approximated 

by 

I@,) = (n - l)z:Iz,o:, = (n - l)(TZ, . 

The concentration data here were reported to bhe nearest 0.1 percent and therefore 
the range is from -0.05 to +0.05 or 0.10. Thus, the expected value of an eigenvalue 
is 7(0.10)‘/12 or approximately 0.006. Both eigenvalues X, and Xz are of this order 
of magnitude, thus helping to confirm that z, and zZ represent exact dependencies 

among the responses. 
The question now is to determine, if possible, what are the true linear dependen- 

cies among the responses that are causing this two dimensional singularity plane. 
As shown in equation (13) the plane defined by Z1 = [z, , zZ]’ will only be some 
non-singular transformation of the true constraint matrix A, . We previously stated 
that the linear relationships given by equations (28) and (31) were expected to be 
present in the data. To test whether these account for the two dimensional singu- 
larity region represented by Z1 we need to test for the coplanarity of the regions 
defined by A, = [a, , az]’ and Z1 where a: = (.03, 0, 0, 1.0, 0) and ai = (l., l., 
l., l., 1.). A very simple check on this is to calculate the cosine of the angle made 

by each of the vectors a, and a, with the plane Z, . Doing this yielded cosines of 
.9999 and .9993 respectively, implying that a, and a2 do indeed lie almost entirely 
within the plane of Z1 . 

If the true underlying relationships are not known it may be possible to use the 
empirical eigenvectors to provide some indication of what they may be. For 
instance, if the smallest of the “zero” eigenvalues is considerably smaller than 

the others, its corresponding eigenvector may correspond fairly closely to the most 
exact of the linear relationships. However, this probably would not be so if the 
llzero” eigenvalues happened to be of nearly equal magnitude. Looking at Table 3 
in our example the first eigenvector z: corresponds reasonably closely to ai = 
(0.03, 0, 0, 1.0, 0), and z: to that component of a; = (l., l., l., l., 1.) which is 
orthogonal to z: , namely (.465, .468, .464, .363, .466). 

We are also in a position now to check whether the third eigenvalue z3 corre- 
sponds to the relationship among the expected values of the responses given by (30). 
If we use the current estimates of 0, and 0, and take that component of the vector 
corresponding to the relation (31) which is orthogonal to both z1 and zZ and normal- 

ize it, we get (-.308, -.665, .482, .OOS, .482) which is indeed very similar to 
z; = (-.296, -.611, .640, -.OlO, .360). 

The confirmation of an expectation relationship such as (30) provides a valuable 
check of the tentatively entertained model structure for the system, in t,his case of 
the chemical stochiometry. Had eit’her of the isomerization reactions been reversible, 
then (30) would not have been true. 

6.2 Analysis of the Data: 

Before any meaningful analysis of the data can be conducted, the two-dimensional 
singularity resulting from the relationships (28) and (31) must be removed. Perhaps 
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the most natural approach t’o this problem is to think in terms of the responses 

themselves and ask the question: which responses should be dropped? It must be 
done in such a way as t)o leave an independent subset of three responses. In many 
cases, the structure of the problem and of the dependencies may well dict,ate a 
natural way for dropping responses. In our problem, if we look at the two depen- 
dencies which we know to exist, it is obvious that at least one of y1 or y4 must be 
eliminated, preferably y4 since it is known to be the fabricated response. The 
second relationship (31) contains all five responses and if there were no rounding 
error, it would make absolutely no difference which of the additional four responses 
was dropped. Another approach to this problem is to conduct the final analysis 
of the data on three linearly independent combinations of all five responses. Again 

if there were no rounding error it would make no difference which three linearly 
independent combinations were used so long as they adequately defined the 
3-dimensional subspace orthogonal to the 2-dimensional singularity plane defined 
by the vectors a: = (0.03, 0, 0, 1.0, 0) and a: = (l., l., l., l., 1.). From an estima- 
tion point of view, it would be convenient to use three orthogonal vectors to define 
this space. However, since the singularity relationships are not exactly satisfied 
by the data, and since the likelihood surface for the parameters is poorly con- 
ditioned, the final parameter estimates and their variance-covariance matrix will 
be sensitive to some extent to how the singularities are removed. 

6.3 Use of Empirical Eigenvectors 

Were it not for the presence of roundoff error, the eigenvalues X1 and xZ would 
have been zero and their corresponding eigenvectors z, and zZ would define the 
exact singularity plane defined by al and a2 . A natural set of vectors to use in 
defining the remaining three dimensions would then be the remaining three em- 

pirical eigenvectors z3 , z4 , and z5 since these satisfy the requirements of being 
independent, orthogonal vectors, all orthogonal to the singularity plane. Therefore, 
in practice, when it has not been possible to pinpoint the true singularity rela- 
tionships (a, and a,) or if the roundoff error is considered to be negligible, then 
these eigenvectors corresponding to the non-zero eigenvalues can be used to form 
the three independent linear combinations fsu = ziyU , f4u = z:yU , and f5, = z:yU . 
By minimizing the determinant IV,1 where 

‘J, = ( (L - E(fi))‘(fi - EV,)) I, i, j = 3, 4, 5 (32) 

where E(fi,) = zln, , one obtains the point estimates of the rat.e constants given 

in the second row of Table 4. The first row contains those rate constant est’imates 
obtained previously by minimizing the overall residual sum of squares of all five 
responses. Figure 2 shows the fits of the responses yi obtained using these parameter 

estimates. 

6.4 Use of Theoretical Eigenvectors 

In this example, however, the true, or theoretical linear dependencies (a:yU and 
aLy,J have in fact been uncovered and it is therefore better to use three independent 
linear combinations of the five responses which are orthogonal to this true sin- 
gularity plane rather than the approximate one represented by the eigenvectors 
z1 and zz (although these will differ only very slightly since the roundoff error is 
relatively small). For this purpose, we used as the basis for our three linear com- 
binations the vector components (a, , a4 , and a,) of the eigenvectors z3 , zl , and z5 

which are orthogonal to a, and a2 . By minimizing the determinant of the form (32) 

where now fiU = a{yu and E(f,,) = aIn,, we obtained the point estimates of the 
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FIGURE 2-Fit of the Responses Using Parameter Values Which Minimize /V3/ Based on the 

Three Linear Combinations (f, = z’y,,, i = 13,4, 5). 

rate constants shown in t,he third row of Table 4. These are the values which give 
the highest posterior probability density. It can be seen that, as expected, they 
differ very little from those values in the second row. The resulting fit of the data 
is obviously very much better now that the singularities have been removed 

(see Figures 1 and 2). 
The estimate of & is imprecise as is reflected by an extremely flat surface of the 

determinant function in the @A direction. This was to be expected since most of 
the information on t,he & rate constant, is contained in the singularity plane of the 
response space and, in particular, in y4 . 

The confidence region for the parameters can be computed using the general 
formula (Box and Draper, 1965) 

JVlcr-,j cx /Vlnrin exp {X:(1 - al/n} (33) 

where p = number of parameters 
n = number of observations 

x:(1 - o() = chi-square value for p degrees of freedom and (1 - a) X 100% 
probability level. 

For our example p = 5 and n = 8. 
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7. SUWKARY 

In the process of model-building using multiresponse data, one should always be 
alert for possible linear relationships among the responses. When there is doubt 
as t’o what relationships, if any, are present, an empirical eigenvalue-eigenvector 
analysis should be used. When dependencies are found, there must be good reason 
for them and considerable effort should be made to uncover their causes. Such 
studies can confirm or deny the validity of the model under study or suggest the 
appropriateness of a new and previously unsuspected mechanistic form. If m, exact 
linear relationships are known to exist, then m1 dependent responses or m, linear 
combinations of them must be deleted before t’he data are analyzed; otherwise 
parameter est,imation procedures yield meaningless results. So far as the actual 

analysis of the data at hand is concerned, however, knowing these true or theoret,ical 
dependencies is not absolutely necessary. One can p\roceed by making use of the 
empirically determined eigenvectors which do not necessarily represent true 
dependencies. A simplified version of the proposed procedure is shown in flow 
diagram form in Figure 3. Sections of this paper in which there is a fuller explanation 
are indicated. 

It, is desirable to have a check of some kind for data dependencies (such as the 
eigenvalue-eigenvector analysis described in t’his paper) built into general purpose 
computer programs for multiresponse fitting problems in the same way it is de- 
sirable to have a check on possible singularity or near-singularity incorporated 
in standard regression programs so that the user is given warning that answers 
produced by the program may not be meaningful. The eigenvalue-eigenvector 
analysis can be used to distinguish between dependencies in the data y on the 
one hand and in the expectations E(y) on the other. In the first case, the eigen- 
values will be of the order of magnit,ude of the mean square rounding error while 
in the second they are of the order of magnutide of the mean square residual error. 

Usually the latter is several orders of magnitude larger than the former so that 
it is possible to dist,inguish between the two kinds of dependencies so they can 
be handled accordingly. 

We are indebted to a referee for point,ing out that one way in which dependencies 
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FIGURE Z-Simplified Version of Procedure for Fitting a Multiresponse Models. 

among the expected values may enter a problem is through a steady-state relation- 
ship. This situation will usually be a local one in that it will depend upon the range 
of the experimental conditions. For instance, if in our example the data had been 
collected only over the restricted time range of 5000 to 15000 seconds where the 
rate of formation of alloocimene (y3) is relatively constant, the following kinetic 
relationship would nearly hold: 

yielding a linear relationship among the expected values of several responses which 
would need to be appropriately explained. 
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8. APPENDIX 

Expected Value of an Eigenvalue 

The expected value of an eigenvalue, X, whose associated eigenvector, z, corre- 
sponds to a linear relationship in the expected values of the responses, can be 
found as follows: 

Since z is an eigenvector of DD’ 

DD’z = Xz (A.11 

Premultiplying equation (A.1) by z’ we get 

z’DD’z = Z’XZ = Xz’z (A.21 

But since the z vector is scaled such that z’z = 1, 

X = z’DD’z (A.3) 

By definition, D = {d,,] = (yiU - Q%). We can further write yiU = viv + eiU 
and gi = 7j, + zi so that 

D = {vi,, + till - ij< - z;] 

The ijth element of DD’ is then 

(A.4) 

6) (A.5) 

The last three terms in the first summation of equation (A.6) can be seen to be 

equivalent, 

g Vklji = 2 ?*ll,u = g 7i,% = n7S.4. 1 , (A.7) 
u=1 

Assuming that the models, viU , are correct so that E(+J = 0, it follows that 

E(z,) = 0 also. Then, when the expected value of (DD’)ii is taken, all the terms in 
the second summation of (A.6) become zero. 

We further assume that the errors in the responses have a variance-covariance 
matrix B = (c:~} so that E(~,,E~,) = rsi , and that these errors are independent 

from run to run. That is, E(c,,E;“) = 0 for all u # v. Now the expectations of the 
terms in the third summation of (A.6) can be evaluated. 

(‘4.8) 
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When the above information is incorporated in equation (A.6) it becomes 

which, upon simplification, reduces to 

E(DD’)i, = 2 vzuvju - ntji~,~ + (n - 1)~;~ (A.13) 
u=1 

The expected value of X can now be found by taking expectations of bot,h sides 

of equation (A.3). 

E(X) = E(z’DD’z) = z’E(DD’)z 

Substitut’ing (A.13) into (A.14) we obtain 

= g $ ~A~(DD’)~~ (A.14) 

nqif/i + (72 - l)Cti 1 (A.15) 

Since z represents a linear relationship in the expected values of the responses, 
and the expected value of yaU is vtU , we know that 

g xirlzu = aI (A.16) 

which is the same constant, a, , for every run, U. It follows that 

(A.17) 

By expanding equation (A.15) we obtain 

E(X) = 2 2 zt~;u 2 xiqju - 
u=1 i=1 i=l 

n & z,lii 2 2,~ + (n - 1) 2 2 wiu:; (A.18) 
i=l j-1 

Then, when we insert (A.16) and (A.17) into (A.18) we get 

-w) = 2 (4 (%J - 4%> (4 + (n - l)z’m (A.19) 
u=l 

which simplifies to 

E(X) = (n - 1)z’zz (A.20) 

If x is known, the expected value of X can be found directly from equation (A.20). 
And even when x is unknown, it may be possible to estimate it,, for example, there 
may be some replication in the data. The best estimate for the expected value 
of X in this case, too, is found from equation (A.20). 

If B is unknown and cannot be estimated, we can get a very crude estimat,e 
of E(X) by approximating X by I,“. Then E(X) ‘v (n - I$?, where the average 
variance, 7, may be estimated from the residual sum of squares. 
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